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Chapter 5
Comparing trees

This chapter describes the tree comparison measures available in COMPONENT,
and the various ways you can compare trees using the program. Among the possible
uses of tree comparison measures are:

n comparing trees for the same taxa computed from different data sets to
measure taxonomic congruence (e.g., Penny et al., 1982; Bledsoe and
Raikow, 1990).

n comparing bootstrap trees with a reference tree (e.g., Sanderson, 1989).

n identifying islands of trees (e.g., Maddison, 1991; Page, 1993b).

COMPONENT implements the partition and nearest neighbor interchange metrics,
triplets, quartets, and agreement subtrees.

Overview

A tree comparison measure is some measure of the similarity between two trees, T1
and T2. There are two basic kinds (Boorman and Olivier, 1973). The first counts the
minimum number of operations required to transform T1 into T2 using some
method of transforming trees. The second represents the two trees as sets of simpler
structures (such as clusters or quartets) and then uses various measures of similarity
between sets.

Transforming one tree into another

A good example of a measure defined in terms of transforming one tree into another
is the nearest nearest neighbor interchange (NNI) metric (e.g., Waterman and
Smith, 1978) which measures the minimum number of NNIs required to change T1
into T2. In the example below, one NNI is required to convert T1 into T2, so
dNNI(T1, T2) = 1.
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Trees as sets

Estabrook et al.'s (1985) quartet measures are an example of treating trees as sets of
simpler structures. The trees T1 and T2 in Figure 5.1 each contain 15 unrooted four-
leaf subtrees called quartets. The next figure shows the four possible resolutions of
the quartet abcd: abcd, ab|cd, ac|bd, and ad|bc.
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The following table lists each quartet and how they are resolved in the two trees:

Quartet T1 T2

abcd ab|cd ab|cd
abce ab|ce ab|ce
abcf ab|cf ab|cf
abde ab|de ab|de
abdf ab|df ab|df
abef ab|ef ab|ef
acde ac|de ad|ce †
acdf ac|df ad|cf †
acef ac|ef ac|ef
adef ad|ef ad|ef
bcde bc|de bd|ce †
bcdf bc|df bd|cf †
bcef bc|ef bc|ef
bdef bd|ef bd|ef
cdef cd|ef cd|ef

Four of the 15 quartets are resolved differently in the two trees (those marked †
above). Estabrook et al. (1985) describe various measures of tree dissimilarity based
on the number of quartets in common to two trees. One measure, EA, is the
proportion of quartets that are resolved and identical in the two trees; in the
example above EA(T1, T2) = 11/15 = 0.73. Other measures allow for quartets that
may be resolved in one tree but not in the other due to polytomies (see below).

These two categories of tree comparison measure are not mutually exclusive. The
well known partition metric (Penny and Hendy, 1985) belongs to both categories. It
 can be defined as either (1) the minimum number of "contraction" and
"decontraction" operations (Borque, 1978) required to transform one tree into
another (Robinson and Foulds, 1981), or (2) as the number of partitions (clusters if
the trees are rooted) found in one or other but not both trees (Hendy et al., 1984).

Choosing a tree comparison measure

Choosing a comparison measure depends on what aspect of tree structure you are
interested in comparing. Other considerations are computational speed and
accuracy.

Figure 5.2
The four possible

quartets for four taxa

Table 5.1
The quartets for the two

trees in Figure 5.1
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The partition metric is easy to compute (Day, 1985), widely available (it is also
implemented in PAUP 3.0 and COMPONENT 1.5) and treats trees as sets of
clusters, which is how most biologists interpret trees. However, its resolution is poor
and two trees differing solely in the postion of one taxon can be maximally different
(Penny and Hendy, 1985).

Because NNIs are frequently used to rearrange trees in heuristic searches for most
parsimonious trees the NNI metric is particularly useful for studying islands of trees
(Maddison, 1991; Page, 1993b). Its main disadvantage is that no exact, efficient
algorithm for its computation is known (Brown and Day, 1984; Krivánek, 1986).

Agreement subtrees are useful for identifying trees that differ in the placement of
one or more taxa but are otherwise very similar, avoiding a limitation of the
partition metric.

Quartet measures of tree similarity may be most useful in comparing trees
constructed using invariants defined on sets of four taxa (e.g., Lake, 1987; Sidow
and Wilson, 1990; Steel, 1992).

Kinds of comparison

COMPONENT enables you to make several kinds of tree comparisons. You can

n compare any two trees in the same profile.

n compare all trees in the same profile with themselves.

n compare all trees in one profile with all the trees in another profile.

n compare all ordered pairs of trees from two profiles.

