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Abstract

This paper studies various properties of the least com-

mon ancestors mapping, the duplication and mutation

costs, and the complexity of �nding a species tree from

gene trees.

1 Introduction

Since DNA sequences have become easier to obtain, em-

phasis has been placed on constructing gene trees and

from these, reconstructing evolutionary trees for species

(called species trees) in the evolutionary biology([8, 18,

6]). The current strategy for reconstructing species trees

is based on the separate consideration of distinct gene

families represented by homologous sequences. The ho-

mologous sequences are assumed to evolve in the same

way as species. However, because of the presence of

paralogy, sorting of ancestral polymorphism and hori-

zontal transfer, gene trees and species trees are often

inconsistent([19, 23, 26, 28]). Hence, a major prob-

lem that arises is how to reconcile di�erent, sometimes

contradictory, gene trees into a species tree([7]). This

problem has been studied extensively for the last two

decades. Several similarity/dissimilarity measures for

gene trees and species trees have been proposed and ef-

�cient comparison methods have been investigated([24,

27, 11, 14, 13, 16, 1, 5, 12, 15].)

This paper studies the problem of combining di�er-

ent gene trees into a species tree under two duplication-

based similarity/dissimilarity measures. These mea-

sures are proposed by Goodman et al.([11]), Page([21]),

and Guig�o et al. ([12]). Gene divergence causes all in-

consistency among di�erent gene trees and can be the
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results of either speciation or duplication([20]). If the

common ancestry of two genes can be tracked back to

a speciation event, then they are said to be related by

orthology; if it is tracked back to a duplication event,

then they are related by paralogy([7]). Taking account

of orthology and paralogy evolutions, Goodman et al.

proposed a similarity/dissimilarity measure for annotat-

ing species tree with duplications, gene losses and the

nucleotide replacements([11]). Later, Page developed

a method based on duplications for interpreting incon-

sistency between vertebrate globin gene trees and the

species tree based on morphological data([21]); Guig�o

et al. elaborated the idea for identifying and locating

the gene duplications in eukaryotic history([12]).

The duplication cost introduced by Page and the

mutation cost by Guig�o et al. are based on a mapping

from gene trees to a species tree.Assuming that only

genes from each contemporary species are presented in

gene trees, we may denote a contemporary species and

the genes from that species by a same symbol. In a

gene tree, an ancestral gene is uniquely de�ned by the

set of contemporary genes descending it. Similarly, in

a species tree, an ancient species is de�ned by the con-

temporary species descending it. The mapping M from

a gene tree to a species tree maps a contemporary gene

to the corresponding species, and an ancestral one to

the most recent one which contains that gene. Hence,

we call it the least common ancestor(l.c.a.) mapping in

this paper. When the gene and species trees are incon-

sistent, it may map an ancestral gene, say g, and its

child c(g) to the same ancient species. In this case, we

say a duplication happens at g. Furthermore, roughly

speaking, the number of losses associated with g is de-

�ned as the total number of interspecies between M(g)

and M(c(g)) for all children c(g). To measure the sim-

ilarity/dissimilarity between a gene and species trees,

Page de�ned the duplication cost as the number of du-

plications, and Guig�o et al. de�ned the mutation cost

as the sum of the numbers of duplications and of gene

losses (under the l.c.a. mapping). The mutation cost is

not only biological meaningful([15]), but also e�ciently

computable, as proved by Eulenstein and Vingron([3])

and Zhang([29]) independently (see also [4]). Recon-
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structing a global species tree is based on the parsimo-

nious criterion of minimizing the duplication or muta-

tion cost between the gene trees and the species tree.

Such a problem was investigated by Guig�o et al.([12])

under the duplication cost. In their paper, they devel-

oped a heuristic method for the problem using a nearest

neighbor interchange searching algorithm and applied it

to infer a most likely phylogenetic relationship among

16 major higher eukaryotic taxa from the sequences of

53 di�erent genes.

Our main contribution has three aspects. First, we

study the properties of the l.c.a. mapping as well as the

duplication and mutation costs. In particular, we prove

a less obvious fact that the duplication cost satis�es

the triangle inequality(Lemma 4.1). Second, the com-

plexity of reconstructing an optimal species tree from

gene trees is investigated. We prove that the problem

is NP-complete under both the duplication and muta-

tion costs. The concept of a reconciled tree was in-

troduced by Goodman et al.([11]) and formalized by

Page([21]) as a means of describing historical associa-

tions including genes and species. We also prove that

�nding the best reconciled tree for gene trees is NP-

complete. These results may justify the necessary of

developing heuristic methods for reconstructing species

trees such as one proposed by Guig�o et al.([12]) and the

necessary of experimental research conducted by Page

and Charleston([22]). Third, we de�ne a new metric

for measuring the similarity/dissimilarity between two

trees with same uniquely labelled leaves. A disadvan-

tage of the duplication cost is its asymmetric property.

