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Abstract. A fundamental problem in computational biology is the de-
termination of the correct species tree for a set of taxa given a set of (pos-

sibly contradictory) gene trees. In recent literature, the Duplication/

Loss model has received considerable attention. Here one measures the
similarity/dissimilarity between a set of gene trees by counting the num-

ber of paralogous gene duplications and subsequent gene losses which

need to be postulated in order to explain (in an evolutionarily meaning-
ful way) how the gene trees could have arisen with respect to the species

tree. Here we count the number of multiple gene duplication events (du-

plication events in the genome of the organism involving one or more
genes) without regard to gene losses. Multiple Gene Duplication

asks to �nd the species tree S which requires the fewest number of mul-

tiple gene duplication events to be postulated in order to explain a set of
gene trees G1;G2; : : : ;Gk. We also examine the related problem which

assumes the species tree S is known and asks to �nd the explanation for

G1;G2; : : : ;Gk requiring the fewest multiple gene duplications. Via a re-
duction to and from a combinatorial model we call the Ball and Trap

Game, we show that the general form of this problem is NP-hard and

various parameterized versions are hard for the complexity class W [1].
These results immediately imply that Multiple Gene Duplication is

similarily hard. We prove that several parameterized variants are in FPT.

1 Introduction to the Model

A fundamental problem arising in computational biology is the determination

of the (correct) evolutionary topology for a set of taxa given a set of (possibly

contradictory) gene trees. A gene tree is a complete rooted binary tree formed

over a family of homologous genes for a set of taxa. For various reasons, two or

more gene trees for the same set of taxa may not always agree (see [2, 5] amongst

others). The question then arises of how to reconstruct the correct species tree

for these taxa from the given gene trees. Several models have appeared in the

literature including possibly the most famous MAST [7, 11{13]. One such cost

model which has received considerable attention of late is the Gene Duplica-

tion and Loss model introduced in [8] and discussed in [9,10, 14]. The basic

idea here is to measure the similarity/dissimilarity between a set of gene trees

by counting the number of postulated paralogous gene duplications and subse-

quent gene losses required to explain (in an evolutionarily meaningful way) how
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the gene trees could have arisen with respect to the species tree. We use angle

brackets <;> to denote multisets. All trees in this paper are rooted and leaf

labeled. Let T = (V;E; L) be such a rooted tree where V is the vertex set,

E is the edge set, and L � V is the leaf label set. For a vertex u 2 V � L,

let Tu be the subtree of T rooted by u. Let root(T ) denote the root of T and,

for any vertex v 2 V , let parentT (v) be the parent of v in T , and for binary

trees, let leftT (v) be the left kid of v and rightT (v) be the right kid of v. Where

L = f1; 2; : : : ; ng we call these leaf labeled trees either a species or a gene tree.

Let G = (VG; EG; L) be a gene tree and S = (VS ; ES; L
0), L � L0, be a species

tree. We use a function locG;S : VG ! VS to associate each vertex in G with a

vertex in S. Furthermore, we use a function eventG;S : VG ! fdup; specg to indi-

cate whether the event in G corresponds to a duplication or speciation event. In

[10], a function tdup is given which returns the minimum number of duplication

events necessary to rectify a gene tree with a species tree (here the algorithm

from [9] is modi�ed to ignore losses). Our function M below maps a gene tree

G into a species tree S by de�ning functions locG;S and eventG;S . It is the case

that tdup = jfuju 2 VG � L; eventG;S(u) = dupgj.

M (G;S): for each u 2 VG � L, loc(u) = lcaS(u) and

event(u) =

�
spec if loc(u0) 6= loc(u); for all u0 where u0 is a kid of u in G.

dup otherwise

The following problem lies at the heart of the Duplication model:

Optimal Species Tree (Duplication Model):

Input: Set of gene trees G1; : : : ; Gk. Question: Does there exist a species tree S

with minimum duplication cost
Pk

i=1 tdup(Gi; S)?