F COMPONENT's tree comparison commands operate only on the active trees in the
currently active block.

Comparing two trees in the same profile

You can ask COMPONENT to compare the tree displayed in the active tree window
with any other tree in the same profile. Unlike the other comparison commands
Compare Tree with allows you to make several different kinds of comparisons at
once.
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n From the Trees menu choose Compare tree with. COMPONENT displays
this dialog box :

n Use the Compare with tree input box to specify which tree you want to
compare the currently displayed tree (by default the dialog box lists the
next tree in the profile.) Check the boxes corresponding to the tree
comparison measures you want to use. Some measures require the trees to
be binary and hence will not be available if not all the trees in the profile
are binary.

COMPONENT will compute the selected tree comparison measures and output the
results in the display buffer.

Comparing all trees in the same profile

COMPONENT can compare every tree in the current profile with every other tree in
the same profile, producing pairwise distance matrix.

n From the Trees menu choose Tree-to-tree distances. You will see a
submenu listing the tree comparison measures available:

If some of the trees in the profile are not binary then you will not be able to compute
the NNI or agreement subtree measures (see below).

From the submenu select the tree comparison measure you want to use. If you
choose the Triplets, Quartets, or NNI measures you will see a dialog box
displaying various choices of method of computation or statistic to be computed.

Figure 5.3
The Compare Tree With

dialog box

Figure 5.4
The Tree-to-tree

distances submenu
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NNI

For NNI measures you have a choice of three approximations to the NNI metric.
The order of accuracy  is dra < drs < dus (in other words, dus is the most accurate).
Not surprisingly, the order of speed of execution is the reverse. Computing drs takes
twice as long as dra. Given trees with n leaves, computing dus takes n times longer
than drs. See below for more details.

Triplets and Quartets

When comparing trees using quartet of triplet measures a dialog box will appear
offering a choice of measures for COMPONENT to output:

If you select d, s, SD, or SJA, then the program will output the lower left triangle of
the appropriate pairwise distance matrix. If you select All then the program outputs
all the statistics (including d, s, r1, r2, and u), and each tree comparison takes up a
whole line. Since COMPONENT calculates all these statistics anyway your choice
will not affect the speed of computation, only the extent of the output.

n COMPONENT computes and displays the lower left triangle of the
pairwise distance matrix for the active trees in the profile. The program
also displays a histogram of the frequency distribution of pairwise
distances.

Comparing all trees in two profiles

COMPONENT can compare the trees in two different profiles (i.e., in two different
Tree windows). The trees in the two profiles need not have the same number of

Figure 5.5
The Nearest Neigbor

Interchange dialog box

Figure 5.6
The Triplets dialog box
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leaves, but must have at least three (four if the trees are unrooted) leaves in
common.

n Choose the Compare with command from the Trees menu. A dialog box
will appear listing all  the Tree windows containing trees that can be
compared with the trees in the currently active Tree window:

If the Compare with command is grayed then there are no comparable Tree
windows. To be comparable the profiles must have at least three (four if the trees are
unrooted) leaves in common.

n Once you've selected a Tree window to compare with you will be presented
with a dialog box listing the available tree comparison measures:

Choose the measure you want to use. If you click on the Options button the dialog
box will expand to offer choices for the Triplets, Quartets, and NNI options.

n The Compare group box lists two choices for how you want the two
profiles to be treated. The default (All) is to compare every tree in the first
profile with every tree in the other profile. Hence tree 1 in the first profile
is compared with every tree in the other profile (as shown below), then tree
2 in the first profile is compared with every tree in the second profile, and
so on:

Figure 5.7
The Trees Compare

With dialog box

Figure 5.8
The Between Profile

Tree-to-tree Distances
dialog box



Comparing trees 5-7

COMPONENT User's Guide

Profile 1 Profile 2
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The other option (Pairs) treats the trees in two profiles as if they were paired, so
that tree one in the first profile is only compared with tree one in the second profile,
tree two with tree two, as shown below.
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COMPONENT computes and displays the pairwise distances between the trees in
the two profiles. If you checked the Histogram check box, the program also displays
a histogram of the frequency distribution of pairwise distances.

Agreement subtrees

An agreement subtree of two trees is an identical subtree that can be obtained from
both trees by pruning leaves with the same label. Finden and Gordon (1985) refer to
these trees as "common pruned trees." A greatest agreement subtree  (GAS) is a
subtree that results from pruning the fewest number of leaves. For example, T3
below is a greatest agreement subtree of T1 and T2.

a b c d a b c d a c d

T TT1 32

There may be more than one greatest agreement subtree. In the example above,
(b,(c,d)) is also an agreement subtree.

