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Abstract

Large scale gene duplication is a major force driving
the evolution of genetic functional innovation. Whole
genome duplications are widely believed to have played
an important role in the evolution of the maize, yeast
and vertebrate genomes. The use of evolutionary trees
to analyze the history of gene duplication and estimate
duplication times provides a powerful tool for studying
this process. Many studies in the molecular evolution
literature have used this approach on small data sets,
using analyses performed by hand. The rapid growth of
genetic sequence data will soon allow similar studies on
a genomic scale but such studies will be limited unless
the analysis can be automated. Even existing data sets
admit alternative hypotheses that would be too tedious
to consider without automation.

In this paper, we describe a toolbox called Notung
that facilitates large scale analysis, using both rooted
and unrooted trees. When tested on trees analyzed in
the literature, Notung consistently yielded results that
agree with the assessments in the original publications.
Thus, Notung provides a basic building block for in-
ferring duplication dates from gene trees automatically
and can also be used as an exploratory analysis tool for
evaluating alternative hypotheses.
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1 Introduction

Yeast is a single cell organism with 6000 genes [5], while
mice have an estimated 50,000 - 100,000 genes [24]. How
did this order-of-magnitude increase in gene number,
with its concomitant increase in functional complexity,
arise? Gene duplication followed by mutation leads to
new function and is considered the principal force driv-
ing developmental innovation in vertebrates [18].

The availability of sequence data has catalyzed the
study of the impact of duplication, especially whole
genome duplication, on the evolution of genomic struc-
ture (see [25] for a survey), as well as the specialization
of function through the evolution of gene families. An
important tool in the study of both questions is the con-
struction and analysis of trees based on the sequences
of duplicated genes, so called gene family trees.

Until recently, such studies involved a small number
of gene families, each represented by ten or twenty se-
quences, and the analysis could be carried out by visual
inspection of the trees [2, 8, 9, 11, 22, 23]. However, as
genomic sequence data grows, the number of gene fami-
lies to be considered in a single genome will grow, and so
will the number of trees to be analyzed. For example, in
their analysis of duplications in the yeast genome [28],
Wolfe and Shields identi�ed 446 duplicated genes. This
data set is an order of magnitude larger than the gene
duplication studies currently being carried out by hand.

In this paper, we formalize the analytic methods de-
scribed verbally in the molecular evolution studies and
cast them into a uni�ed framework. Using this frame-
work, we develop computational methods for analyzing
duplication histories and determining duplication dates
in rooted trees, as well as exploring two kinds of alter-
native hypotheses: alternate rootings for unrooted trees
and local rearrangements when the evidence supporting
an edge is weak. These methods were implemented in a
set of tools called Notung that can be used for explor-
ing alternative hypotheses about duplication events and
is a step towards the automated analysis of duplications
in large genomic data sets.
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Figure 1: A rooted Neighbor Joining tree for the RXR family reproduced from [8]. Branch labels [in square brackets]
represent the percentage of bootstrap samples supporting that branch. Values � 50% are not shown.

An Example of Duplication Analysis. A gene family
is \a set of genes descended by duplication and variation
from some ancestral gene" [12], typically exhibiting re-
lated sequence and function. A gene family tree (GFT)
is a phylogeny constructed from the sequences of family
members, including representatives of the same gene in
di�erent species (orthologs) and duplicate genes in the
same species (paralogs). A GFT di�ers from a species
tree in that a species may appear more than once.

We begin by considering a typical analysis of gene
duplication using a gene family tree. Hughes analyzed
the evolution of the RXR family [8], using the rooted
tree reproduced in Figure 1, which was constructed us-
ing the Neighbor Joining heuristic. Con�dence in clus-
tering patterns was assessed using bootstrapping, a sta-
tistical resampling method [1].

Summarizing the history of the RXR family that
can be inferred from the tree, Hughes states \RXR
genes from three insects fell outside of all the vertebrate
RXRA, RXRB and RXRG genes. The phylogeny sug-
gests that RXRB diverged �rst followed by RXRA and
RXRG. : : : Zebra�sh genes were found to cluster with
mammalian RXRB, RXRA and RXRG, but bootstrap
support for these clustering patterns was not strong.
Frog RXRB and RXRG genes cluster with their mam-
malian counterparts and, in each of these cases, there
is strong (99%) bootstrap support. The tree thus sug-
gests that RXRA, RXRB and RXRG diverged before
the divergence of amphibians and amniotes and proba-
bly before the divergence of tetrapods and bony �shes."