Because of this, a new metric satisfying the metric ax-

ioms is proposed. Like the mutation cost, the new met-

ric is e�ciently computable. Furthermore, under this

new metric, we prove that the problem of reconstruct-

ing a species tree from gene trees can be approximated

within constant factor 2 in polynomial time.

2 Comparing gene and species trees -

duplications and losses

In this section we brie
y de�ne gene and species trees,

and introduce two duplication-based measures for com-

paring gene and species trees. For their biological mean-

ing, we refer the reader to [11], [21], and [15]. We also

refer the reader to Garey and Johnson's book [10] for

NP-completeness and approximation algorithms.

2.1 Species trees and gene trees. For a set I

of N biological taxa, the model for their evolutionary

history is a full, rooted binary tree T with N leaves

each labeled by a distinct taxon in I , in which each

internal node has exactly two children. Such a tree

is usually called a species tree. In a species tree, any

internal node denotes an ancestor of its subordinate

species represented by leaves below it and are considered

as a subset (called cluster) of the taxa set I . Thus,

the evolutionary relation \m is a descendant of n" is

expressed, in set-theoretic setting, just as \m � n",

where we use the strict inclusion, in contrast to notation

m � n, which allows the equality of m and n.

The model for gene relationship is a full, rooted

binary tree with labelled leaves. Usually, a gene tree

is constructed from a selection of genes each appearing

in the studied species. For example, the gene family of

hemoglobin genes in vertebrates contains �-hemoglobin

and �-hemoglobin. A gene tree based on these two

genes is illustrated in Figure 1 for human, chimp and

horse([3]). Note that the labels in a gene tree may

not be unique. Hence, an internal node g corresponds

to a multiset Mg = fxi11 ; x
i2

2 ; � � � ; x
im
m
g, where ij is the

number of its subordinate leaves labelled with xj . The

cluster of g is just the set

Sg = fx1; x2; � � � ; xmg:

�-human �-chimp
�-chimp�-horse

�-horse�-human

�-lineage �-lineage

Figure 1: A gene tree based on �-hemoglobin and �-

hemoglobin.

2.2 Gene duplications and losses. Given a gene

tree G and a species tree S such that L(G) � L(S). For

any node g 2 G, we de�ne M(g) be the node of S being

its least common ancestors, that is, the smallest cluster

containing the cluster of g, Sg . This correspondenceM ,

�rst considered by Goodman et al. ([11]), is referred as

a mapping of G into S by Page ([21]). We call M the

l.c.a. mapping from G to S. Obviously, if g0 � g, then

M(g0) �M(g), and any leaf is mapped onto a leaf with

the same label. For an internal node g, we use c(g) to

denote a child of g. Note that each internal node g has

exactly two children.

Definition 2.1. Let g be an internal node of G. G(g)

and S(M(g)) are root-inconsistent if M(c(g)) = M(g)

for some child c(g) of g.

If G(g) and S(M(g)) is root-inconsistent, a du-

plication is said to happen at g. The total number
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tdup(G;S) of duplications happening in G under the

l.c.a. mapping M is proposed as a measure of the sim-

ilarity/dissimilarity of the gene tree G and the species

tree S ([11, 21]). We call such a measure the duplica-

tion cost. Now we list two properties of this measure,

which will be used later. Their proofs are easy and so

are omitted.

Proposition 2.1. Let G be a gene tree and S a species

tree. Then, tdup(G;S) = 0 if and only if G is identical

to SjL(G).

Proposition 2.2. Let g be the root of G with children

a(g) and b(g) and let s the root of S with children a(s)

and b(s). Then, if a duplication happens at g under

the l.c.a. mapping from G to S, then, tdup(G;S) =

1 + tdup(a(G); S) + tdup(b(G); S).

Furthermore, the duplication cost also satis�es the

triangle inequality, which is proved in Lemma 4.1 in

Section 4. Under the duplication cost, the problem of

�nding the `best' species tree from a set of known gene

trees can be formulated as the following minimization

problem.

Optimal Species Tree I(OST I)

Instance: Given n gene trees G1; G2; � � � ; Gn.

Question: Find a species tree S with the minimum

duplication cost
P

n

i=1 tdup(Gi; S).

A subset L of nodes in a species tree S is disjoint if

x \ y = � for any x; y 2 L. For a disjoint subset L in

S, we denote by S0 the smallest subtree of S containing

L as its leaf set. The homomorphic subtree SjL of S

induced by L is a tree obtained from S0 by contracting

all degree 2 nodes except for its root.

