
A Linear Time Algorithm for Tree Mapping

Oliver Eulenstein �

August 8, 1996

Inconsistencies between a phylogenetic tree calculated from a set of related genes and

known species phylogeny may be due to duplications events in the gene family under

study. Tree Mapping attempts to pinpoint gene duplications in order to explain such

discrepancies. The e�ort in this explanation is measured using a tree mapping measure.

Very little algorithmic work has so far been invested into the computation of these measures

and an algorithm in practical use today (Page, Syst. Biol. 43:58{77,1994) runs in time

quadratic in the number genes. In this paper we present a linear time algorithm for a tree

mapping measure. This improvement makes the processing of large gene and species trees

possible as they may arise in the study of large gene families.

�University of Bonn, Dept. of Computer Science, Research Group of Prof.Lengauer, R�omerstr. 164,

D-53117 Bonn, Germany, e-mail: oliver@center.informatik.uni-bonn.de

1

1 Introduction

Around 1960 the �rst phylogenetic trees were reconstructed from genes sequences (see

Fitch and Margoliash [3]). These were called gene trees and the goal was from them to

reconstruct a phylogenetic tree for the species, called species tree. However, gene trees

and their corresponding species tree may be inconsistent. One possible reason for this are

unrecognized gene duplications in the gene tree. For example, a biologist may reconstruct

the correct gene tree of a sample of globin{genes containing � � human, � � chimp and

��horse in Figure 1. Obviously this gene tree contradicts the commonly accepted species

tree, since it clusters man with horse and not with the chimpanzee. The discrepancy may

Figure 1: Inconsistent Gene and Species Tree.

arise from an unrecognized duplication of genes in the past. Today it is commonly accepted

that in the history the globin-specifying gene duplicated, and the two copies diverged to

become the � and � families. The biologist in our example was not aware of the duplication

event in the globine family. So (s)he reconstructs the gene tree not recognizing the gene

duplication. Figure 2 represents the gene tree of the sample genes taken into account

the ancient duplication event. This tree, called the reconciled tree [12], explains the

inconsistency of the gene and species tree by postulating a gene duplication. Embedding

the biologists gene tree into the reconstructed tree shows that the inconsistency between

gene and species tree results from the sample containing genes of the � and � family.

Goodman et al. [4] outlined a model that explains the inconsistency between gene and

Figure 2: Reconciled Tree

species tree using the minimal number of unrecognized gene duplications to reconstruct

the reconciled tree. The mere number of postulated duplications, however, does not yet

adequately describe whether the embedding of a gene tree into a species tree is in fact

2

parsimonious. Page [11], Mirkin et al. [10], and Guig�o et al. [6] introduce biologically

more meaningful measures for the inconsistency of a gene and a species tree. While these

measures are also based on the assumption of Goodman et al. (that the inconsistency

between the gene and species tree only depends on the minimal set of unrecognized gene

duplications) they also consider the e�ect that these duplications have on the explanatory

power of a gene tree. Since it has recently been found that these measures although

formally very di�erent are in fact equivalent (Eulenstein and Vingron [2], and manuscript

in preparation) we will focus on the measure from [6]. Its precise de�nition will be given

below.

A fast algorithm for the computation of such a biologically meaningful measure makes it

feasible to deal with large gene and species trees as may arise due to the rapid increase in

the amount of new biological sequences. Furthermore, in testing di�erent hypotheses about

gene or species trees large numbers of comparisons between trees need to be performed.

Thus a linear time algorithm for calculating this measures of inconsistency between the

gene trees and the species tree aids in the analysis of the reconstructed gene and species

trees.

We �rst introduce in Section 2 the de�nitions for gene and species tree. For postulating

gene duplications we give in Section 3 a function for mapping nodes of a gene tree onto

nodes of a species tree. Based on this tree mapping we de�ne in Section 4 the nodes in

the gene tree that are postulated as gene duplications. Then we are ready to explain the

linear time and space algorithm for the calculation of the tree mapping measure in Section

5.

