
COMPONENT User's Guide

Chapter 8
Worked examples

This chapter provides a series of worked examples illustrating the various tree
comparison, consensus, randomisation, and mapping features available in
COMPONENT. Where possible the examples have been taken from the literature.
By working through this chapter you should gain a feel for using COMPONENT.

All the example files are on your distribution diskette and will have been copied
onto your hard disk when you installed COMPONENT.

Consensus trees

Consensus trees are a well known means for summarising information shared by a
set of trees. The following examples illustrate some of the methods available in
COMPONENT.

Semi-strict consensus trees

The semi-strict consensus method (Bremer, 1990) combines all the uncontradicted
clusters from two or more trees. The file PASS.NEX contains two trees for passerine
birds, one based on morphological data, the other based on single copy DNA
hybridisation data (see Bledsoe and Raikow, 1990).

1 Oscines

Acanthisitta

Furnarii

Tyranni

Pitta guajana

P. versicolor

P. brachyura

Cymbirhynchus

Eurylaimus

Calyptomena

2 Oscines

Acanthisitta

Furnarii

Tyranni

Pitta guajana

P. versicolor

P. brachyura

Cymbirhynchus

Eurylaimus

Calyptomena

Use the Consensus command in the Trees menu to compute the strict and semi-
strict consensus of these two trees. If you look at the cluster table in the output you
will see that four clusters (3, 4, 7, and 9) occur in both trees, and hence are present
in the strict consensus tree.

Figure 8.1
Two cladograms for

passerine birds



8-2 Worked examples

COMPONENT User's Guide

Cluster table

             1

    1234567890

    ----------

  1 **........     1

  2 ..**......     1

  3 ....******     2

  4 ..********     2

  5 .*********     1

  6 ....**....     1

  7 ....***...     2

  8 .......**.     1

  9 .......***     2

However, the compatibility matrix tells us that clusters 2, 6, and 8, while occurring
in only one of the two trees are not contradicted by any other cluster:

Compatibility matrix

  2| 1

  3| 11

  4| 111

  5| .111

  6| 11111

  7| 111111

  8| 1111111

  9| 11111111

     123456789

     ---------

     .***.****

For example, cluster 6 which groups Pitta guajana, and P. versicolor  is present in
tree 1. In tree 2 these two taxa are part of a trichotomy with P. brachyura. For these
three taxa the two trees are different but consistent. The semi-strict consensus tree
comprises all such uncontradicted clusters. Here for comparison are the strict and
semi-strict trees:

strict consensus

Oscines

Acanthisitta

Furnarii

Tyranni

Pitta guajana

P. versicolor

P. brachyura

Cymbirhynchus

Eurylaimus

Calyptomena

semi-strict consensus

Oscines

Acanthisitta

Furnarii

Tyranni

Pitta guajana

P. versicolor

P. brachyura

Cymbirhynchus

Eurylaimus

Calyptomena

Figure 8.2
The strict and semi-strict
consensus trees for the
two trees in Figure 8.1
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When the input trees contain polytomies it is important to distinguish between trees
that differ because one is simply more resolved  than the other, and trees that
conflict with each other. This is especially relevant when using parsimony programs
such as PAUP and Hennig86 that can collapse unsupported nodes.

Nelson consensus trees

Strict consensus trees are often called "Nelson trees", with Nelson (1979) cited as
the source.  This is unfortunate, because Nelson's paper does not describe the strict
consensus tree but rather an interesting extension of the semi-strict consensus tree.
Nelson's method seeks the set of clusters that are most frequently replicated in a set
of trees, and any clusters that are compatible with that set.  If there is more than one
such set, the Nelson tree is the intersection of the sets.

The five trees used by Nelson to illustrate his method are in the file
NELSON79.NEX and are shown below:
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5 A
B
F
G
H
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I
J
K
L
M
N

Use the Consensus command from the Trees menu to compute the strict and
Nelson consensus trees for these five trees. Below are the strict  and the Nelson
consensus trees for the five trees.

strict consensus
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Nelson consensus
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N

Look at the output in the Log window. Notice that there is no cluster common to all
five trees, so that the strict consensus tree is a star tree, and that no cluster is
uncontradicted (hence the semi-strict consensus tree will be identical to the strict
consensus tree):

Figure 8.3
The five trees used by

Nelson (1979) to
illustrate his consensus

method

Figure 8.4
The strict and Nelson

consensus trees for the
five trees in Figure 8.3
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Compatibility matrix

  2| 1

  3| 11

  4| 111

  5| 1111

  6| 11111

  7| 111111

  8| 1111.11

  9| ...1..1.