In [10], it is shown that the problem of �nding the species tree S which

minimizes the number of gene duplications is NP-complete (here the gene trees

may contain leaf labels which appear more than once). When each gene tree

may contain a leaf label at most once (a gene tree is formed over exactly one

gene per taxa), the problem remains NP-complete and the parameterized (by

k) version is hard for W [1] (see [6]). A similar question to Optimal Species

Tree arises if we ask for the species tree which implies the minimum number

of multiple gene duplications for a given set of gene trees. A duplication event

in the genome of an organism involves a stretch of DNA where one or more

genes may reside. Previous models for rectifying gene trees with species trees

considered a duplication event to e�ect one gene at a time. However, there is

evidence that genomes of, for example, eukaryotic organisms, have been entirely

duplicated one or more times or individual chromosomes have been duplicated

multiple times. In either case, sets of genes were duplicated in one event creating

a set of paralogous genes. Such paralogous duplications make �nding the correct

species topology especially di�cult [5]. Consider a vertex u in a species tree S.

Each gene tree Gi has some number of vertices (possibly zero) with locG;S equal

to u and eventG;S equal to dup. Let Dup = fd1; d2; : : : ; dcg denote this set. We

can partition the Dup into sets with the property that each set has at most one

element from each Gi and so that these sets are maximal. One such set is termed

a multiple gene duplication and it counts exactly one to the overall number of
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multiple gene duplications required to rectify the gene trees with respect to the

species tree. The multiple gene duplication score for the vertex u is the total

number of such partitions. By \moving" gene duplication events in Gi towards

the root of S according to a set of rules, we can decrease the total number of

multiple gene duplications required. Fig. 1 gives a concrete example.

Observation. The duplication mapping function M given above (modi�ed from

[9, 10]) provides an upper bound for the number of multiple gene duplications for

a set of gene trees G1; G2; : : : ; Gk and a species tree S.

Let G = (VG; EG; L) be a gene tree and S = (VS ; ES; L
0) a species tree,

L � L0. Consider a vertex u 2 VG such that eventG;S(u) = dup and u 6= root(G).

Let v = parentG(u). The rules for moving duplication events towards the root

of a species tree are as follows [9]: Move 1: eventG;S(v) = dup. We may move

the duplication associated with u from locG;S(u) to locG;S(v) without creating

any new duplications. Now locG;S(u) = locG;S(v). Move 2: eventG;S(v) = spec.

When moving the duplication associated with u from locG;S(u) to locG;S(v), we

must change eventG;S(v) to be dup. Now locG;S(u) = locG;S(v).

De�nition 1. Given a gene tree G, a species tree S, and the functions locG;S
and eventG;S mapping G into S, we say that S receives G, if the con�guration

given by locG;S and eventG;S can be reached by a series of moves starting from

the initial con�guration obtained by applying M (G;S).

The Multiple Gene Duplication problem can now be stated as follows:

Multiple Gene Duplication I

Input: Set of gene trees G1; : : : ; Gk, integer c. Question: Do there exist a species

tree S and functions locGi;S , eventGi;S , for 1 � i � k, s.t. S receives G1; : : : ; Gk

with at most c multiple gene duplications?

We state an easier version of Multiple Gene Duplication:

Multiple Gene Duplication Problem II (GDII)

Input: Set of gene trees G1; : : : ; Gk, a species tree S, integer c. Question: Do

there exist functions locGi;S , eventGi;S , for 1 � i � k, s.t. S receives G1; : : :Gk

with at most c multiple gene duplications?

Via a reduction to and from a combinatorial problem called the Ball and

Trap Game, we show W [1]-hardness and NP-completeness for GDII. We also

show the problem is �xed-parameter tractable when various restrictions are

placed on the number of gene trees and the number of the gene duplications.

For an introduction to parameterized complexity we refer readers to [3, 4].