2 Basic de�nitions

Let a set of n species and one gene from each of them be given. This seems to be a hard

restriction for practical purposes, but they are useful to explain the linear time algorithm

and can be easily relaxed. Due to this one{to{one relationship between genes and species

we use the integers 1; ::; n to denote both of them. Gene tree and species tree are rooted

binary trees with leaves labeled f1g; ::; fng. We use sets to label the leaves in order to

maintain consistency with the additional convention of labeling an inner node of a tree

with the union over the sets at the leaves following this node (see Gordon [5]). For an

example see Figure 1. We think of the edges of the tree as directed from the root to the

leaves. We speak from the children of a node in a binary tree as a left and right child.

The set of all such trees with n leaves is de�ned as Tn.
Furthermore the following conventions are used. For a node v in a tree one arbitrarily

chosen child will be denoted vc while the other one is denoted v�c. For a tree T the subtree

underneath v is abbreviated T (v). Generally, we will use TG := (VG; EG) 2 Tn for the gene

tree and TS := (VS ; ES) 2 Tn for the species tree. TG(v) and TS(v) denotes the subtree in

TG and TS rooted at v, respectively. Any node in VG corresponds to a gene but when the

existence of a further gene (i.e., =2 VG) is deduced this gene will be called an unobserved

gene. In this context elements of VG will also be called observed genes. We speak of \a

gene being contained in a species" when we can deduce from the given data that a certain

ancestral gene must have been present in an ancestral species. This is derived based on

the containment of a leaf of the gene tree in a leaf-species that was assumed initially. An

ancestral gene then is the common ancestor to a set of leaves. Therefore a species which

3

is ancestral to all corresponding species must have contained this ancestral gene because

otherwise the leaf-genes could not be derived from the ancestral one.

3 Tree mapping

The postulation of duplication events is based on a function M : VG ! VS called tree

mapping. M maps a gene g 2 VG onto the most recent (lowest) species containing this

gene. Formally this is the least common ancestor in the species tree of the leaf-species

which contained the given (leaf-)genes. Consider for example the gene f1; 3g in Figure

1. The leaves of TG(f1; 3g) are f1g and f3g. Hence their least common ancestor in TS is

f1; 2; 3g and we have M(f1; 3g) = f1; 2; 3g. Formally we de�ne the mapping as follows.

De�nition 3.0.1

M : VG ! VS,

M(a) = x :() a � x ^ @x0 2 VS : a � x0 � x

4 Gene duplications and measuring inconsistency between

gene and species tree

The function M is used to postulate gene duplications. A duplication of a gene a is

postulated exactly if M maps one of a's children, say ac, on the same species as a itself,

i.e. M(a) = M(ac). We will give now a short insight for postulating a duplicated gene a

under the condition M(a) = M(ac).

The rationale for this de�nition is conveniently explained based on an example. Consider

gene a := f1; 2; 3g from Figure 1. M tells us that a and its child ac := f1; 3g are contained

in species x := f1; 2; 3g. Thus all species in TS(x) contain only genes descending from ac
and no genes descending from a. But the mapping M tells us that the child a�c := f2g

of a is contained in species f2g of TS(x). A way out of this contradiction is to postulate

a duplication of gene a into the copies a+ and a�. We denote the real gene trees rooted

at a+ and a� by +tree and �tree, respectively. Now a species in TS(a) can contain a

gene of the +tree and the �tree. Say gene ac is in the �tree. Then all species in TS(a)

can only contain a gene in the �tree that descended from ac. We conclude that gene a�c
must be in the +tree. Its succeeding genes contained in the species f1; 2g and f1; 2; 3g are

still unobserved. The reconciled tree including the postulated gene duplication is shown

in Figure 2.

Depending on whether genes of both lineages can be found in the same species as their

duplicates we introduce the distinction among nodes of the gene tree.

De�nition 4.0.2 (Partition of VG)

Genes which are not duplicated.

V0(TG; TS) := fa 2 V iG jM(a) = M(ac) ^M(a) = M(a�c)g,

Duplicated genes with only one known copy.

V1(TG; TS) := fa 2 V iG jM(a) 6= M(ac) __M(a) 6= M(a�c)g

Duplicated genes with two known copies.