 10| 1..1..111

 11| 1111111...

 12| 1111.111.. .

 13| 1111111... 1.

 14| 11111.1... 1.1

 15| 1111111... 1.11

 16| 111.11.111 1.111

 17| 1111111111 1.1111

 18| 1111..1111 .1...11

              1 11111111

     1234567890 12345678

     ---------- --------

     .......... ........

COMPONENT also displays the largest sets of compatible clusters (i.e., cliques)
that contain the most frequently replicated clusters, and classifies each cluster
according to whether the cluster occurs in all the largest cliques ("True"), only some
of the largest cliques ("Ambiguous"), or none of the largest cliques ("False").

Largest cliques

     [ 1..5 7 11 13..15 17 ]

     [ 1..7 11 13 15 17 ]

Cluster partitions

   T:[ 1..5 7 11 13 15 17 ]

   A:[ 6 14 ]

   F:[ 8..10 12 16 18 ]

The Nelson consensus tree comprises the "true" clusters.

Agreement subtrees

Another kind of consensus tree is the agreement subtree  (Kubicka, et al. 1992; also
known as the common pruned tree  [Finden and Gordon, 1985]). An agreement
subtree is the largest subtree in common to two trees. Unlike the other consensus
methods implemented in COMPONENT, agreement subtrees can only be computed
for two trees at a time, and the algorithm requires binary trees.
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The file AGREE.NEX contains two unrooted trees taken from Kubicka et al. (1992).

1 a
e
f
d
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b
g
h
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j
k
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w
z

2 a
e
j
w
z
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u
l
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d
b
c
h
i
g
m
n

n From the Trees menu choose the Compare tree with command to compute the
greatest agreement subtree for these two trees. The display buffer will list the
leaves pruned to arrive at an agreement subtree, and the subtree itself. In this
case, 10 leaves have been removed, leaving this subtree:

1 f

d

c

h

i

m

r

s

t

w

z

Note that the subtree might not be unique, since there may be other subtrees of equal
size. Kubicka et al.'s algorithm will find only one agreement subtree.

Rooted versus unrooted trees

Computing the agreement subtree for these two trees may have seemed time
consuming. One reason for this is that the trees are unrooted. If you root the trees
using the Rooted command from the Trees menu the program takes only a tenth of
the time required for the unrooted trees (for an explanation of why this is so see
Chapter 5).

Figure 8.5
Two unrooted binary

trees

Figure 8.6
An unrooted agreement

subtree for the two trees
in Figure 8.5
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Comparing trees

COMPONENT features several different tree comparison measures, and also allows
you to compare both individual pairs of trees and whole sets of trees.

Comparing two trees using quartets

Bledsoe and Raikow (1990) recently used Estabrook et al.'s (1985) quartet measures
to compare trees constructed from molecular and non-molecular data sets. One
example they gave (also discussed by Estabrook, 1992) concerned estimates of
waterfowl phylogeny published by Livezey (1986) and Madsen et al. (1988),
reproduced as trees 1 and 2 , respectively, in the file DUCKS.NEX, and shown
below:

1 oxy

loph

ayth

anas

aix

neo

stic

ans

cyg

den

anse

cha

2 oxy

loph

neo

aix

ayth

anas

ans

cyg

stic

den

anse

cha

As before, choose the Compare tree command from the Trees menu, but this time
choose Quartets. COMPONENT will compute the selected tree comparison
measures and output the results in the display buffer:

Quartets

       SD    EA    DC   SJA     Q     s     d    r1    r2     u

   ------------------------------------------------------------

    0.415 0.424 0.392 0.405   495   285   194     0    16     0

Of the Q=495 possible quartets for  12 taxa, s=285 are resolved and of the same type
in the two trees, and d=194 are resolved but of different types.  There are no
quartets that are unresolved in both trees (u=0), but r2=16 quartets are resolved in
tree 2 but not in tree 1.

Figure 8.7
Two cladograms for

ducks
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Looking at tree 1 you can see that it contains a trichotomy. We can redraw tree 1 as:

9 10 11

12

1..8

Given this tree there are 16 quartets that contain leaves 9 and 10, and have one leaf
from the set a={1,2,...,8}, and one leaf from the set b={11, 12}. Examples include
(1, 9, 10, 12) and (3, 9, 10, 11). It is these 16 quartets that are unresolved.