Hughes' description, which is typical of the analyses
presented in the examples of this approach considered
in this paper [8, 9, 22, 23], makes the following technical
points:

� Every node in the tree represents either a specia-
tion or a duplication. It is possible to �nd the set
of duplication nodes by comparing the gene fam-
ily tree to a species tree such as the cartoon of the

Tree of Life shown in Figure 2. Hughes identi�ed
two duplication nodes (14 and 15). There are two
more duplication nodes in the RXRB clade (3 and
6) that he does not mention.

� Bounds on the time of duplication can be inferred
for each duplication node from the relative posi-
tions of speciation and duplication nodes in the
tree. According to the topology shown in Fig-
ure 1, duplications 14 and 15 are both bounded
above by the divergence of vertebrates and insects
and bounded below by the divergence of tetrapods
and bony �shes. The upper bound can be inferred
from the clustering of insect genes outside the gene
family clades and the lower bound from the pres-
ence of a �sh gene in each subfamily clade.

� When a duplication hypothesis depends on a node
with weak support in the sequence data, alter-
native hypotheses should be considered. Because
the bootstrap values associated with the zebra�sh
branches in Figure 1 are low, topologies in which
zebra�sh genes do not cluster within the subfam-
ilies should also be considered. For this reason,
the divergence of the amphibian lineage may be a
more reliable lower bound for duplications 14 and
15.

Our Results. Hughes' analysis is typical of many stud-
ies in the biology literature of gene duplication using ad
hoc analysis of gene family trees [2, 8, 9, 11, 22, 23]. Un-
like the RXR example, many of these trees are unrooted
because it is frequently not possible to �nd a sequence
from the gene family in a suitable outgroup species. A
rooted GFT is a hypothesis concerning the evolution-
ary history of a gene family from which the number of
duplications that occurred, a partial ordering on their
occurrence and a time range for each duplication can be
inferred. An unrooted gene family tree represents a set
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Figure 2: A species tree showing major speciation events in the eukaryote lineage. This tree was derived from the
University of Arizona Tree of Life project [13] and the NCBI Taxonomy database [16]

of such hypotheses, one for each possible rooting. Three
problems of reconstructing the duplication history of a
gene family can be stated formally as follows:

Rooted Trees: Given a rooted GFT, G, and
a species tree for the species represented in G,
identify all duplication nodes and determine
lower and upper bounds on the time of each
duplication.

Unrooted Trees: For every possible root-
ing of an unrooted GFT, G, determine the
duplication history of that rooting.

Alternate hypotheses: Given a threshold
for minimum, acceptable bootstrap support
and a rooted GFT, G, determine the set,
W , of all edges with bootstrap support be-
low the threshold. Generate the set of al-
ternate rooted GFT's that can be obtained
using local rearrangements around edges in
W . Reevaluate the duplication history ac-
cordingly.

After reviewing previous work involving the relation-
ship between gene family trees and species trees (Sec-
tion 2), we present algorithms for automatically deter-
mining the history of duplications in rooted GFT's in
Section 3. In Section 4, we present an algorithm for
computing all duplication histories of an unrooted tree
in linear time and discuss criteria for evaluating these
alternate hypotheses. The generation and evaluation
of alternate duplication histories for weak edges is dis-
cussed in Section 5.

We implemented these algorithms and tested them
on gene family trees published in the molecular evolu-
tion literature [8, 22, 23]. As summarized in Section 6,
the hypotheses for rooted trees generated by our pro-
gram are consistent with the assessments presented in
the original papers. For unrooted trees and nodes with
low bootstrap values, our program generates and scores

all alternate hypotheses, providing an exploratory anal-
ysis tool. In addition, an explicit statement of all hy-
potheses helps mitigate any biased expectations of the
data the user might have.

2 Related Work

The problem of disagreement between gene trees and
species trees was �rst raised by Goodman et al. [6] in the
context of inferring a species tree from a gene tree that
may contain paralogies. They introduced the notion
of a map between a gene tree and a species tree and
suggested a cost function for evaluating a species tree
with respect to a gene tree based on edit distance, gene
duplication and gene loss.