Now, we de�ne the number of gene losses associated

with the l.c.a. mapping M from G to S. Since

L(G) � L(S), SjL(G) is well de�ned and M induces

a l.c.a. mapping M 0 from G to SjL(G). Let g and g0 be

two nodes in SjL(G) such that g � g0. De�ne

d(g; g0) = jfh 2 SjL(G) j g � h � g0g:

Let a(g) and b(g) denote the two children of g. The

number of losses lg associated to g is

lg =

8<
:

0 if M 0(g) =M 0(a(g)) =M 0(b(g));

d(a(g); g) + 1 if M 0(g) �M 0(a(g)) &M 0(g) =M 0(b(g));

d(a(g); g) + d(b(g); g) if M 0(g) �M 0(a(g)) &M 0(g) �M 0(b(g)):

Note that our de�nition of l(g) is a variant of one de�ned

by Guig�o, Muchnik and Smith([12]). The mutation cost

is de�ned as the sum of tdup and the total number of

losses, l(G;S) =
P

g2G lg. This measure turns out to

be identical to a biological meaningful measure de�ned

in Mirkin et al.([15]) when G have the same number of

uniquely labelled leaves as S, which was proved in [3]

and [29] independently (see also [4]). The problem of

�nding the `best' species tree from a set of known gene

trees under this measure is formulated as:

Optimal Species Tree II(OST II)

Instance: Given n gene trees G1; G2; � � � ; Gn.

Question: Find a species tree S with the minimum

mutation cost
P

n

i=1(tdup(Gi; S) + l(G;S)).

2.3 Reconciled Trees. Let G be a gene tree and S

a species tree. The reconciled tree Tr(G;S) of G with

respect to S is the smallest tree with labelled leaves such

that

(1) It contains the only clusters of S,

(2) It contains G as a subtree, i.e.

Tr(G;S)jL(G) = G, and

(3) For two children a(g) and b(g) of g 2 Tr,

Ca(g) \ Cb(g) = �, or Sa(g) = Sb(g) = Sg.

An e�cient algorithm for computing a reconciled

tree given a gene and species trees was presented in

Page([21]). Reconstructing a species tree from a gene

tree can be formulated as:

Optimal Species Tree III(OST III)

Instance: Given a gene tree G.

Question: Find a species tree S with the minimum

duplication cost tdup(Tr(G;S); S).

3 NP-completeness of �nding optimal species

trees

3.1 Optimal Species Tree I. Given n trees

T1; T2; � � � ; Tn, we use L[T1; T2; � � � ; Tn] to denote the

tree T shown in Figure 2. When Ti is a single labelled

node, the resulting tree is obviously a line tree, in which

each internal node has a leaf as one of its children.

Tn�1

Tn

T1
T2

� � �

Figure 2: The tree L[T1; T2; � � � ; Tn].

Theorem 3.1. The problem OST I is NP-complete.

Proof. The problem is in NP. This is because there

are exponential many species trees with leaves labelled

with a given set of species and for each tree, the total
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number of duplications can be easily calculated in linear

time([29]).

To prove ite NP-completeness, we reduce the inde-

pendent set problem to OST I. Assume that an instance

G = (V;E) of the independent set problem is given,

where V = fv1; v2; � � � ; vng. We construct the corre-

sponding instance of the problem OST I as follows.

LetN = 7n3. For each vi, we introduceN labels lip,

1 � p � N and a line tree Ti = L[li1; li2; � � � ; liN ]. For

each pair (i; j) (1 � i 6= j � n) such that (vi; vj) 2 E,

we de�ne two trees G1ij and G2ij with leaves labelled by

A = flip j 0 � i � n; 1 � p � Ng as shown in Figure 3

(a) and (b). Note that Gkij 6= Gkji for k = 1; 2. Finally,

for each i, we de�ne a tree Gi with leaves labelled by A

as shown in Figure 3 (c). Obviously, such a construction

can be carried out in polynomial time. Hence, the NP-

completeness of OST I derives from the following fact.

T1

Ti+1

Tj�1

Tj+1

� � �

� � �

� � � Ti�1

� � �

� � �

Tj

l0N

l02
l01

liN

li2
li1

Tn

(b)

T1

Ti+1

� � �

� � � Ti�1

� � �

Ti
Tn

l0N

l01
l02

(c)

T1

Ti+1
Tj�1

Tj+1

� � �

� � �

� � � Ti�1

� � �

� � �

T0

li1li2

liN
lj1

lj2

ljN

Tn

(a)

Figure 3: Gene trees de�ned in terms of edges and notes

in the graph.