It is worth noting that using quartets to compare trees assumes that the trees are
unrooted. However, if the trees are rooted (say, if UPGMA has been used to
construct the trees, or an outgroup has been designated) then triplets are more
appropriate. Here are the triplet statistics for the two trees:

Triplets

       SD    EA    DC   SJA     Q     s     d    r1    r2     u

   ------------------------------------------------------------

    0.201 0.205 0.195 0.197   220   175    43     0     2     0

Comparing all trees in a profile using the NNI metric

COMPONENT's Trees | Tree-to-tree distances command can compute the
dissimilarity between all pairs of trees within the same profile of trees. As an
example, the file PEG.NEX contains the nine minimal, fully resolved trees for
Bolick's (1981) Salmea data sets distributed with Hennig86:

1 ANCT
SCAN
ORTH
OLIG
PALM
PETR
CALE
MONT
INSI

PAUC
GLAB

2 ANCT
SCAN
ORTH
OLIG
PALM
PETR
CALE
MONT
INSI

PAUC
GLAB

3 ANCT
SCAN
ORTH
OLIG
PALM
PETR
CALE
MONT
INSI

PAUC
GLAB

4 ANCT
SCAN
ORTH
OLIG
PALM
CALE
MONT
INSI
PAUC

GLAB
PETR

5 ANCT
SCAN
ORTH
OLIG
PALM
PETR
CALE
INSI
PAUC

MONT
GLAB

6 ANCT
SCAN
ORTH
OLIG
PALM
PETR
CALE
MONT
INSI

PAUC
GLAB

7 ANCT
SCAN
ORTH
OLIG
PALM
CALE
MONT
INSI
PAUC
GLAB
PETR

8 ANCT
SCAN
ORTH
OLIG
PALM
PETR
CALE
INSI
PAUC
MONT
GLAB

9 ANCT
SCAN
ORTH
OLIG
PALM
CALE
INSI
PAUC
MONT
GLAB
PETR

Figure 8.8
Tree 1 in Figure 8.7

redrawn to show how
the 16 unresolved

quartets are obtained

Figure 8.9
The nine most

parsimonious trees for
Bolick's (1981) Salmea

data set.
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You can explore Maddison's (1991) concept of "islands of trees" using
COMPONENT's  the nearest neighbor interchange (NNI) metric.

n From the Trees menu choose Tree-to-tree distances. From the sub menu
select the NNI command. A dialog box will appear displaying the three
approximations available; accept the default (dra) by clicking on the OK
button.

COMPONENT computes and displays the lower left triangle of the pairwise
distance matrix for the active trees in the profile. The program also displays a
histogram of the frequency distribution of pairwise distances.

Nearest neighbour interchanges

dra approximation

  2¦   1

  3¦   1  2

  4¦   1  2  1

  5¦   2  1  3  3

  6¦   2  1  1  2  2

  7¦   2  1  2  1  2  1

  8¦   3  2  2  3  1  1  2

  9¦   3  2  3  2  1  2  1  1

   +------------------------------

       1  2  3  4  5  6  7  8  9

If you look carefully you will see that each tree always has another tree that is at
most one NNI away from it. In other words, we need make only a single NNI
rearrangement to convert one tree into another. We can represent this visually as a
graph showing the nine trees connected by single NNI's:

1

4

3

2

6

7 9

5

8

In graph theoretic terminology, these nine trees form a single connected component,
in Maddison's (1991) terminology the trees form a single NNI island. The practical
significance of this is that if we were using a heuristic method to find most
parsimonious trees, once we discovered any of these nine trees, just using NNI
rearrangements alone would suffice to discover the other eight trees. By exploring
other sets of equally parsimonious trees in this way we can gain an insight into the
performance of various methods of tree rearrangement used in heuristic searches
(Page, 1993b).

Comparing one tree with many trees

Sanderson (1989) recently proposed using the distribution of similarity between
bootstrap trees and some other tree, such a minimal tree for the original data, as a
way of computing a "confidence interval" on a tree.  One way to visualise this is to
imagine the bootstrap trees as a roughly spherical cloud in "tree space", and we're
interested in the trees nearer the centre of that cloud. Trees on the periphery are
"outliers."  You can use COMPONENT to explore this approach further, and to
repeat Sanderson's analysis of Bremer's (1987) data.