V2(TG; TS) := fa 2 V iG jM(a) 6= M(ac) ^M(a) 6= M(a�c)g

4

We will denote the set of all duplications as D(TG; TS) := V1(TG; TS) [V2(TG; TS).

The measure of inconsistency between trees that seems most accessible to computation by

a fast algorithm is due to Guig�o et al. [6] (for further study of see Mirkin et al. [10]). We

proceed to describe their measure. It is de�ned as the sum of the number of duplications

and the following path lengths:

De�nition 4.0.3 (L) Let e := (a; ac) 2 EG and p(e) := (x0; � � � ; xm) be the path in TS
with x0 = M(a), xm = M(ac) and m 2 N0 . The path length of p not counting x0 and xm
is de�ned as follows.

jp(e)j :=

(
m� 1 m > 1

0 m = 0; 1

For a node a 2 VG and its children ac; a�c 2 VG we then de�ne l : VG 7! N:

l(a) :=

8><
>:
jp((a; ac))j+ jp((a; a�c))j a 2 V0
jp((a; ac))j+ jp((a; a�c))j+ 1 a 2 V1
0 a 2 V2

L : Tn � Tn 7! N0 :

L(TG; TS) := jD(TG; TS)j+
X
a2VG

l(a)

5 A Linear{Time Algorithm to compute L

The goal is to calculate the tree mapping M(TG; TS) in O(n) time and space. This clearly

falls into two tasks. First one needs to compute for all nodes in the gene tree their image

under the mapping function M . This will be dealt with in Section 5.2. The number of

duplications then follows trivially. Calculating L, although not quite as obvious, is also

easily achieved in O(n) time as follows.

5.1 Calculating L in time and space O(n) if the tree mappingM is known

In a preorder run through TS we label each node s 2 VS with its depth d(a) where d(s) is

de�ned as the path length from the root of TS to s. Then we calculate L in time O(n) by

a preorder run in TG as follows. We initialize L := 0. For a node g 2 VG and its children

gc; g�c 2 VG we calculate in time O(1):

L :=

8>>><
>>>:
L+ d(M(g)) � d(M(gc))� d(M(g�c))� 2 M(g) 6= M(gc);M(g) 6= M(g�c)

L+ d(M(g)) � d(M(gc)) M(g) = M(g�c) 6= M(gc)

L+ d(M(g)) � d(M(g�c)) M(g) = M(gc) 6= M(g�c)

L M(g) = M(gc) = M(g�c)

Obviously we have L = L(TG; TS). Thus we need O(n) time and space to calculate L

when the tree mapping M is given.

5

5.2 Calculating the Tree Mapping M in time and space O(n)

The key task of calculating L is to calculate the tree mapping M in linear time. The

program given by Page [12] requires O(n2) time to compute the tree mapping M . His

method does not make e�cient use of the structures TG and TS . Since M is essentially a

least common ancestor (lca) our algorithm merges ideas similar to lca computation (see

Harel and Tarjan [7], Schieber and Vishkin [8] and an improved version of this algorithm

is outlined by Lisa Legrand [9]). The tree mapping problem can be reduced in linear

time and space to the lca problem. Thus the asymptotic performance of these algorithms

is the same as ours. However, our algorithm is less technical than these algorithms and

therefore can be easily implemented. It is especially designed to calculate M and in an

extended version it has several features used to carry out tasks of practical purposes. In

di�erence to the lca algorithms of Tarjan et al. and Vishkin et al. our algorithm has

neither a preprocessing step nor packs several vertices into a single O(log(n)) bits number

to calculate least common ancestors. Our algorithm uses a di�erent method based on a

disjoint{set data structure that is very similar to the disjoint{set data structure described

in Cormen et al. [1].

The key idea of the algorithm is to �nd for a subset S � f1; � � � ; ng all nodes of VG that

map under M to nodes of 2S \ VS . These are all nodes of VS that represent subsets of S.

Initially the algorithm starts with S = fsg for a certain s 2 f1; � � � ; ng. By de�nition we

know M(s) = s. For the general step we assume to have a subset S � f1; � � � ; ng with all

nodes of VG known that map underM to nodes of 2S\VS . Further we assume to know the

image under M for these nodes. Now S is extended by a new element t 2 f1; � � � ; ng n S.