Claim The graph G contains an independent set of

size C if and only if there is a special tree S for all

the gene trees G1ij , G2ij and Gi, 1 � i; j � n with

duplication cost c < (4jEj+ n� C + 1
2
)N .

Proof. ()) Assume G contains an independent set

K of size C. Without loss of generality, we assume

V (K) = fv1; v2; � � � ; vCg. Then, we de�ne a species tree

S as

S = L[ln1; � � � ; ln; � � � ; l(C+1)1; � � � ; l(C+1)N ;

l01; � � � ; l0N ; lC1; � � � ; lCN ; � � � ; l11; � � � ; l1N ]:

For each i � C, c(Gi; S) = n � 1. For each i > C,

c(Gi; S) = N + n � 1: Further, we can verify that for

any i < j such that (vi; vj) 2 E and such that j > C,

4(N + C) �
P2

k=1(c(Gkij ; S) + c(Gkji ; S))

� 4(N + C + 1):
(3.1)

Thus, the duplication cost c is

P
(vi;vj)2E

(
P2

k=1(c(Gkij ; S) + c(Gkji ; S)))

+
P

1�i�n c(Gi; S)

� (4jEj+ n� C)N + 3n3

< (4jEj+ n� C + 1
2
)N:

(() We prove it by contradiction. Suppose that

the optimal duplication cost is c for G1ij , G2ij and Gi,

1 � i; j � n. Let Ai = flip j 1 � p � Ng.

Fact 1. There is an optimal species tree S such that

SjAi = Ti for every i 2 [0; n].

Proof. Assume that S is any optimal species

tree. For any i, we use lca(Ai) to denote the least

common ancestor of the leaves of Ai in the tree S.

Let lca(Ai) = p 2 S. If SjAi = S(p)jAi 6= Ti, then

there is a subtree, say T , in S(p) such that each of

two subtrees a(r(T )) and b(r(T )) contains at least two

labelled leaves in Ai. Let subtree a(r(T )) contain k such

labelled leaves lij1 ; lij2 ; � � � ; lijk , where 2 � k � N � 2.

Without loss of generality, we may assume that for

any k0 and k00 such that k0 < k00, either p(lij
k0
) and

p(lij
k00
) are disjoint, or p(lij

k0
) � p(lij

k00
). We construct

a tree S00 from S by replacing the subtree T with

L[a(r(T ))jA�Ai ; lijk ; � � � ; lij1 ; b(r(T ))]. By de�nition of

gene trees, we can verify that the duplication cost c00

of S00 is at most c. Since S is optimal, we have that

c00 = c and so S00 is also optimal. Applying above

procedure repeatedly, we will �nally obtain a desired

optimal species tree. This concludes the proof of the

fact.

Let S be an optimal species tree satisfying Fact 1.

Then the inclusion relationship � among lca(Ai) in S

can be extended into a total order � such that for any

i and j, lca(Ai) � lca(Aj) if lca(Ai) � lca(Aj) in S.

Let lca(Ain
) � lca(Ain�1

) � � � � � lca(Ai0
): Then, we

de�ne a line tree S0 as

S0 = L[li01; � � � ; li0N ; li11; � � � ; li1N ;

� � � ; lin1; � � � ; linN ]:

Let S0 have duplication cost c0. We have the following

two facts.

Fact 2. c0 � 3n3 + c

Proof. Since S0jAi = SjAi = Ti, no duplications

happen at all subtrees Ti (0 � i � n) in each gene

tree G1i0j0 , G2i0j0 and Gi0 . On the other hand, since S0

and S have the same inclusion relationship � among all
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lca(Ai)(0 � i � n), the duplication cost on all the right

subtrees of gene trees are same. Note that there are at

most n0 = n2+2n(n�1)(n�2) other vertices that have

not been considered above. We have that c0 � n0 � 3n3.

This �nishes the proof of Fact 2.

Fact 3. c0 > (4jEj+ n� C + 1)N .

Proof. Let E< = f(vi; vj) 2 E j pS0(li1); pS0(lj1) �

pS0(l01)g and V< = fvi 2 V jpS0(li1) � pS0(l01)g. If

G = (V;E) does not contain an independent set of size

C. Then, jE<j+ C � jV<j � 1. In fact, this is trivial if

jV<j < C. Otherwise, let the restriction subgraph GjV<
have a largest independent set K 0. Then, jK 0j � C � 1.

Since K 0 is largest, for any node v 2 V �K 0, (v; v0) 2 E

for some v0 2 K 0. This implies that jE<j � jV<j�jK
0j �

jV<j � C + 1, i.e., jE<j+ C � jV<j � 1 when jV<j � C.