These concepts were further developed and formal-
ized in [7, 15, 19, 20, 26]. Formally, given a rooted
gene tree, G, the problem is to �nd the species tree,
T , that optimizes an evaluation criterion. Several op-
timality criteria have been proposed (see [3, 4] for a
comparative survey), all of which attempt to capture
the notion that gene duplication and subsequent loss
are rare events. These criteria involve constructing a
mapping, M : G 7! T , which is used to compute the
cost function. Several authors have pointed out that it
is di�cult to distinguish true gene loss from genes that
have not yet been sequenced and discuss approaches to
distinguishing true losses from apparent losses in the
cost function [6, 15, 20].

When inferring a species tree from a gene tree, the
gene tree is assumed to be correct and the true species
tree is unknown. The problem of �nding an optimal
species tree is NP-hard [29] for the optimality criteria
considered so far. In contrast, we assume that the true
species tree is known and use it to infer the duplication
history of a gene tree. While we share some mathemat-
ical structure with [7, 15, 19, 26], most notably the
mapping M , we consider the problem of dating dupli-
cation events and generating and evaluating alternate



hypotheses. Dating duplication events in rooted and
unrooted trees is a computationally tractible problem,
which is crucial if we hope to apply this to large data
sets.

The methods to infer species trees from gene trees
surveyed here do implicitly generate duplication histo-
ries in rooted trees although the time of duplication is
generally not considered. In addition, most optimality
criteria surveyed here are subject to the constraint that
each species may only be represented once in G and
hence would not be suitable for our application. A no-
table exception is the work of Page and Charleston [21],
who have developed two software packages, Compo-
nent and GeneTree, that, as well as inferring species
trees, will compute and display duplication histories for
rooted gene trees. This provides an interactive, ex-
ploratory analysis tool, but could not be used to auto-
mate the analysis of large data sets. None of the work
surveyed addresses alternate rootings of unrooted trees
or alternate hypotheses due to weak edges. These two
problems are addressed in the current paper.

3 Rooted Trees

In general, only a subset of the descendants of a du-
plication event will appear in a GFT, either because
some paralogous sequences have been lost due to muta-
tion or because they have not yet been sequenced. The
problem of determining a duplication history in the ab-
sence of a complete GFT is exempli�ed in Figure 3,
which shows two alternate phylogenies for a hypotheti-
cal gene family, A, with subfamilies, A1 and A2. Figure
3(a) suggests that gene A arose before the divergence
of �sh and tetrapods and was duplicated after the di-
vergence of �sh and before the separation between birds
and mammals. In contrast, Figure 3(b) implies that the
duplication took place before the divergence of �sh and
tetrapods. Although there is only one �sh sequence, it
clusters with the genes in the A2 family, suggesting ei-
ther that the �sh A1 gene has been lost due mutation
or deletion or that it has not yet been sequenced. We
exploit this intuition to obtain an algorithm to identify
and date duplication nodes in a rooted GFT.

Let S be a set of orthologous and paralogous gene
sequences from a gene family; G, a binary phylogeny in-
ferred from the sequences in S; and T , a binary species
tree containing the species in S. Both the identi�ca-
tion of duplication nodes and the calculation of du-
plication dates requires constructing a mapping, M ,
from every node in G to a target node in T . Let n

be a node in G and let l(n) and r(n) be its left and
right children, respectively. M maps each leaf node
in G to the node in T representing the species from
which the sequence was obtained. ( Leaf nodes in G

represent sequences, whereas leaf nodes in T represent

species.) Each internal node in G is mapped to the
least common ancestor (lca) in T of the target nodes
of its children; that is, M(n) = lca(M(l(n));M(r(n))).
For example, in Figure 3(b), the leaf nodes are mapped
to chicken, human, �sh, chicken, mouse, from top to
bottom. M(x) = amniote, since the lca of mouse
and chicken is amniote in the Tree of Life (Figure 2).
M(z) is also amniote, while y and w both map to
jawed vertebrate.