The algorithm �nds all nodes in VG that map to a node in 2S \ VS containing the new

element t and calculates their tree mapping.

The entire algorithm consists mainly of the procedure DFS and the procedure Gene

Tree Walk. Procedure DFS visits only nodes of TS and procedure Gene Tree Walk

visits only nodes of TG. The procedure DFS determines the subset S � f1; � � � ; ng for

which the algorithm �nds all nodes of VG that map under M to nodes of 2S \ VS. Every

time the DFS procedure visits a new leaf l this subset is extended by l. Let l be the node

by which the subset is extended and S0 the new subset. To �nd all nodes in VG that map to

a node in 2S
0

\VS containing the new element l the procedureGene Tree Walk(M�1(l))

is called.

The procedure Gene Tree Walk(M�1(l)) walks up the gene tree from l = M�1(l) to

the �rst node that was never visited before. This node is then marked as visited by

the variable Visited Node. Thus every inner node in the gene tree is visited twice.

The �rst time a node is marked as visited and the second time the node is passed by a

search for another unvisited node. Is a node visited the second time by the procedure

Gene Tree Walk(M�1(l)) it has its image in 2S
0

\ VS and M is calculated.

For the calculation of the tree mappingM the algorithm uses a disjoint{set data structure

(similar to [1]). This data structure maintains a collection of disjoint subsets from VG. A

subset is represented by a basket that is a�liated to a node s 2 VS . We denote a basket

a�liated to s by basket(s). The following operations are de�ned for the data structure.

1. Operations only performed by the procedure DFS

(a) Create Basket(g : VG; s : VS): Creates basket(s) that contains the node g.

(b) Move Basket(s1; s2 : VS): Changes the a�liation of basket(s1) from s1 to s2.

6

(c) Merge Basket(s1; s2 : di�erent nodes on the same path in TS):

Merges basket(s1) with basket(s2). The resulting basket is assigned to either

s1 or s2 depending on which one has the lower depth.

2. Operations only performed by the procedure Walk Gene Tree

(a) Insert Into Basket(g : VG; s : VS): Inserts g into basket(s).

(b) Delete From Basket(g : VG; s : VS): Deletes g from basket(s).

(c) Find Basket(g : VG): Returns the a�liation of the basket that contains the

element g.

The pseudo code of the algorithm is given in Figure 3. An example for the algorithm is

given in the Appendix.

Baskets have special properties that are determined by the procedures DFS and Gene

Tree Walk. We �rst introduce two general observations.

Observation 5.2.1 Let g 2 VG be contained in basket(s) with s 2 VS. If M(g) = M(g)

we have M(g) � s.

Proof: g can only be a node in basket(s) if it was initially inserted into a basket, i.e.

basket(k). And g can only be moved from basket(k) to basket(s) by the operations

Move Basket in line 12 or the operation Merge Basket in line 14. These operations

never move elements from basket(x) to basket(y) with Depth(x) < Depth(y). Conse-

quently we have Depth(k) � Depth(s) or in set terminology k � s.

g can only be initially inserted into basket(k) by the operations Create Basket in line

16 or Insert Into Basket in line 32. If g is inserted by the operation Create Basket

we know from the procedure Init k = M(g). If g is inserted by the operation In-

sert Into Basket we know from lines 29 and 31 k = M(g). By the precondition we

know M(g) = M(g) and conclude k = M(g).

Summing up we have M(g) = k � s.

Observation 5.2.2 Let s 2 VS and sl 2 VS be the left child of s. s has a basket as-

signed only if the operation Move Basket after DFS(sl) has been performed and the

last operation either Move Basket or Merge Basket of DFS(Parent(s)) is not yet

performed.