It is easy to verify that, for any i; j such that

(vi; vj) 2 E and such that lca(fli1g); lca(flj1g) �

lca(fl01g) in S0,

2X
k=1

c(Gkij ; S
0) = 6N + 4(jV<j � 1):(3.2)

Hence, by Formula (3.1) and (3.2), we have

c0 =
P

vi2V�V<
c(Gi; S) +

P
vi2V<

c(Gi; S)

+
P

(vi;vj)62V
(
P2

k
c(Gkij ; S

0) +
P2

k
c(Gkji ; S

0))

� (4jEj+ n� C + 1)N:

Then, Fact 3 is proved.

Combining Fact 2 and Fact 3, we have that c >

(4jEj+n�C+1=2)N , a contradiction. Thus, we �nish

the proof of Claim and so Theorem 3.1.

Remark. We have actually proved that OST I

is NP-complete even for all gene trees with the same

uniquely labelled leaves. Such a stronger conclusion will

be used to prove that OST III is NP-complete in Section

2.3.

3.2 Optimal Species Tree II. Let C be a set of full

binary trees G with leaves uniquely labelled by L(G),

and let T be a full binary tree with leaves uniquely

labelled by
P

G2S L(G). We say that C is compatible

with T if for every G 2 S, the homomorphic subtree

T jL(G)j of T induced by L(G) is G. It is compatible if

it is compatible with some tree with leaves labelled byP
G2S L(G). Finally, recall that L[z; w; v; u; x] denotes

a rooted line tree with 5 leaves z; w; v; u; x as shown in

Figure 4 (a).

Lemma 3.1. If a collection C of 5-leave rooted line

trees L[y; wi; vi; ui; x] is compatible, then it is compatible

with a rooted line tree L[y; xn; xn�1; � � �x1; x], where

fx1; x2; x3; � � � ; xng = [fui; vi; wig.

x
u

z

w

v

x x1

x2

x3

z

� � �
xjAj

(b)(a)

Figure 4: Rooted line trees.

Proof. Choose a label z not in fx; yg and [ifui; vi; wig.

For each t = L[y; wi; vi; ui; x], we add an edge between z

and the root so that the resulting tree tz is an unrooted,

full binary tree in which each internal node has degree-

3. It is not di�cult to see that tz is de�ned by the

following set of quartets(see [25]):

Q(tz) = fxuijviz; xvijwiz; xuijyz; xvijyz; xwijyzg:

Suppose C is compatible with a rooted, full binary tree

T , then, Cz = ftz j t 2 Cg is compatible with T z,

and thus quartet set [t2CQ(t
z) is compatible with T z.

By a lemma in [25], [t2CQ(t
z) is compatible with an

xz-caterpillar xju1u2 � � �ujAjyjz. This implies that C is

compatible with the binary tree rooted at the internal

node that is jointed with z (after the removal of z),

which has the form shown in Figure 4 (b).

Theorem 3.2. The problem OST II is NP-complete.

Proof. The problem is obviously in NP as the problem

OST I. To prove its NP-completeness, we now describe

a transformation from the cyclic ordering problem([10]):

Instance: A �nite set A, and a collection C

of ordered triples (a; b; c) of distinct elements

from A.

Question: Is there a one-to-one function

f : A ! f1; 2; � � � ; jAjg such that, for each

(a; b; c) 2 C, we have either f(a) < f(b) < f(c)

or f(b) < f(c) < f(a) or f(c) < f(a) < f(b)?

which is proved to be NP-complete by Galil and

Megiddo in [9].

Suppose an instance of the cyclic ordering problem

is given. We construct for each ordered triple � =

(a; b; c) 2 C three gene trees G�

1 = L[y; c; b; a; x],

G�

2 = L[y; a; c; b; x] and G�

3 = L[y; b; a; c; x] as shown

in Figure 5, where x and y are two new labels �xed

for all triples in C. Now, we consider a collection

G(C) = fG�

i
j 1 � i � 3; � 2 Cg of 3jCj gene trees.

Obviously, such a construction can be carried out in

polynomial time.
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x c

a

b

y

G3

x

y

b

c

a

G1

c

y

x b

a

G2

Figure 5: Three trees correspond to an ordered triple

(a; b; c).

We claim that there is a species tree with leaves

A [ fx; yg having the mutation cost at most 14jCj if

and only if A has a cyclic ordering.

Suppose a cyclic ordering f exists. Let f(i) de-

note the ith smallest element in A and let S =

L[y; f(jAj); � � � ; f(2); f(1); x](see Figure 6).

� � �
y

f(jAj)
f(3) x

f(2)
f(1)

Figure 6: The species tree constructed from a cyclic

ordering f .