Figure 8.10
The NNI island formed

by the nine trees in
Figure 8.9
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One natural candidate for a reference tree is the majority-rule consensus tree (see
Chapter 4) of the bootstrap trees. This tree has the nice property of being a median
tree, that is, given a set of trees the majority rule consensus tree will be the tree most
similar to the most similar, on average, to all the other trees when similarity is
measured using the partition metric. You can think of it as being at the centre of the
cloud of trees. The file BREMER.NEX imports 50 bootstrap trees from a Hennig86
file called BREMER.TRE. You can use the Consensus command to compute the
majority-rule consensus tree for these trees. Make sure you save the consensus tree
to a file (select the Save trees option in the Consensus dialog box). Once you've
computed the consensus tree, load it into memory using the Open command from
the File menu. Here is the majority-rule tree for the 50 bootstrap trees:

1

CAMP

LOBE

BARN

GOCH

MUTI

NASS

ARCT

CARL

ECHI

CARD

LACT

EREM

VERN

LIAB

PLUC

INUL

GNAP

ASTE

EUPA

CALE

SENE

BLEN

ANTH

HELI

HELE

MADI

TAGE

CORE

FLAV

This tree is slightly different from Sanderson's (1989:fig. 1) due to the vagaries of
random sampling of characters during bootstrapping.

Using the Compare with command from the Trees menu, you can compare the 50
bootstrap trees with the majority-rule tree using a variety of tree comparison
measures. To do this you must have the trees from the file BREMER.NEX  in one
Tree window, and the majority rule consensus tree in a second Tree window (this
tree is stored in the file you created when you computed the consensus tree).

Figure 8.11
The majority rule

consensus tree for 50
bootstrap trees for

Bremer's (1987) data set
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n Make the window containing the consensus tree the active window. From the
Trees menu choose the Compare with command. A dialog box will appear
listing the Tree windows that contain trees that are comparable with the
consensus tree, in this case the window containing BREMER.NEX.

n After you have clicked on the OK button the Between Profile Tree-to-Tree
Distances dialog box will appear. For the first analysis use the partition metric,
so just click on OK. COMPONENT will now compare every tree in the first
window with every tree in the second window, i.e., the consensus tree with
every bootstrap tree.

n Repeat the analysis but using triplets instead of partitions. Click on Triplets to
select the triplets measures, then click on OK.

Here is the result for partitions:

Partition metric distance

Number of
trees

0
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4
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8

10

6 8 10 12 14 16 18 20 22

Here is the result for triplets:

Triplets (d)

Number of
trees
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3
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5

6

7

8

9

0 50 100 150 200

Note the quite different distribution for triplets. In part this is because the triplet
measure displayed is the number of triplets that are resolved and different in two
trees, whereas the partition measure counts each cluster that is found in only one or
other of the trees.

Six of the 50 bootstrap trees (trees 2, 26, 27, 29, 31, and 33) do not conflict with the
majority-rule tree. For example, here is the majority rule tree (tree 1) and bootstrap
tree 2 (these two trees are in the file BREM12.NEX).
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1

CAMP
LOBE
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GOCH
MUTI
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TAGE
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FLAV

We can compare these two trees in more detail using the Compare tree with
command. Here are the triplet statistics for the two trees:

Triplets

       SD    EA    DC   SJA     Q     s     d    r1    r2     u

   ------------------------------------------------------------

    0.046 0.275 0.000 0.000  3654  2648     0     2   251   753

Of the 3654 triplets for 50 leaves, the two trees share 2648 identical triplets. The
consensus tree resolves 2 triplets that are not resolved in tree 2, and tree 2 resolves
251 triplets not resolved by the consensus tree. A further 753 triplets are unresolved
in both trees. There are no triplets that are resolved differently in both trees, hence
the two trees are mutually consistent (d = 0).  The partition distance between the
two trees is 6, so that there are six clusters unique to one or other tree.

This example shows how important it is to distinguish between trees that are
different and inconsistent, and trees that are different but consistent (as are the two
trees in Figure 8.12 above). (How would you construct the tree that combines the
information in both the consensus tree and tree 2?)

To construct a 95% confidence interval using Sanderson's (1989) method we would
include the  0.95 × 50 ≈ 47 trees closest to the majority-rule tree. Using the triplet
measure we would therefore include all trees with d ≤ 130. Likewise, the 65%
confidence interval would comprise the 33 trees with d ≤ 40.

Comparing all trees in two profiles of trees

Swofford (1991) recently discussed Kluge's (1989) study of the congruence between
two data sets for boid snakes belonging to Epicrates. One data set comprised the
presence and absence of 24 skin and scent gland lipids (Tolson, 1987), the other
data set comprised 53 skeletal and external characters. Here are the 10 minimal
trees for the lipid data (EPIB.NEX):

Figure 8.12
The majority rule

consensus tree (tree 1)
in Figure 8.11 and one of

the six bootstrap trees
that are refinements of

the consensus tree (tree
2)
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1 A
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and here are the two minimal trees for the morphological data (EPIM.NEX):
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Figure 8.13
The ten minimal trees for

the Epicrates lipid data
set.