2 The Ball and Trap Game

The Ball and Trap Game is played on a rooted labeled tree T = (V;E; L)

decorated with a set of traps D and a set of balls B. Every ball and trap has

a color associated with it; this is given by the functions cB : B ! [1 : k]

and cD : D ! [1 : k] respectively. The balls and traps are initially associated

with internal vertices of T via the attaching functions lB : B ! V � L and

lD : D ! V � L. Each ball b 2 B of color cB(b) is labeled with a (possible
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Fig. 1. (a) Two gene trees (G1;G2) and a proposed species tree S. (b) The species
tree S has G1 and G2 embedded inside of it according to the standard Duplication

and Lossmapping functionM . Note that G1 causes one duplication (vertex ABCDE)

whilst G2 causes 3 duplications (vertices ABC, ABCDEF , and again ABCDEF ). The
score according to theMultiple Gene Duplication model is 4. (c) After moving the

gene duplication of G1 located at vertex ABCDE to the root of the species tree S,

two additional gene duplications for G1 need to be postulated. Nevertheless, the score
according to the Multiple Gene Duplication model is now 3. Note that it is not

bene�cial to move the gene duplication from G2 located at ABC towards the root. The

two gene duplications located initially at the root from G2 cannot move upwards.
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empty) subset Rb � D of traps. For each ball b every trap d 2 Rb is of the color

cD(d) = cB(b). A ball with a given set of traps may occur many times in the tree

(i.e. for b; b0 2 B Rb = R0
b and cB(b) = cB(b

0) but lB(b) 6= lB(b
0) is possible).

Also, a vertex in the tree can be decorated with many di�erent balls and traps.

A game consists of some number of moves, after which the score is calculated.

The rules of the game are as follows: 1. Balls and traps are initially placed at

internal vertices of T according to lB and lD . 2. Balls may not move down

the tree. They may either stay in the same place or move upwards following

the topology of T . In each turn, a ball b on a vertex v can be moved to the

parent(v). 3. We say that a trap d 2 D is dangerous for a ball b 2 B if d 2 Rb.

A ball b sets o� a trap if the ball is placed at the vertex of a trap dangerous

for b. 4. When a trap d is set o� by a ball b, it is removed from the game and

replaced by two new balls bnew, bnew0 s.t. (a) cB(bnew) = cB(bnew0) = cB(b), (b)

lB(bnew) = lB(bnew0) = lD(d), (c) Rbnew = Rb
new

0
= RB � d and Rb = Rb � d,

and (d) Rb0 = Rb0 � d, for all b0 2 B. The goal of the game is to minimize the

score of tree T which is de�ned by smax(v) =
P

v2V (T )maxfs(1; v); :::; s(k; v)g

where s(c; v) denotes the number of balls of color c at vertex v in T .

Ball and Trap Game (Optimization)

Input: A rooted labeled tree T , a set of balls B, a set of traps D, two coloring

functions cB : B ! [1 : k] and cD : D ! [1 : k], two initial location functions

lB : B ! VT � L, lD : D ! VT �L, and for each ball b 2 B a set Rb � D where

for each d 2 Rb cD(d) = cB(b).

A Round: Each round of the game consists of the player moving any number of

same colored balls up the tree or deciding not to move any balls (halting move).

Output: The location function l0(B) generated according to the above rules which

minimizes �8v2V (T )smax(v).

The input is measured as follows: n denotes the size of T , k denotes the

number of colors, r denotes the number of traps, and there are at most m balls

on any vertex of T in the initial con�guration. The above de�ned game leads to

the following decision variant of the problem:

Ball and Trap (BT) - Decision

Input: A rooted tree T decorated with traps D and balls B in the manner

described above, and a positive integer t. Question: Can the Ball and Trap

Game be played on T to achieve a score of at most t?

Theorem 1. Multiple Gene Duplication II reduces to BT (Decision).

Proof(sketch). We construct an instance I0 2BT from an instance of I 2GDII.

Let T equal the species tree S, t = c, and the number of colors k0 of I0 be

the number of gene trees k from I. Each color corresponds to one of the input

gene trees. Apply M (Gi; S) and consider the functions locGi;S and eventGi;S ,

for 1 � i � k. We create a ball b with cB(b) = i for every vertex u 2 VG
s.t. eventGi;S(u) = dup. Let lB(u) = locGi;S(u). If locGi;S(u) 6= root(S), then

let Dup = fdjd 2 VGi
; d is an ancestor of u; eventGi;S(d) = specg: For each

d 2 Dup we create a trap d0 and let lD(d
0) = locGi;S(d) in T and cD(d

0) =

i. Place d in Rb. The proof that I0 2BT\yes00 if and only if I 2GDII\yes00 is

straightforward. One need only verify that the legal moves for a ball in the
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Ball and Trap Game correspond to the legal moves for a duplication event for