Dissimilarity

Given two trees, T1 and T2, we can define the distance dGAS (T1, T2) as the number
of leaves removed to obtain a greatest agreement subtree.

Algorithm

COMPONENT uses Kubicka et. al's (1992) algorithm to find a greatest agreement
subtree for two binary trees, and hence, dGAS(T1, T2).

Figure 5.9
The All option compares

every tree in the first
profile with every tree in

the second profile.

Figure 5.10
The Pairs option treates

the two profiles as paired

Figure 5.11
Two trees T1 and T2 and

an agreement subtree,
T3
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Given two unrooted binary trees, such as T1 and T2 in Figure 5.12 Kubicka et al's
(1992) algorithm uses a recursive procedure AGREE (T1, T2, a) to find the greatest
agreement subtree for T1 and T2 that contains the leaf a:
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This procedure is repeated for every leaf in the tree, resulting in a collection of
subtrees. The largest of these is the greatest agreement subtree for T1 and T2.

F Kubicka et al.'s (1992) algorithm finds a single greatest agreement subtree. While
the algorithm guarantees that there is no agreement subtree larger than the one it
finds, there may be other agreement subtrees of equal size.

Restrictions

The trees being compared must be binary (i.e., fully resolved).

Rooted versus unrooted trees

If the two trees are unrooted then COMPONENT computes AGREE (T1, T2, i ) for
all  1≤i ≤n, as described above.

A rooted tree can be visualised as an unrooted tree with an additional leaf ("x") that
has been "pulled down" to root the tree (see Chapter 0). Consequently to find a
greatest agreement subtree for two rooted trees we need only compute  AGREE (T1,
T2, x ). As a result, finding the agreement subtree for two trees takes (often
substantially) less time if the trees are rooted rather than unrooted.

When comparing two profiles, unless the trees in both profiles are rooted
COMPONENT will treat both sets of trees as unrooted.

Figure 5.12
Two unrooted binary

trees

Figure 5.13
A greatest agreement

subtree for the two trees
in Figure 5.12
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Output

If you are comparing two trees with the Compare with tree command from the
Trees menu then COMPONENT will list the leaves deleted from the two trees to
obtain an agreement subtree and display the subtree:

Otherwise the program will output just the number of leaves that must be deleted to
obtain an agreement subtree.

Nearest neighbor interchange metric

Given two unrooted binary trees T1 and T2, the distance dNNI(T1, T2) between those
trees is the smallest number of nearest neighbor interchanges (NNI) required to
transform one tree into another (Robinson, 1971; Waterman and Smith, 1978).

A Nearest Neighbor Interchange (NNI) is the interchanging of two of the subtrees
incident to an internal edge (=branch) in a binary tree. Two such interchanges are
possible for each internal edge.
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Figure 5.14
Example output for an

agreement subtree

Figure 5.15
An unrooted tree for four

taxa
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For example, in the tree in Figure 5.15 nodes x and y are adjacent to edge e, nodes a
and b are incident to node x, and nodes c and d are incident to node y.
Interchanging nodes a and d (or b and c) results in the tree:
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x y

Similarly, interchanging nodes a and c (or b and d) results in the tree:
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e
x y

Algorithm

The computational complexity of computing dNNI(T1, T2) for labeled trees is
unknown, although for unlabeled trees the problem is NP-complete (Krivánek,
1986).  Brown and Day (1984) have developed an efficient approximation which is
implemented in COMPONENT.

Brown and Day (1984) describe three approximations to dNNI (T1, T2):

1. dra(T1, T2, m), which is an upper bound on the minimal number of NNI
required to transform T1 into T2, where both trees are arbitrarily rooted at
leaf m. This measure is asymmetric since dra(T1, T2, m) does not always
equal dra(T2, T1, m).

2. drs(T1, T2, m), which is the smaller of dra(T1, T2, m) and dra(T2, T1, m).
This measure is symmetrical by definition.

3. dus (T1, T2), which is smallest value of drs(T1, T2, m) for all m.

COMPONENT implements all three measures. When computing just  the value of
dra(T1, T2, m) or drs(T1, T2, m), T1 and T2 are arbitrarily rooted with their first
leaves (i.e., m = 1).

F The trees being compared are treated as unrooted trees (regardless of their current
rooting).

Restrictions

The trees being compared must be binary (i.e., fully resolved).