An algorithm for constructing the mapping, M , and
identifying duplication nodes has been developed in the
context of using multiple gene trees to generate a species
tree. By using fast lca queries [10]1,M can be computed
in linear time. While our goals are di�erent, we share
a key algorithmic component with this work. We refer
the reader to [15] for a complete description and proofs.

Observe that under the mapping, a node n in G is
a speciation node if its children are mapped to inde-
pendent lineages in T . In Figure 3(b), x is a specia-
tion node since mammals and birds are separate lin-
eages. If the children of M(n) share a lineage, then n

is a duplication node. When this occurs, one child's
target in T is an ancestor of the other's and n will
be mapped to the same label as the ancestral child.
For example, node w is a duplication node in Fig-
ure 3(b) because M(y) = jawed vertebrate is an ances-
tor of M(x) = amniote.

Observation 1 Node n is a duplication node if and
only if M(n) =M(l(n)) or M(n) =M(r(n)).

The mapping,M , can also be used to compute lower
and upper bounds on the time of duplication. Let n
be a duplication node in G. Since copies of the du-
plicated gene are observed in descendents of both l(n)
and r(n), the duplication must have been present in
their last common ancestor, yielding the lower bound
L(n) =M(n). By a similar argument, the upper bound
can be shown to be the target of the nearest ancestor,
an, of n that is a speciation node. Since copies of the
duplicated gene are present in only one of the subtrees
rooted at children of an, the duplication must have oc-
curred in a more recent species. If n has an ancestor
that is a speciation node, we set U(n) = M(an). Oth-
erwise, U(n) is the origin of life. For example, in Fig-
ure 3(b), the bounds on the duplication node, w, are
L(w) = jawed vertebrate and U(w) =1, since w is the
root node of G. In Figure 3(a), b is a duplication node
with label amniote. Its parent, a is a speciation node
with label jawed vertebrate. Thus, L(b) = amniote and
U(b) = jawed vertebrate .

1Several early papers on lca computation were too complicated to
implement, even papers which claimed to be \simpli�cations", and
had large hidden constants. Thus, it is a \folk theorem" that any
algorithm which uses lca precomputation is impractical. However, the
state of the art of lca computation has progressed since those early
papers, and there now exist lca algorithms which are very simple and
very practical.
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Observation 2 The duplication associated with a
node, n, in G, occurred after the speciation event U(n)
and before the speciation event L(n) =M(n).

Notice that we can compute U in linear time.

4 Unrooted Trees

The rooted tree in Figure 3 allows us to observe evi-
dence of the duplication through clustering, even when
one of two paralogs is missing. In contrast, the unrooted
tree in Figure 4 shows that without a root, it is impossi-
ble to tell whether the duplication in the A family took
place before or after the evolution of �sh. If the tree
in Figure 4, is rooted on the edge (Fish A, w), then
we hypothesize that the duplication occurred after the
evolution of �sh. If we root the tree on edge (w,y) (or
(w,x)), then the duplication occurred before the evolu-
tion of �sh and Fish A is a member of the A1 (or A2)
subfamily. The hypotheses associated with rooting the
remaining edges seem unlikely since they require three
duplications and substantial gene loss.

Unlike a rooted tree, which encodes a single evo-
lutionary hypothesis, an unrooted tree with jEj edges
represents up to jEj di�erent hypotheses, one for each
possible rooting. Given an unrooted GFT G, we wish to
label each node inG as either a duplication or speciation
node under every possible rooting. A simple quadratic
time algorithm would be to apply the rooted tree algo-
rithm to every possible rooting. However, we can derive

a linear time algorithm as follows. Notice that, with re-
spect to a node v, we can partition all possible rootings
of the tree into 3 groups: the root must be in one of
three directions, according to which of the edges inci-
dent on v is on the path from n to the root. Let e1, e2
and e3 be the edges incident on v. The status of v as ei-
ther a duplication or speciation only depends on which
edge points towards the root. This is because if we �x
which edge is up, the subtree rooted at v is �xed, and so
is the bottom-up lca computation. The point is that we
need now only compute Me1(v), Me2(v) and Me3(v) {
one M(�) value for each possible \up" edge, from which
we can compute the labeling under any desired rooting
in linear time.