Proof: Baskets are only created by the operation Create Basket in line 16 for leafs

of TS . Since s is not a leaf the operation Create Basket is not invoked for s. The

only possibility for s to have a basket assigned is after the procedure DFS(sl) �nishes,

when DFS(sl) has assigned a basket to sl. Then by the operation Move Basket in

line 12 basket(sl) is moved to its new a�liation s. Consequently the only time s is

assigned a basket is when the operation Move Basket after DFS(sl) is performed. The

only operation to change the a�liation of basket(s) is to move it up to its parent node.

The basket can only be moved away from s by an operation either Move Basket or

Merge Basket. Such an operation is only performed shortly before DFS(Parent(s))

�nishes.

7

00 Create TreeMapping(TG; TS : Tn;M : VG ! VS);

01 B Input: TG; TS ;

02 B Output: The calculated tree mapping M for TG and TS ;

03 procedure Init();

04 B At the beginning all nodes in VG are unvisited, so we initialize:

05 8g 2 VG : Visit Node(g) := False;

06 B We know by assumption M(l) = l = M�1(l) and therefore M(l) is initialized by:

07 8g 2 VG with g is leaf: M(g) = g;

08 procedure DFS(s : VS)

09 begin

10 if (s is not leaf)then

11 DFS(Left Child(s));

12 Move Basket(Left Child(s); s);

13 DFS(Right Child(s));

14 Merge Basket(Right Child(s); s);

15 else

16 Create Basket((M�1(s)); s);

17 Gene Tree Walk(M�1(s));

18 BM�1(s) is the leaf in VG that has the same label as s in VS .

19 end

20 procedure Gene Tree Walk(g : VG)

21 species l; species r : VS ;

22 begin

23 while (g 6=Root(TG) and Visit Node(Parent(g))) do

24 g :=Parent(g);

25 species l :=Find Basket(Left Child(g));

26 species r :=Find Basket(Right Child(g));

27 if (Depth(species l) <

28 Depth(species r)) then

29 M(g) := species l;

30 else

31 M(g) := species r; �;

32 Insert Into Basket(g;M(g));

33 Delete From Basket(Left Child(g); species l);

34 Delete From Basket(Right Child(g); species r); od;

35 if (g 6=Root(TG)) then

36 Visit Node(Parent(g)) :=True; �;

37 end

38 begin

39 Init();

40 DFS(Root(TS));

41 end

Figure 3: Tree mapping algorithm

8

De�nition 5.2.1 Let l 2 VS be a leaf that is currently visited by the DFS procedure.

lca(l) is the least common ancestor of all leaves in VS that have been visited by the DFS

procedure up to the moment l is visited (including the visit of l). We de�ne P (l) as the

path in TS from lca(l) to l.

The role P (l) plays is shown in the following two observations.

Observation 5.2.3 Let l 2 VS be a leaf currently visited by the DFS procedure. All

currently existing baskets are a�liated to a node on P (l) that has its left child completely

processed by the DFS procedure.

Proof: Obviously all nodes in TS that have a left child completely processed must be

nodes in TS(lca(l)). By Observation 5.2.2 we conclude that only the nodes in TS(lca(l))

can currently be assigned to a basket. Now we consider P (l). A node s 6= l on P (l) has

exactly one child sc on P (l) and the other child s�c not on P (l). Since l is not completely

processed we know sc is not completely processed by the DFS procedure. For s�c we now

have to distinguish whether it is the left or right child of s. Is s�c the left child DFS(s�c) is

�nished and the operation Move Basket(s�c; s) has been performed. Observation 5.2.2

tells us that TS(s�c) does not contain a node assigned to a basket, but s is assigned to a

basket. When s�c is a right child it is not yet visited by the DFS procedure. Observation

5.2.2 tells us that neither a node in TS(s�c) nor s itself is assigned to a basket.

Observation 5.2.4 Let l 2 VS be a leaf that is currently visited by the DFS procedure.

And let basket(s) be an existing basket at this time and sr the right child of s. If M(g) =

M(g) we have M(g) * sr for any g 2 VG with g in basket(s).

Proof: Assume we have M(g) � sr for any g in basket(s). g was initially inserted into

basket(M(g)). By precondition we have M(g) = M(g). Thus g was initially inserted into

basket(M(g)) with M(g) � sr.