Multiple Gene Duplication. The only slightly tricky situation arises when

there is a series u1; u2; : : : ; uq 2 VGi
s.t. eventGi;S(up) = dup, locGi;S = x and

up is a director descendant of up+1 in Gi, for all 1 � p < q. In Multiple Gene

Duplication, one must �rst move duplication event p upwards before moving

duplication events 1; : : : ; p�1. When the ball corresponding to duplication event

up is moved upwards to the same level as the ball corresponding to duplication

event up0 , p < p0, the traps dangerous for these two balls are equivalent.

3 Easy and Hard Parameterizations of the Ball and Trap

Game

We consider the following parameterizations of Ball and Trap.

Ball and Trap:

Input: A rooted tree T decorated with traps D and balls B in the manner

described above and integer t.

Parameters: k = 2, for each b 2 B let jRbj � 2, number of traps r. (Version I)

Parameters: k; r;m; t. (Version II)

Parameters: k; r. (Version III)

Question: Can the Ball and Trap Game be played on T to achieve a score of

at most t?

3.1 Easy Parameterizations

We can use �nite-state dynamic programming on trees (equivalently, �nite-state

recognition of trees vertex labeled from a �nite set of labels) in order to prove

the following �xed-parameter tractability result.

Theorem 2. For every �xed set of parameter values (k; r;m; t), the problem

Ball and Trap II can be solved in time linear in the size of the tree.

Proof. Using the methods of [1], we can represent an input tree T as a labeled

binary tree (even though T may not be binary), where the labels (which we will

refer to as colors) indicate both the structure of T and the adornments of the

vertices of T with balls and traps. The colored binary tree that represents an

input tree T is called a parse tree for T . In this representation of T we can assume

that the total number of balls of any given color on T is bounded by t, since

otherwise T would be a \No" instance. We argue that there is a �nite state tree

automaton that recognizes precisely those labeled binary trees that represent

\Yes" instances of the problem. Our argument is based on the \method of test

sets" of [1, 4]. Since there are at most k2r types of balls, and since each vertex

may have m balls, 2r(k2r)m colors su�ce. The input trees are rooted, and we

may assume that the parse tree for a given input tree T is rooted compatibly

(i.e., at the same vertex). We use the following parsing operators: (1) the unary

operator 
c, for each color c, that has the e�ect of adding a single edge from

the root to a new root colored c, and (2) the binary � operator (de�ned only for

trees having the same color root) that takes as arguments two trees T1 and T2
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and returns the tree T = T1 � T2 obtained by identifying the root vertices of T1
and T2. We describe a set T of tests, each of which is a predicate p(T ) about a

decorated tree T . We say that T passes the test if p(T ) = true. Decorated trees

T and T 0 are equivalent, denoted T � T 0, if they: (1) have roots of the same color

(i.e., that are decorated with traps and balls in the same way), and (2) pass the

same set of tests in T , i.e., if fp 2 T : p(T ) = trueg = fp 2 T : p(T 0) = trueg A

test in T is speci�ed by the following items: (1) A positive integer t0 � t. (2) A

length k vector S = (s1; :::; sk) of non-negative integers, where each si is at most

t. (3) The statement: \It is possible to play the Ball and Trap Game on T

in such a way that at the end of play: � The total score on the internal vertices

of T is at most t0. � The set of balls on the root of T consists of s1 balls of

color 1, s2 balls of color 2; : : : ; and sk balls of color k? To conclude the theorem

it is enough to establish the following three claims. Claim 1. The equivalence

relation � has a �nite number of equivalence classes. Claim 2. If T1 � T2 and T1
is a Yes-instance for the problem, then T2 is a Yes-instance also. Claim 3. The

equivalence relation � is a congruence with respect to the two parsing operators


c and � for trees.

Theorem 3. Ball and Trap III can be solved in time nc where c = O((k2r)m).

Proof(sketch). We use leaf-to-root dynamic programming. At each vertex u of

the tree T we calculate a table of pairs (c; S) where S is a set of balls to be

passed upwards from u, and c is the minimum total score that can be achieved

in the subtree Tu rooted at u assuming that the balls of S are passed upwards.

