User Defined Fitting Functions via External DLL

As described in the Origin Professional manual, the Origin NLSF supports fitting function simplemented in an external DLL. The manual describes fitting functions with the following prototype:

int FAR PASCAL function_name (HWND hWnd, double FAR * lpValue, short nParam, double FAR *lpParam,LPCALLBK lpfn);

Origin also supports fitting functions with the following prototype:

int FAR PASCAL function_name(FIT_PARA_LIST)

where FIT_PARA_LIST is defined as follows:

define FIT_PARA_LIST short cntrl, DWORD lpProc, short nParam, DWORD lParam1,

DWORD lParam2, LPDOUBLE p, LPDOUBLE c, LPDOUBLE x, LPDOUBLE y, LPDOUBLE dy

short
cntrl - general control, defined as HAS_FUNC_DERIV/GET_FUNC_VALUE/GET_FUNC_DERIV

short
nParam - number of parameters

DWORD lParam1
- call back function for more info

DWORD lParam2

LPDOUBLE
p -
 parameter array (p[])

LPDOUBLE
c -
 constants array

LPDOUBLE
x -
 input (x[]), so use for independent (explanatory) variables

LPDOUBLE
y -
 output (y[]), so use for dependent (response) variables

LPDOUBLE dy - dy/dp derivatives , i.e. derivatives with respect to the parameters

This kind of function is more general than the first one. For example, it allows for multiple independent variables (they’ll be x[1], x[2], x[3] etc.). It also allows the writer of the function to provide expressions for the derivatives with respect to the parameters. These expressions will then be used during the nonlinear regression fitting.

The general control parameter is used by NLSF to get differnet info from the fitting function. The meanings of the control values are:

HAS_FUNC_DERIV
 - NLSF calls the funcion with this value of the control to ask

 whether the implementation of the function provides expressions for

 the derivatives; so return YES if the function has analytical

 derivative in its implementation; otherwise return NONE.

 in its implementation; otherwise return NONE.

GET_FUNC_VALUE
 - NLSF wants only the value of the response.

GET_FUNC_DERIV - NLSF wants the values of both the response and the partial

 derivatives

The FitFuncs DLL provides example of two fitting functions of the more general type:

Nernst and Asymptotic2.

1. The Nernst function – this is an example of a function of two explanatory variables; expressions for the derivatives are not given. See the source code file FitFuncs.c for more details on this function.

2. Asymptotic2 is an example where the partial derivatives are given in the implementation. Again, there are more details in the code.

Note the following:

1. Each of the fitting functions implemented in an external DLL has to be exported. See file FitFuncs.def

2. You have to provide an FDF file for each function. In this FDF file in the section [GENERAL INFORMATION] the key “ Function Source” is used by NLSF to “find” the fitting function. This key has to have value in the form

 Function Source = dll_name.function_name

 See files FitFuncs_Asymptotic2.fdf and FitFuncs_Nernst.fdf for examples of this.

3. You have to include file FitFuncDef.h in you DLL project. Or alternatively you can copy the definitions that are in this file to another header file or even to the top of you C file.

If you want to try out the Nernst and Asymptotic2 functions, copy the FitFuncs.dll to the Origin folder, copy the FitFuncs_Asymptotic2.fdf and FitFuncs_Nernst.fdf files to either the Origin folder or any other folder (it actually doesn’t matter where they are as long as you can find them later). Then go to the NLSF fitter and choose Function->Add and add these functions.