Figure 8.14
The two minimal trees

for the Epicrates
morphological data set.
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There are no trees common to the two sets. Swofford (1991:319) computed an
agreement subtree for all 12 trees together and found it "disheartening that
obtaining a common pruned tree [=agreement subtree] requires the removal of
nearly half of the taxa." However, combining all 12 trees together confounds
differences between trees within the same set with differences between trees from
different sets. A better approach would be to compare pairs of trees from the two
different sets of trees.

Use COMPONENT's Trees Compare with command to compare the two sets of
trees. Firstly choose the partition metric. The following table shows the partition
distance between each pair of trees from the two sets:

             1     2     3     4     5     6     7     8     9    10

       +------------------------------------------------------------

     1 |     6     6     8     8     8     6    10     8    10     8

     2 |     4     4     6     6     6     4     8     6     8     6

Now use the same command, but this time choose the Agreement subtree option to
compute the number of leaves we need to remove to arrive at the same tree:

              1     2     3     4     5     6     7     8     9    10

       +------------------------------------------------------------

     1 |     2     3     3     3     3     2     4     3     4     3

     2 |     1     2     2     2     2     1     3     2     3     2

Note that tree 2 for the morphological data differs in the placement of just one taxon
from trees 1 and 6 for the lipid data. Combining all the trees together has obscured
the degree of similarity between the two sets of trees. Here for comparison is tree #2
from the morphological set, and trees #1 and #6 from the lipid set:

#2
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Morphology Lipids

Note that by removing taxon CH from trees 2 and 1 we obtain an identical subtree,
and likewise pruning taxon E from trees 2 and 6 results in the same tree.

Figure 8.15
Tree 2 for the

morphological data
(EPIM.NEX ) and trees 1

and 6 for the lipid data
(EPIB.NEX) for

Epicrates
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Comparing two sets of paired trees

In the previous example we compare every tree in one profile with every tree in a
second profile. In this next example we will treat the trees in each profile as if they
were paired, like this:

Profile 1 Profile 2

1

2

3

Tree

The distributions of tree comparison measures can be estimated by generating large
numbers of pairs of random trees and computing the distances between each pair.
The resulting distribution of tree-to-tree distances is an estimate of the probability
that two trees drawn at random from a set of all possible trees will have a given
value of dissimilarity.

n Choose the Random trees command from the Generate menu. COMPONENT
will display the Random Trees dialog box. In the Number of trees input box
type in the number of trees you want to generate (say 100). In the Number of
leaves input box type in the number of leaves you want each tree to have (say
15). Click on the OK button.  COMPONENT will generate the random trees
and display them in a Tree window

n Generate a second profile with the same number of same-sized trees by
repeating the above step.

n Compare the two profiles using the Trees Compare with command as above,
but this time click on the Pairs radio button in the Compare group.

The different tree comparison measures can have quite different distributions. For
example, here is the distribution of the partition metric distance between 1000 pairs
of unrooted, random binary trees with 15 leaves generated using the
EQUIPROBABLE model (so that all labelled binary trees are equally likely to
occur):

Partition metric distance

Number of
pairs of
trees

0
100
200
300
400
500
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800
900

18 19 20 21 22 23 24
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By way of contrast, the following chart shows the frequency distribution of the drs
approximation to the NNI metric computed between the same 1000 pairs of  trees:

NNI distance

Number of
pairs of
trees
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140
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While both distributions emphasise that finding trees with this number of leaves
that are very similar is highly unlikely to be due to chance alone, the NNI metric is
much more discriminating between trees (there are 25 distinct values of the NNI
metric, but only 4  different values of the partition metric).

Random trees and all possible trees

COMPONENT implements a variety of methods for generated random trees, as well
as generating all possible trees. You have already encountered random trees in the
previous example above.

Generating all possible tree shapes

A novel feature of COMPONENT is its ability to generate all possible tree shapes.
To illustrate, in this example we will generate all the possible rooted tree shapes for
seven leaves.

n From the Generate menu choose the All command. A dialog box will appear.
Click on the Labelled check box to remove the tick, and click on the Leaves
spin button until the number 7 is displayed. Click on OK.
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COMPONENT will generate all 11 possible tree shapes for rooted trees with 7
leaves:

1 a
b
c
d
e
f
g

2 a
b
c
d
e
f
g

3 a
b
c
d
e
f
g

4 a
b
c
d
e
f
g
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d
e
f
g

6 a
b
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d
e
f
g

7 a
b
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d
e
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g

8 a
b
c
d
e
f
g

9 a
b
c
d
e
f
g

10 a
b
c
d
e
f
g

11 a
b
c
d
e
f
g

In Harding's (1972) notation tree 1 has shape 71, tree 2 has shape 72, and so on.