For a triple � = (a; b; c) 2 C, without loss of gen-

erality, we may assume that f(a) < f(b) < f(c). Then

G�

1 is the homomorphic subtree of S on fx; a; b; c; yg.

Thus, c(G1; S) = 0, c(G2; S) = 5 and c(G3; S) = 9.

Hence, the total mutation cost over all 3jCj gene trees

is 14jCj.

Conversely, suppose that T is a species tree with

leaves A[fx; yg having the mutation cost at most 14jCj.

Then we have

Claim For any � = (a; b; c) 2 C, the homomorphic

subtree of T on fx; a; b; c; yg is G1, G2 or G3 as shown

in Figure 5.

Proof The homomorphic subtree T 0 of T on

fx; a; b; c; yg is a full, binary tree with �ve labeled leaves.

Assume it is not any of G�

1 , G
�

2 and G�

3 . All possible

homomorphic subtrees are illustrated in Figure 7 and

Figure 8 and the case-by-case analysis of the mutation

cost of G1, G2 and G3 with T is shown in Table 1.

Hence, T has the mutation cost at least 14jCj+ 1.

This is a contradiction. This �nishes the proof of Claim.

By Lemma 3.1, there exists a line tree such that for

each triple � = (a; b; c), the homomorphic subtree on

fx; y; a; b; cg is one of the gene trees G�

1 ; G
�

2 ; G
�

3 . It is

Cases Ti (a) (b) (c) (d)

Cost 17 18 27 45 29,32

Cases (e) (f) (g) (h) (i)

Cost 31,34 32,35 37 34 37

Cases (j) (k) (l) (m)

Cost 26,29 20 33 29,32

Table 1: Case-by-case analysis of duplications.

x

y

T3

b

a

c

x

y

a

T1

c

b

y

x

a

T2

c

b

Figure 7: Three trees in the �rst column in Table 1.

not di�cult to see that such a line tree inducing a cyclic

ordering. This concludes the proof of Theorem 3.2.

3.3 Optimal Species Tree III. First, we have the

following property, which is derived from the de�nition

of reconciled trees.

Lemma 3.2. Given a gene tree G and a species tree S.

Let Tr be the reconciled tree of G with respect to S and

g be an internal node in G. If g is mapped to t 2 Tr
under the l.c.a mapping. Then, Tr(t) is the reconciled

tree of G(g) with respect to S(t).

Lemma 3.3. Let Tr be the reconciled tree of G with

respect to S. Then, tdup(Tr; S) = tdup(G;S).

Proof. We prove this by induction on the number of

leaves in S. It is obviously true for a species tree having

only three leaves. Now assume that S has at least 4

leaves. Let t be the root of Tr with children a(t) and

b(t), let g be the root of G with children a(g) and b(g)

and let s be the root of S with children a(s) and b(s).

We consider the following cases.

Case 1. a(t) \ b(t) = �.

Since G is identical to TrjL(G), under the l.c.a.

mapping from G to Tr, a(g) is mapped to a node

t1 � a(t), and b(g) to a node t2 � b(t). Note

that t1 and t2 are also two clusters in S. For

simplicity, we still use t1 and t2 to denote such

two corresponding nodes. By Lemma 3.2, Tr(t1) =

Tr(G(a(g)); S(t1)) and Tr(t2) = Tr(G(b(g)); S(t2)).

By induction, tdup(Tr(t1); S(t1)) = tdup(G(a(g)); S(t1))

and tdup(Tr(t2); S(t2)) = tdup(G(b(g)); S(t2)). Since



7

y

x l1 l3l2

y

l3

x

l2l1 l1 l2

l3

x

y x

l1x

l2

y

l3

y

x
l1

l2

l3

x y

l1

l2

l3

x

y l1 l2 l3 x

y

l1 l2 l3

l1

x
y
l2 l3

x y

l1

l2 l3
x l3l2y

l1

T
00

x l1
l3

l2

y

(a) (b) (c) (d)
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Figure 8: Cases 2-14 in the proof of Claim 1.

t1 � a(t) and t2 � b(t), g is not a duplication node

under both l.c.a. mappings from G to Tr and to S re-

spectively. Thus,

tdup(Tr(G;S); S)

= tdup(Tr(a(t)); S(a(s))) + tdup(Tr(b(t)); S(b(s)))

= tdup(G(a(g)); S(a(s))) + tdup(G(b(g)); S(b(s)))

= tdup(G;S):

Case 2. a(t) = b(t).

Then, by de�nition, a(t) = b(t) = t. Furthermore,

either a(g) is mapped to a(t) or b(g) is mapped to b(t).