To have g in basket(s) it must �rst have been inserted into basket(sr) by DFS(sr). After

DFS(sr) �nished basket(sr) has been merged into basket(s). Finally all leaves of TS(s)

were visited by DFS(sr) and we can conclude that s is not on the path P (l). Observation

5.2.3 tells us then that no basket is a�liated to s, which is a contradiction.

Observation 5.2.5 Let g 2 VG. If the algorithm has calculated M(g) it holds M(g) =

M(g).

Proof: (By induction) Obviously we have M(g) =M(g) for a leaf g 2 VG by the proce-

dure Init.

Consider now the computation ofM(g) for an inner node g 2 VG. We make the inductive

assumption that we have M(gc) =M(gc) and M(g�c) =M(g�c) for the children gc and g�c
of g. M(g) is computed in lines 27 { 31 by the procedure Gene Tree Walk(l) for a

certain l 2 VG. By the while loop in lines 23 { 34 Gene Tree Walk(l) visits the nodes

on the path from g to l in inverse order. Thus a child of g, i.e. gc must be on this path.

So Gene Tree Walk(l) calculates M(gc) and inserts gc into basket(M(gc)) before g is

visited. Consequently, basket(M(gc)) is not moved until g is visited.

M(g) is computed thus g must have been visited via g�c by a prior Gene Tree Walk(l0)

run, with l0 6= l. ConsequentlyM(g�c) has been calculated and g�c is currently contained in

9

a basket.

Summing up, when g is visited by Gene Tree Walk(l) we have: gc and g�c are currently

contained in baskets, gc is contained in basket(M(gc)). By our assumption gc is contained

in basket(M(gc)) and g�c is contained in basket(s) for a certain s 2 VS .

We know Gene Tree Walk(l) is called from the DFS procedure when it visits l. Thus

Observation 5.2.3 tells us that currently all baskets are a�liated to nodes on P (l). So we

have either s �M(gc) or M(gc) � s.

1. s � M(gc): Lines 27 { 31 calculate M(g) = M(gc). We now show M(gc) = M(g). By

assumption we can apply Observation 5.2.1 for s which tells us M(g�c) � s. Thus we

have M(g�c) �M(gc) and can conclude M(g) = M(gc) =M(g).

2. M(gc) � s: Gene Tree Walk(l) calculates M(g) = s in line 27 { 31. We show now

M(g) = s. Let sl be the left and sr be the right child of s. We know s is assigned a

basket (containing g�c). Observation 5.2.2 then tells us that DFS(sl) has been �nished.

Consequently sl is not on P (l) and we have M(gc) � sr. Observation 5.2.4 applied

for s tells us M(g�c) * sr and Observation 5.2.1 tells us M(g�c) � s. So we have either

M(g�c) = s or M(g�c) � sl.

For M(g�c) = s we have M(gc) � sr � s = M(g�c) and conclude M(g) = s =M(g). For

the case M(g�c) � sl we have M(gc) � sr and conlude M(g) = s =M(g).

This proves the induction step and the observation is shown.

Every node in TG is visited by the procedureGene Tree Walk and thusM is calculated

for each node. Consequently when the algorithm terminates Observation 5.2.5 tells us

M =M .

Time and space complexity

The running time of the algorithm depends on the representation of the disjoint{set data

structure. We use the disjoint{set forest as described in [1] to represent the baskets. A

basket is represented by a rooted tree in the disjoint{set forest. Each tree in this forest

is a�liated to a node s 2 VS by a link between its root and s. An element in a tree

represents a node in the basket. Therefore each node in a tree is linked with the node in

VG that is represented by it. By the operation Create Basket(g; s) a tree consisting

only of its root is generated. This root is linked with the node s in VS and with the

node g in VG. Thus the operation Create Basket(g; s) needs constant time and space.

The Merge Basket operation is performed by the method union by rank (see [1]). This

method creates a link pointing from the root of the tree with fewer nodes to the root of

the tree with more nodes. Thus we can do a Merge Basket operation in constant time

and space. And a tree with k nodes in the disjoint{set forest has O(log(k)) height.