F Although strictly speaking the trees are unlabelled trees COMPONENT has
arbitrarily labelled the leaves with the letters a-g. This is merely a programming
convenience.

Tree statistics

There has been a lot of interest in comparing the observed distribution trees shapes
in cladograms constructed by systematists with the distributions predicted by various
"null models" (e.g., Savage, 1983; Slowinski and Guyer, 1989; Guyer and
Slowinski, 1991). With COMPONENT you can quickly compute the distribution of
tree shapes for a set of binary trees using the Statistics command from the Trees
menu.

Firstly we need some random trees. Use the Random trees command from the
Generate menu to generate a set of 1000, rooted (binary) trees with 7 leaves using
the EQUIPROBABLE model (the default). Then choose the Statistics command to
compute the shape of each tree. You should get a distribution of shapes something
like this:

Figure 8.16
The 11 possible shapes
for rooted, binary trees

for seven taxa
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Now generate another set of 1000 trees, but this time use the MARKOVIAN model
(select the Labelled dendrogram option in the Random Trees dialog box). You
should get a distribution of tree shapes something like this:

Tree shape
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trees
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100

150

200

250

1 2 3 4 5 6 7 8 9 10 11

The two distributions are quite different: unbalanced trees (such as shape 71) are
much more common under the EQUIPROBABLE model than under the
MARKOVIAN model, whereas more balanced trees (such as shape 710) are more
common under the MARKOVIAN model.

Another, more laborious way of counting tree shapes is to order all the trees using
the LLR method (see Appendix B) using the Trees Order command. This ensures
that any tree with the same shape will look the same. Then use the Trees Print
command to display many trees at once and simply count the number of times each
shape occurs. An example is shown below:
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Tree mapping

Tree mapping is a procedure where one tree is mapped onto another. This map
defines a third tree called a "reconciled" tree which, as the name implies, reconciles
any incongruence between the two trees. Tree mapping can be used to explore host-
parasite cospeciation, incongruence between gene trees and species trees, and
cladistic biogeography (Page, 1990a; 1990b; 1993b; submitted).

Host and parasite trees

Introduction

Page (1990b) used tree mapping to reanalyse Hafner and Nadler's (1988) data on
pocket gophers and their parasitic chewing lice. Below are the dendrograms Hafner
and Nadler obtained using allozyme data for eight gophers and their lice (these trees
are in the file LICE.NEX).

Figure 8.17
100 random 7-trees in

LLR order
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When you open the file COMPONENT displays the host tree in the Tree window.
You can use the drop down list box to switch to the lice tree (see Chapter 1).

Reconciling the host and parasite trees

Use the Reconcile with tree command (on the Mapping sub menu on the Trees
menu) to reconcile the lice and gopher trees. You should obtain the following tree:

T. talpoides Th. wardi
T. bottae Th. minor
G. bursarius
O. hispidus
O. cavator
O. underwoodi
O. cherriei
O. heterodus
T. talpoides G. thomomyus
T. bottae
G. bursarius
O. hispidus
O. cavator
O. underwoodi
O. cherriei
O. heterodus
T. talpoides
T. bottae G. actuosi
G. bursarius G. ewingi
O. hispidus
O. cavator
O. underwoodi
O. cherriei
O. heterodus
T. talpoides
T. bottae
G. bursarius
O. hispidus G. chapini
O. cavator G. panamensis
O. underwoodi G. setzeri
O. cherriei G. setzeri
O. heterodus
O. cavator
O. underwoodi
O. cherriei G. cherriei
O. heterodus G. costaricensis

Figure 8.18
UPGMA dendrograms

for eight pocket gopher
hosts and their parasitic

lice (after Hafner and
Nadler, 1988: fig 2)

Figure 8.19
Reconciled tree for the

gopher and lice trees
shown in Figure 8.18
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The statistics for this tree and the map between the two trees are displayed in the
Log window:

Reconciled tree statistics

   Duplications = 4

   Total leaves = 36

   Leaves added = 26

   Losses = 10

Map between associate and host tree

   Associate Host Duplication?