Without loss of generality, we may assume that the

former is true. Let b(g) be mapped to t0. Note that

t0 � b(t); s. Under the l.c.a. mapping from G to S, a(g)

is mapped to s, the root of S. Thus, by induction,

tdup(Tr; S)

= 1 + tdup(Tr(a(t)); S) + tdup(Tr(b(t)); S)

= 1 + tdup(a(g); S) + tdup(G(b(t)); S(t
0))

= tdup(G;S):

This proves Lemma 3.3.

Therefore, the problem OST III is a special case

of the problem OST I in which each instance has only

one gene tree. Unfortunately, such a problem is still

NP-complete.

C1

C2

� � �

Cm�1
Cm

Figure 9: Connection of m gene trees in a right line

tree.

Theorem 3.3. The problem OST III is NP-complete.

Proof. Obviously, such a problem is in NP. Now we

ptove its NP-completeness. By Lemma 3.3, we need

only to prove the following problem to be NP-complete:

Given a gene tree, �nd a species tree S with

the minimum duplication cost tdup(G;S).

Given a class C of m gene trees with the same n

labelled leaves, we construct a gene G by connecting all

the gene trees in C through a right line trees as shown

in Figure 9. Since all the gene trees in C have the same

labelled leaves, we have that for any species tree S,

tdup(G;S) = m� 1 +
X

1�i�m

tdup(Gi; S):

This �nishes the reduction from an NP-complete prob-

lem to the problem given above(see the remark after

Theorem 3.1).

4 A New Metric

In this section, we introduce a new metric for arbitrary

full trees based on the concept of duplications. Note

that in a full tree, each internal node has degree � 3.

4.1 De�nition. Given two full trees T1 and T2, we

de�ne the l.c.a. mapping M from T1 and T2 as before

and we say a duplication happens at n 2 T1 under

M if and only if for some child c(n) of n such that

M(c(n)) = M(n). We still use tdup(T1; T2) to denote

the number of duplications between T1 and T2.

Let T be a full tree. For any internal edge e = (u; v),

the contraction tree of T at e is the resulting tree after

the removal of e and combining u and v into a new node

p such that p is adjacent to all the adjacencies of both

u and v.

Lemma 4.1. The duplication cost satis�es the trian-

gle inequality, i.e., tdup(T1; T3) � tdup(T1; T2) +

tdup(T2; T3): for any three full trees T1, T2 and T3 with

same uniquely labeled leaves.
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Proof. LetMij denote the l.c.a. mapping from Ti to Tj .

Now let T 0
1 be the resulting tree from T1 by contracting

all edges (u; v) such thatM12(u) =M12(v). Then, there

is no duplications between T 0
1 and T2. Furthermore,

let M 0
12 be the mapping from T 0

1 to T2, we have the

following claim.

Claim 1. For any m 2 T 0
1, M

0
12(m) = m: Thus,

tdup(T
0
1; T2) = 0.

Proof. This can be proved by induction.

Claim 2. tdup(T1; T3) � tdup(T1; T2) + tdup(T2; T3)

if tdup(T
0
1; T3) � tdup(T2; T3).

Proof. Under the mapping M13, a duplication

happens at a node n 2 T1 if and only if M13(n) =

M13(c(n)) for some child c(n) of n. Let D denote the

set of such duplication nodes in T1 under M13. We

divide D into two disjoint subsets:

D1 = fn 2 D jM12(n) =M12(c(n))g;

and

D2 = fn 2 D jM12(n) 6=M12(c(n))g:

Obviously, jD1j � tdup(T1; T2). By de�nition,

tdup(T1; T3) = jD1j+jD2j � tdup(T1; T2)+tdup(T
0
1; T3) �

tdup(T1; T2) + tdup(T2; T3) if tdup(T
0
1; T3) � tdup(T2; T3).

Let M 0
12(n) = p and M 0

12(c(n)) = q. Then, by

Claim 1, n = p and c(n) = q. If M13(n) = M13(c(n)),

then all nodes in the path from M23(p) and M23(q) is

mapped to the same node in M3. This implies that

tdup(T
0
1; T3) � tdup(T2; T3). This �nishes the proof of

Lemm 4.1.

Now we de�ne a new similarity/dissimilarity mea-

sure between two full trees as

d(T1; T2) =
tdup(T1; T2) + tdup(T2; T1)

2
:

Since the duplication cost is computable in linear time,

the measure d(:; :) is also e�ciently computable. Fur-

ther, it satis�es the three metric axioms.

Proposition 4.1. For any three full trees T1; T2 and

T3, d(:; :) satis�es the following properties:

(1) d(T1; T2) = 0 if and only if T1 = T2;

(2) d(T1; T3 � d(T1; T2) + d(T2; T3);

(3) d(T1; T2) = d(T2; T1).