For the Find Basket(g) operation we use the method path compression (see [1]). The

method uses two passes. In the �rst pass the method �nds for the input node g its

representation in a tree T of the disjoint{set forest. Then the method walks up the tree

T to its root and thereby �nds the node in VS representing the basket that contains g. In

the second pass the method again walks from g to the root of T and makes each visited

node point to the root of T . During the execition of the whole algorithm for each node in

VG exactly one Find Basket(g) operation is performed. Consequently each edge in the

disjoint{set forest is visited twice from Find Basket operations during a complete run of

the algorithm. The disjoint{set forest has maximally O(n) edges. Hence all Find Basket

operations runs in O(n) time. Obviously one Find Basket(g) operation needs constant

space.

10

The Move Basket operation is performed for a tree in the disjoint{set forest. It simply

changes the link from the root to a node s in VS to the parent node of s. This needs

constant time and space.

Summing up the results, the operations Create Basket, Merge Basket and Move -

Basket need constant time and space. We have each of this operations executed O(n)

times for a run of the algorithm. Hence these operations runs in O(n) time and space.

We have seen that all Find Basket operations need O(n) time. Since all Find Basket

operations need O(n) time and one Find Basket operations needs constant space we

need O(n) space to perform all Find Basket operations.

Finally we need linear space and time to perform all operations for the disjoint{set data

structure in one run of the algorithm. Since the algorithm visits O(n) nodes our algorithm

runs in linear time and space.

6 Generalizations to model and algorithm

We have so far followed the convention of Mirkin et al. [10] to assume that there is exactly

one gene from each species given. However, this is not realistic in practical applications

[12]. In fact, the above algorithm does not depend on this assumption at all. Generalizing

it to many genes per species only requires keeping a list of genes for each leaf in VS .

Thus the list represents genes that are contained in the species{leaf. The algorithm is

generalized to handle this by modifying the DFS procedure. When the DFS procedure

visits a leaf Gene Tree Walk(g) is performed for each gene g 2 VG of the leaf's list.

Another valuable generalization that does not alter the basic algorithm and still makes

it much more valuable in practice concerns the binary nature of gene and species trees.

Frequently, tree reconstruction programs cannot decide about the order of a series of

bifurcations and it is safer to assume a multi-furcating tree. Our algorithm can handle

this situation as well.

7 Discussion

The inconsistency measure for which we just gave a linear time and space algorithm is only

one of several such measures introduced by Page [11], Guig�o et al. [6], and Mirkin et al.

[10]. Especially Page [12] is making extensive use of his measure in biological applications.

In Eulenstein and Vingron [2] we have shown the equivalence of L and another measure

used in Mirkin et al. [10]. Furthermore, the measure used by Page is equivalent to these

two as well (manuscript in preparation). Page presents in [12] a program to compute

his inconsistency measure. Analyzing this code reveals a run time of O(n2). The other

equivalent measures from [10] are given in mathematical form which, if translated naively

into an algorithm, would yield an O(n3) time complexity. The value of our algorithm thus

lies in providing a means of computing the inconsistency between a gene tree and a species

tree in linear time in general. Our algorithm has been implemented and is currently being

integrated into a program package for the analysis of gene trees. The program allows many

genes per species and multi-furcating species trees.

8 Acknowledgments

I am indebted to Martin Vingron and Benno Schwikowski for the helpful discussions about

the algorithm and the careful reading of this extended abstract.

11

References

[1] T. H. .Cormen, C. E. Leiserson, and R. L. Revest, Introduction to Algorithms, (MIT

Press, 1990).

[2] O. Eulenstein and M. Vingron, On the equivalence of two tree mapping measures.

"Arbeitspapiere der GMD", No. 936, Germany.

[3] W. Fitch and E. Margoliash, Construction of phylogenetic trees, Science. 155 (1967)

279 { 284.

[4] M. Goodman, J. Czelusniak, G. Moore, A. Romero-Herrera, and G. Matsuda, Fit-

ting the gene lineage into its species lineage: A parsimony strategy illustrated by

cladograms constructed from globin sequences, Syst.Zool.. 28 (1979) 132 { 168.