   11   ->  9 YES (OVERLAP)

   12   -> 10 NO

   Th. wardi        -> T. talpoides    -

   Th. minor        -> T. bottae       -

   13   ->  9 YES

   14   ->  9 YES

   G. thomomyus     -> T. talpoides    -

   15   ->  9 NO

   G. actuosi       -> T. bottae       -

   G. ewingi        -> G. bursarius    -

   16   -> 12 NO

   G. chapini       -> O. hispidus     -

   17   -> 13 YES (OVERLAP)

   18   -> 13 NO

   G. panamensis    -> O. cavator      -

   G. setzeri       -> 14 -

   19   -> 15 NO

   G. cherriei      -> O. cherriei     -

   G. costaricensis  -> O. heterodus    -

The reconciled tree is the most parsimonious summary of the history of the gopher-
lice association under the assumption that there has been no host switching. As you
can see the reconciled tree requires numerous ad hoc hypotheses to explain the
incongruence between the lice and their hosts.

Pruning parasites

There are a number of further analyses you could apply to this data. For example,
you could see what happens if you allow one or more lice to have dispersed by
deleting those lice then reconciling the pruned tree with the gopher tree. To do this
use the Prune or graft leaves command from the Trees menu (see Chapter 2).  Try
pruning Geomydoecus actuosi and G. thomomyus, two lice that Hafner and Nadler
(1988) suggested have dispersed. You should get a much better fit:
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T. talpoides Th. wardi

T. bottae Th. minor

G. bursarius G. ewingi

O. hispidus G. chapini

O. cavator G. panamensis

O. underwoodi G. setzeri

O. cherriei G. setzeri

O. heterodus

O. cavator

O. underwoodi

O. cherriei G. cherriei

O. heterodus G. costaricensis

This tree requires just one duplication, which results in two sister lineages of lice
parasitizing four species of Orthogeomys. Page (1990b; 1993a) discusses the
evidence supporting this hypothesis of two sympatric clades.

You can automate the process of deleting the lice by using the Prune each leaf
command. This deletes each associate in turn and computes the fit statistics for the
corresponding reconciled tree. You can use this information to help decide which
associate(s) are contributing most any incongruence between the two trees (see
Chapter 7).

Testing hypotheses of cospeciation

Page (1990a, 1990b) proposed testing hypotheses of cospeciation by comparing the
measures of fit computed for the host and parasite trees with the distribution of the
same measures between the observed parasite tree and a set of random host trees. To
illustrate the idea, the file LICERAND.NEX uses the RANDOM command (see
Chapter 3) to generate 100 random trees for the gophers. Open the file
LICERAND.NEX and use the Map onto all trees command to compute the fit
statistics between the lice tree and the random trees. This next figure shows the
distribution of losses for the 100 trees.
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Figure 8.20
The reconciled tree for

the gopher and lice trees
shown in Figure 8.18
after pruning the lice

Geomydoecus actuosi
and G. thomomys
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As we can see, all 100 trees have more than the 10 losses actually observed,
suggesting that the observed value is significant. Of course in practice 100 is a
rather small number of trees, but suffices to illustrate the idea. More accurate
estimates of the distribution can be obtained using 1000 or more trees.

Area cladograms

Rosen's (1979) data on Xiphophorus and Heterandria have often been used to
illustrate cladistic biogeographic methods. Rosen's data is on disk as ROSEN.NEX.

Calculating a global area cladogram

To compute an area cladogram for both fish genera together:

n Choose the Heuristic search command from the Map trees sub menu.

n COMPONENT will display the Heuristic search dialog box (see Chapter 7).
Accept the default options of using NNI branch swapping, minimising leaves
added, and including all blocks (i.e., searching for the best area cladogram for
both taxa).

COMPONENT will find a single area cladogram:

A1

A2

A3

A8

A7

A10

A45

A9

A6

The statistics for this tree are duplications=4, leaves added=32, losses=18.

Figure 8.21
The single area

cladogram for
Heterandria and

Xiphophorus combined
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Having computed the area cladogram you can reconcile it with each taxon
cladogram. Here is the reconciled tree for Heterandria:

A1
A2
A3
A8
A7
A10
A45
A9
A6 attenuata
A1 jonesi
A2 bimaculata
A3 bimaculata
A8 dirempta
A7 cataractae
A10 anzuetoi
A45 obliqua
A9 litoperas
A6

The fit statistics are duplications=1, leaves added=10, losses=3. The reconciled tree
for Xiphophorus is even less appealing (duplications=3, leaves added=22,
losses=15):

A1 cortezei
A2
A3 clemenciae
A8
A7
A10
A45
A9
A6
A2
A3
A8
A7
A10
A45 alverezi
A9
A6 alverezi
A2
A3
A8
A7
A10 PMH
A45
A9 PMH
A2 helleri
A3
A8 signum
A7
A10
A45
A9
A6

F The terminal branches for area A7 in the reconciled tree for Xiphophorus are
shaded light grey to indicate that no Xiphophorus occur in that area. By default
this absence from area A7 is treated as "missing data" and so does not contribute to
the measures of fit between the taxon and area cladograms (see Chapter 7).