In what follows, we call d(:; :) the symmetric du-

plication cost. Interestingly enough, the symmetric du-

plication cost is closely related to the nearest neighbor

interchange(nni) distance, which was introduced inde-

pendently in [17] and [24]. An nni operation swaps two

subtrees that are separated by an internal edge (u; v)

as show in Figure 10. The nni distance, Dnni(T1; T2),

between two full trees T1 and T2 is de�ned as the min-

imum number of nni operations required to transform

one tree into the other.

Proposition 4.2. For any species trees T1 and T2,

d(T1; T2) � Dnni(T1; T2).

Proof. Suppose T1 is converted into T2 by one nni

operation. Then, we can easily verify that d(T1; T2) = 1.

Thus, d(T1; T2) � Dnni(T1; T2). Since d(:; :) satis�es the

triangle inequality, the result hold in general also.

BB D

A C C A

D

Figure 10: A possible nni operation on an internal edge

(u; v): exchange A and C.

Although it is unknown whether the problem of

�nding an optimal species tree from gene trees is NP-

complete with the cost d(:; :) or not, we have the

following approximation result.

Theorem 4.1. There is a polynomial-time approxima-

tion of ratio 2 to the problem of �nding an optimal

species from gene trees with the symmetric duplication

cost d(:; :).

Proof. Given an input of n gene trees G1; G2; � � � ; Gn,

we compute
P

n

i6=j d(Ti; Tj) for each j � n and output

Gj with the minimum cost
P

n

i6=j d(Ti; Tj) as the species

tree. We now prove that the output species tree has at

most two times the optimal cost. Assume that G1 is the

output and S is an optimal species tree. Then,

P
i�n d(Ti; T1) � (

P
i�n

P
j�n d(Ti; Tj))=n

� (
P

i�n

P
j�n(d(Ti; S) + d(Tj ; S)))=n

� 2
P

i�n d(Ti; S):

This proves Theorem 4.1.

5 A general problem

We have studied the properties of the duplication and

mutation costs, and the computational complexity of

reconstructing a global species tree from gene trees.

We have proved that various versions of the problem

are NP-complete. As a consequence it is unlikely

that there is an e�cient algorithm for these problems.

However, our complexity results are the start point

for the development of good approximation, heuristic

algorithms and methods speci�c to the type of given

data. This is an area we are currently investigating.

Furthermore, a general problem may be more inter-

esting. There are a large family of genes each having

several, distinct copies in the studied species. In order
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to derive a gene tree that truly re
ects the evolution of

species, one needs knowledge about which copies of the

gene are comparable. This is usually impossible untill

careful study of the species. However, one may have

con�dence to a certain degree in di�erent gene trees.

Hence, it is natural to propose the following problem.

We use I+ to denote the set of integer numbers and let

m be any similarity/dissimilarity measure between gene

and species trees.

General Optimal Species Tree(GOST)

Instance: A set of n gene trees G1; G2; � � � ; Gn, to each

tree a con�dence value ci 2 I+ is associated.

Question: Find a species tree S with the minimum

cost
P

cim(Gi; S).

Clearly, GOST is NP-complete under the duplica-

tion cost and the mutation cost. To the nni distance,

the conclusion is also true.

Theorem 5.1. The problem GOST is NP-complete for

the NNI distance.

Sketch of Proof. We reduce the problem of computing

nni distance between two trees( see [2] for its NP-

completeness) to GOST. Given two binary trees T1 and

T2 with n leaves. By applying an nni operation to T1,

we may obtain as many as 2n � 2 di�erent resulting

trees. Let T3 be such a tree, i.e., dnni(T3; T1) = 1. We

consider the following instance I of GOST:

I = fT1; T2; T3; c1 = 2; c2 = 2; c3 = 1g:

Let S be an optimal species tree for I . Then one can

easily verify that S = T3 if and only if dnni(T1; T2) =

dnni(T1; T3) + dnni(T3; T2). Note that the nni distance

dnni(T1; T2) is at most n logn. If GOST is solved in

polynomial time, we can compute dnni(T1; T2) using an

e�cient search. For each T3 such that dnni(T1; T3) = 1,

compute the optimal species tree S for the instance I

de�ned above. If S = T3, then compute dnni(T3; T2)

recursively and output 1 + dnni(T3; T2). This �nishes

the reduction and so the proof.

Note that Theorem 4.1 can not be generalized to the

problem GOST. Therefore, it is challenging to develop

polynomial algorithms with constant approximation

factor for GOST for the various measures studied here.
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