It is easy to calculate this information for a vertex u from the information for

the children of u. The best score that can be achieved for T is the value c at the

root for S = ;.

3.2 W-hardness of the Ball and Trap Game

We prove the W [1]-hardness of Ball and Trap I for parameter r by means

of a polynomial-time parameterized reduction from Clique (Clique is proven

complete for W [1] in [3]). As an intermediate step we prove that the following

parameterized problem is hard for W [1].

k; r-Small Union

Input: A family F of subsets of f1; :::; ng, and positive integers r and k. Param-

eter: (r; k) Question: Is there a subfamily F 0 � F with jF 0j � r s.t. the union of

the sets in F 0 has cardinality at most k?

Lemma 1. Small Union is NP-complete and hard for W [1].

Theorem 4. Ball and Trap is NP-complete, and Version I is hard forW [1].

Proof. Ball and Trap is well-de�ned for non-binary trees, and so we describe

how Small Union can be reduced to Ball and Trap I. Let (F ; r; k) be an

instance of Small Union. We can assume, by the reduction described above,

that F consists of 2-element sets. In order to describe the reduction we must
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describe a tree T with decorations, and the target value t for the game on T .

The tree T is just a star of degree n = jFj (with the root being the central

vertex). Each leaf of T is associated with an element of F . The two colors are

red and blue. There are n red traps �1; :::; �n. Each leaf is decorated with a

single red ball labeled with the set of traps f�u; �vg for the associated (\edge")

set fu; vg. The root is decorated with k + r blue balls, each labeled with the

empty set of traps. The root is also decorated with all the n red traps. We set

t = (n � r) + (k + r) = n + k. The basic idea for the correctness argument can

be described as follows. Initially, the score is n+ k + r. The only possible move

is to move a red ball from a leaf to the root. If r balls can be moved up to the

root from the leaves, with the r balls chosen so that the union of their trap label

sets has cardinality k, then the result is a total of k + r red balls at the root

(where there are k+r blue balls, so the cost of the root in the �nal score remains

k+ r). Thus the score at the end is t. Conversely, if a score of t is achieved by a

game g, then necessarily at least r red balls must be moved up from the leaves.

Let g0 denote the truncated game consisting of the �rst r moves. There are two

possibilities: 1. g0 also achieves a score of at most t, and 2. the score for the

game g0 is greater than t. In case 1, exactly r red balls are moved to the root

and consequently the score for the root vertex is at most k + r, which implies

that the union of the trap label sets for the balls moved up has cardinality at

most k. This implies that (F ; r; k) is a \Yes" instance for the Small Union

problem. In case 2, there are more than k + r red balls at the root after the

moves of g0. Since the number of red balls now exceeds the number of blue balls

at the root, each further move of g is of no advantage in decreasing the total

score, contradicting that g is a game that achieves a score of at most t.

Theorem 5. Ball and Trap I remains W [1]-hard restricted to binary trees,

the maximum number of traps per vertex is one per color, and balls are placed

on neither leaves nor parents of leaves.

The proof follows from straightforward modi�cations to the construction in

Theorem 4. We replace the star T by a binary tree and provide a construction

where no internal vertices (with the exception of the root) receive balls or traps.

We introduce the following version of Ball and Trap as it is used to es-

tablish the hardness of the Multiple Gene Duplication problem.

Ball and Trap IV (BTIV):

Input: A rooted binary tree T decorated with traps D and balls B in the typical

manner, and a positive integer t. Parameters: k = 2 and the number of traps r.

Conditions: (1) jRbj � 2, f.a. b 2 B. (2) F.a. v 2 VT and each color c, Tv has at

most jTvj � 2 c-colored balls. (3) Rb = R0
b if lB(b) = lB(b

0) and cB(b) = cB(b
0).

(4) Rb � Rb0 if lB(b) is an ancestor of lB(b
0) in T . (5) No useless traps are

allowed (a trap d is useless if no ball b in the subtree where the trap is located

has d 2 Rb). (6) If b; b
0 2 B where the vertex lB(b) is a descendant of the vertex

lB(b
0), then all traps d 2 Rb � Rb0 are placed at vertices on the path from b

to b0 (inclusive). Question: Can the Ball and Trap Game be played on T to

achieve a score of at most t?
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Because none of the conditions in speci�ed in Ball and Trap IV are vio-

lated in the reduction, we receive the following corollary.