[5] A. Gordon, A review of hierarchical classi�cation, Journal of Royal Statistical Society.

150 (1987) 119 { 137.

[6] R. Guig�o, I. Muchnik, and T. F. Smith, Reconstruction of ancient molecular phy-

logeny. Mol. Phylog. Evol. ., to appear 1996.

[7] D. Harel and R. E. Tarjan, Fast Algorithms for Finding Nearest Common Ancestors.

SIAM J. Comput.. 13 (1984) 338 { 355.

[8] B. Schieber and U. Vishkin, On Finding Lowest Common Ancestors: Simpli�cation

and Parallelization. SIAM J. Comput.. 17 (1988) 1253 { 1262.

[9] L. Legrand, A Further Improved LCA Algorithm, University of Minneapolis Technical

Report Archive. TR90-01 (1990).

[10] B. Mirkin, I. Muchnik, and T. F. Smith, A Biologically Consistent Model for Com-

paring Molecular Phylogenies, Journal of Computational Biology. 2 (1996) 493 {

507.

[11] R. D. Page, Component analysis: A valiant failure? Cladistics. 6 (1990) 119 { 136.

[12] R. D. Page, Maps between trees and cladistic analysis of historical associations among

genes, organisms, and areas, Systematic Biology. 43 (1994) 58 { 77.

12

Appendix Example for the algorithm

An example for the algorithm calculating the tree mapping M(TG; TS) is given. In the

pictures (a),(b),(c),(d) and (e) a snapshot of the algorithm is shown while the DFS proce-

dure is visiting a leaf (see line 15 in the algorithm). The leaves are visited by the following

DFS calls: Picture (a) DFS(1), Picture (b) DFS(2), etc. The arrows in TS show the

current status of the preorder walk for the DFS procedure. Arrows in TS directed to

the root point to a node for that we have �nished the DFS procedure for the right child

but not for the left child. Arrows in TS directed away from the root point to a node for

that the DFS procedure is still in progress. For the tree TG the progressing of the pro-

cedure Walk Gene Tree is shown. An arrow here shows the nodes that are visited by

13

the procedure Walk Gene Tree when called by the DFS procedure. Edges that were

visited by the procedure Walk Gene Tree in a prior DFS call are marked bold. An

inner node is marked by V if it was visited by the procedure Walk Gene Tree which

means its variable Visit Node is set to true. Bold edges in TG were visited by prior

Walk Gene Tree calls.

Picture (d) is a good example for Observation 5.2.3. Leaf 4 in TS is currently visited by a

DFS procedure. All leaves in TS that have been visited by the DFS procedure up to this

moment are 1; 2; 3 and 4. Thus we have lca(1; 2; 3; 4) = f1; 2; 3; 4g and therefore P (4) =

ff1; 2; 3; 4g; f3; 4g; 3; 4g. Each inner node in this example has its left child completely

processed by the DFS procedure and is assigned by a basket.

Pictures (e) and (f) show a small example for the path compression in the basket a�liated

14

to the root of TS . In Picture (e) the node f3; 4g marked by a star is visited the second time.

Thus in Picture (f) the operations Find Basket(5) and Find Basket(4) are performed

for calculating M(f3; 4g). In Picture (d) the Find Basket(4) operation walks up the

path from 4 to 1 in basket(f1; 2; 3; 4; 5g). Finally all nodes on the path are linked to node

1 in the basket as can be seen in Picture (f) after Find Basket(4) is completed with the

path compression.

The calculation of M(f3; 4g) is shown in Pictures (f) and (g). The Find Basket op-

erations performed for the children of f3; 4g return the nodes 5 and f1; 2; 3; 4; 5g in TS .

And we have node f1; 2; 3; 4; 5g which is of lower depth than node 5. Thus the algorithm

calculates M(3; 4) = f1; 2; 3; 4; 5g. We know M(5) = 5 and M(4) = f1; 2; 3; 4; 5g and can

conclude M(f3; 4g) = f1; 2; 3; 4; 5g = M(3; 4). Pictures (h) and (i) show the calculation

of the remaining tree mappings as performed by Gene Tree Walk(5).

15