Figure 5.16
The tree produced from

the tree in Figure 5.15
after interchanging

nodes a and d (or b and
c)

Figure 5.17
The tree produced from

the tree in Figure 5.15
after interchanging

nodes a and c (or b and
d)
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Rooted versus unrooted trees

COMPONENT treats the trees being compared as unrooted trees, regardless of
whether or not they are rooted.

Distribution

The table below gives the exact distribution of the probability of observing a given
value of dNNI for unrooted binary trees with ≤ 8 leaves (from Jarvis, et al. 1983).

Number of leaves
Distance 4    5    6    7    8

1 1.000 0.2857 0.0577 0.0085 0.0010
2 0.5714 0.1978 0.0395 0.0056
3 0.1429 0.3709 0.1201 0.0224
4 0.3407 0.2528 0.0675
5 0.0330 0.3418 0.1551
6 0.2175 0.2609
7 0.0198 0.2914
8 0.1704
9 0.0253

10 0.0004

For trees with > 8 leaves the distribution can be estimated by computing dNNI for
pairs of trees randomly selected from the set of all possible binary trees (Brown and
Day, 1984).

Partition metric

Given two trees, T1 and T2, the partition metric is the number of clusters found in
one or other, but not both trees. This measure has been discussed in detail by Penny
and Hendy (1985).

Algorithm

COMPONENT uses Day's (1985) algorithm.

Rooted versus unrooted trees

If the trees being compared are unrooted COMPONENT arbitrarily roots the trees
with the first leaf in the profile. The choice of leaf does not affect the result.

Distribution

The table below gives the exact distribution of the probability of observing a given
value of the partition metric for unrooted binary trees with ≤ 8 leaves (from Hendy
and Penny, 1984).

Table 5.2
Distribution of the
nearest neighbor

interchange metric for
trees with up to 8 leaves
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Number of leaves
Distance 4    5    6    7    8

0 0.333 0.0667 0.0095 0.0011 0.0001
2 0.667 0.267 0.0571 0.0085 0.0010
4 0.667 0.237 0.0466 0.0065
6 0.697 0.216 0.0379
8 0.728 0.200

10 0.755

Hendy and Penny (1984) have computed exact values for this measure for trees with
up to 16 leaves.

Quartets

A quartet is the smallest possible informative subtree of an unrooted tree, and
contains just four leaves. The two possible topologies for a quartet are:

I II

Type I topologies are only found in nonbinary (i.e., incompletely resolved) trees.

An unrooted tree with n leaves contains Q = n (n  −1)(n  − 2)(n  −3)/24 quartets.
Each quartet (a, b, c, d) will be one of four possible types:
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An unrooted tree can be thought of as a set of quartets. Hence one way to measure
the similarity of two unrooted trees, T1 and T2, is to compare their quartets
(Estabrook, et al., 1985).

Measures

Each pair of quartets from two trees belongs to one of five classes:

s resolved and identical
d resolved and different
r1 resolved in T1 but not in T2
r2 resolved in T2 but not T1
u unresolved in both T1 and T2

Note that Q = s + d + r1 + r2 + u, and that for two binary trees, r1 = r2 = u = 0.

Table 5.3
Distribution of the

partition metric for trees
with up to 8 leaves

Figure 5.18
The two possible quartet

topologies

Figure 5.19
The four possible

quartets
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From these classes of quartets Estabrook et al. (1985) and Day (1986) derived a
number of dissimilarity values, including:

Do not Conflict (DC) = d
Explicitly Agree (EA) = d + r1 + r2 + u
Strict Joint Assertions (SJA) = d / (d + s)
Symmetric Difference (SD) = (2d + r1 + r2)/(2d + 2s + r1 + r2)

Algorithm

COMPONENT uses an algorithm based on Douchette (1985) to compute quartet
dissimilarity measures.

Distribution

Day (1986) has estimated the distribution of various quartet statistics.

Triplets

A triplet is the smallest possible informative subtree of an rooted tree, and is the
rooted analogue of a quartet.  The two possible topologies for a triplet are:

III

Type I topologies are only found in nonbinary (i.e., incompletely resolved) trees.

A rooted tree with n leaves contains T = n (n  −1)(n − 2)/6 triplets. Each triplet (a,
b, c) will be one of four possible types:

a b c a b c b a c c a b

Analogously with quartets, we can use the frequencies of the four possible triplets in
two trees as a measure the similarity their similarity.

Measures

See the equivalent section for quartets.

Algorithm

COMPONENT uses an algorithm based on Douchette's (1985) algorithm for
quartets.

Figure 5.20
The two possible

toplogies for a triplet

Figure 5. 21
The four possible triplets