Corollary 1. Ball and Trap IV is W [1]-hard.

4 Hardness of the Multiple Gene Duplication Problem

Corollary 1 and the following theorem are su�cient to prove W [1]-hardness and

NP-completeness of the Multiple Gene Duplication II problem.

Theorem 6. Ball and Trap IV reduces toMultiple Gene Duplication II.

Proof(sketch).We construct an instance I0 2 GDII from an instance I 2 BTIV .

Our reduction builds a species tree S = (VS ; ES ; L) and gene trees G1 and G2. I

is restricted to 2 colors; we associate color 1 with G1 and color 2 with G2. W.l.o.g.

we restrict our attention to balls and traps of one color c. Let S = T . For each

vertex v 2 V , if v 2 L, then let free(v) = fvg. When v 2 V � L but v is not

decorated with a ball or trap, then let free(v) = free(left(v))[free(right(v)).

If v 2 V �L and is decorated by a ball but no trap, then we remove a leaf from

free(left(v)) and a leaf from free(right(v)) and set these to be the children

of a new vertex w. For each ball b located at v, we remove an element e from

free(left(v)) or free(right(v)), where e is choosen to be a tree if a tree exists

in free(left(v)) [ free(right(v)) or otherwise a leaf. Let w0 by the parent of w

and e. Let w equal w0. Let free(w) = free(left(v)) [ free(right(v)) [ fwg.

If v 2 V � L and is decorated by a trap d, then let e1 be an element re-

moved from the set free(left(v)) and e2 be an element removed from the set

free(right(v)). We choose e1 as follows: If there is a tree in free(left(v)) (resp.

free(right(v))) such that Tleft(v) (Tright(v)) has a ball b and d 2 Rb, then choose

one such element. Otherwise, choose any element. It is easy to show that one

of e1 or e2 must be a tree. Create a new vertex w and place e1 and e2 as the

children of w. For each ball located at v, we perform the same operations done

in the case when v 2 V �L and not decorated by a trap. When these operations

are completed, we remove one tree from free(root(T )); call it � . It is easy to

verify that free(root(T )) = L� L� . We complete Gc from � by embedding the

remaining leaves free(root(T )) in accordance with the topology of T . We build

the maximal subtrees Tv = (VTv ; ETv ; LTv) of T over the elements of free(�). For

each such tree Tv we compute the sibling w of v in S and specify p, the lca�
of the leaves of LTv in � . Then we subdivide edge (p; parent� (p)) in (p; p0) and

(p0; parent� (p)) and add Tv as the sibling of p in � .

The proof that I0 2 GDII\yes00 if and only if I 2 BTIV\yes00 is straightfor-

ward and omitted.

5 Conclusions

Via a combinatorial abstraction called the Ball and Trap Game, we have

examined the Multiple Gene Duplication problem from both the classical

and parameterized complexity frameworks and provided several FPT algorithms
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for parameterized versions of the problem. It would be interesting to �nd useful

approximation algorithms (or even meaningful heuristics) for parameterized and

restricted versions of this problem. Particularly, we would like a nice, meaningful

way to guess a (possibly quite large) set of candidate topologies for the species

tree S inMultiple Gene Duplication I. One idea is to use the parameterized

complexity framework since FPT algorithms are closely related to the design

of useful heuristics [4]. Thus far, our models have used unweighted gene and

species trees, which means that we have ignored potentially useful distance data

between genes from the taxa. Future models should include this information.

Additionally, the model so far ignores information about the position of genes

along the chromosome (it makes no sense to postulate a multiple gene duplication

for a set of genes when they lie on di�erent chromosomes in the genome of the

organism unless there is evidence that all genes located on this chromosome

where duplicated). It may be possible to encode this type (and other types)

of restrictions into the Ball and Trap Game. Lastly, other interesting and

biologically meaningful parameterizations may lead to good FPT algorithms.
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