Note that the fit statistics for the combined area cladogram are the sums of the
statistics for the two taxa taken separately.

Figure 8.22
The reconciled tree for

Heterandria and the area
cladogram shown in

Figure 8.21

Figure 8.23
The reconciled tree for

Xiphophorus and the
area cladogram shown

in Figure 8.21
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Calculating area cladograms separately

Given that both fish have relatively poor fit statistics for the combined area
cladogram, you might like to compute area cladograms separately for each fish. To
do this:

n Select the Heterandria block.

n Choose the Heuristic search command as above, but check the Current block
only radio button in the Include group in the Heuristic Search dialog box.

COMPONENT will now search for the best area cladogram for Heterandria alone.
Use the Trees Save to file command to store the tree(s) in a separate file. Repeat the
analysis for Xiphophorus. Below are shown the single optimal area cladogram for
Heterandria (tree 1) and the Adams consensus tree (tree 2) of the 15 equally
optimal trees for Xiphophorus (each of which differs solely in the placement of area
7).

A1

A2

A3

A8

A7

A10

A45

A9

A6

Heterandria Xiphophorus
A1

A2

A8

A9

A10

A45

A6

A3

A7

Inspection reveals that the two trees agree on the relationships of areas 1, 2, 45, 8,
and 10 (you could find this out by computing an agreement subtree for the two trees,
see Chapter 5 and the example above). This is Rosen's original result.

Interpreting incongruence due to widespread taxa

Ignoring area 7 (about which Xiphophorus is uninformative) note that the areas
about which the two fish disagree (i.e., 3, 6 and 9) are all part of the range of a
widespread taxon (Platnick, 1981). Geographically adjacent areas can share the
same taxon due to a failure to speciate rather than close relationship (Nelson and
Platnick, 1981; Page, 1989a). Nelson and Platnick developed their "Assumption 2"
to cope with this possibility. This method removes from the range of a widespread
taxon any areas that harbour endemics of another clade (Page, 1988); the deleted
areas are allowed to "float" on the area cladogram, their position being determined
by the relationships of the taxa endemic to those areas.

You can do an Assumption 2-like analysis of Rosen's data in COMPONENT by
editing the ranges of the widespread taxa. I've already done this for you in the file
PLATNICK.NEX. If you look at the file you'll see that I've simply put comment
symbols ("[" and  "]") around the areas I want to delete, e.g.:

.
       alverezi    : A45 [A6],

      PMH         : [A9] A10,

Figure 8.24
The single area

cladogram for
Heterandria and the

Adams consensus of the
15 equally parsimonious

area cladograms for
Xiphophorus
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.

If you now search for the area cladogram(s) for the two fish combined you will
obtain the three trees found by Platnick (1981) and Page (1989). The strict
consensus of these trees is:

A1

A2

A8

A7

A10

A45

A3

A9

A6

The statistics for the three trees are duplications=0, leaves added=0, and losses=0.
Just as before you can reconcile each taxon tree with the area cladogram. Here is the
result for Heterandria:

A1 jonesi

A2 bimaculata

A8 dirempta

A7 cataractae

A10 anzuetoi

A45 obliqua

A3

A9 litoperas

A6 attenuata

Note that area 3 has no taxon because we've deleted the occurrence H. bimaculata
from that area, hence Heterandria places no constraints on the relationships of area
3.

Figure 8.25
Strict consensus of the

three optimal area
cladograms for

Heterandria and
Xiphophorus when the

widespread taxa are
treated under
Assumption 2

Figure 8.26
The reconciled tree for

Heterandria and the area
cladogram shown in

Figure 8.25
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Below is the reconciled tree for Xiphophorus:

A1 cortezei

A2 helleri

A8 signum

A7

A10 PMH

A45 alverezi

A3 clemenciae

A9

A6

In this case we've deleted area 6 from the range of X. alverezi, and area 9 from the
range of taxon "PMH."

Much attention has been paid to widespread taxa in the biogeographic literature.
Widespread taxa are a source of ambiguity, and possibly misleading information,
but the only evidence for the latter will come from comparisons with area
cladograms generated for other taxa. As always, congruence is the arbiter.

Figure 8.27
The reconciled tree for

Heterandria and the area
cladogram shown in

Figure 8.25