To compute the three values we simply do the recur-
sive computation at each node in any order. That is,
suppose we want to compute Me2(v), for some v. This
determines which two nodes are down. Call them u and
w. Then Me2(v) = lca(Mfv;ug(u);Mfv;wg(w)). We re-
cursive compute Mfv;ug(u) and Mfv;wg(w). In order to
keep from recomputing the same value over and over, we
simply store all values in a table as we compute them.
Thus, once we have computed Mfv;ug(u) once recur-
sively, we can look it up in constant time without need
for recomputation in the future. Thus, all 3n values can
be computed in O(n). Note that we can incorporate the
GNNI heuristic discussed in Section 5 during the recur-
sive computation without increasing the complexity of
the algorithm.

Having generated a duplication history for each pos-
sible rooting, we wish to score the alternate hypotheses
so that the results can be presented in the order most
worthy of further scrutiny. A scoring function implic-
itly represents an evolutionary model concerning the
processes of speciation, duplication and gene loss. The
user should be able to select the scoring function (and
hence, the model) best suited to the data set and the
question to be investigated. The use of a scoring func-
tion to rank duplication histories is similar to inferring
a species tree from a gene tree with respect to an opti-
mality criterion, since the plausibility of a duplication
history is evaluated in both cases. However, those op-
timality criteria that can only applied to gene trees in
which each species is only represented once cannot be
used here. In the current work, we present one scoring
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function as a proof of concept.
Let M� be the label in T of the lca of the set of

species in S; that is, M� is the root of T . De�ne the
cost, C(G), of a rooted GFT G, to be the number of
duplication nodes, n, in G such that M(n) = M�. The
cost of a tree without paralogies is always zero.

The original motivation for this scoring function was
the observation that high labels in G (that is, labels
close to M�), tend to \trickle up" the tree. This is
because, given nodes x and y in G, if y is an ancestor
of x, then M(y) � M(x). In particular, if M(x) = M�

then all nodes ancestral to it must also be labeled M�

and all must be duplication nodes. High labels also tend
to propagate up the tree and force duplication nodes.

As an example, consider the unrooted tree in Fig-
ure 4. For this tree, M� = jawed vertebrate. The trees
in Figure 3 are two plausible rootings for this tree, with
costs of zero and one, respectively. Each implies a single
duplication. In contrast, consider the rooting shown in
Figure 5. This rooting has a higher cost. The internal
node r is the lowest node in the tree to be labeled with
M� = jawed vertebrate, forcing M(p) = M(q) = M�

as well. This rooting also yields a duplication history
with two duplications and substantial gene loss, since
it implies that one copy from the �rst duplication was
lost from (or is as yet unsequenced in) all taxa except
human and one copy from the second duplication was
lost in all taxa except chicken. Thus a cost function
based on a mathematical observation, the \trickle up
e�ect", implies an evolutionary model: duplication and
gene loss are rare events. Note that this cost function
can be used to compare alternate rootings of the same
tree but costs of two di�erent trees cannot be compared,
since the minimum cost depends on the structure of the
tree.

5 Rooted Tree Rearrangements

As �rst suggested by Goodman et al. [6], the history of
a gene family should ideally be inferred using an evolu-
tionary model that takes sequence evolution, gene du-
plication and gene loss into account, but it is not obvi-
ous how to combine these di�erent types of information.
Our approach is to start with a tree inferred from se-
quence alone, but to use a model of gene duplication
and loss to consider alternate hypotheses for edges that

are not strongly supported by the sequence data.
A measure of con�dence can be associated with ev-

ery edge in a phylogeny using bootstrapping [1]. Every
edge, e, in a tree bipartitions the set of leaf nodes. If
the bootstrap value of e is low, it suggests that the ev-
idence in the data for that bipartition is weak. It does
not reect on the certainty of the structure of any other
part of the tree. In reconstructing the duplication his-
tory of a rooted GFT, we consider alternate hypotheses
associated with a weak edge, e, by generating Near-
est Neighbor Interchanges (NNI's) around e. This re-
arrangement [27] generates alternate bipartitions for e
while leaving all other bipartitions associated with the
tree unchanged.

An NNI will change the mapping, M(�), resulting
in a new mapping, M 0(�). In some cases, this will also
change the duplication history. Figure 6(a) shows a tree
fragment with two internal nodes both labeled verte-
brate. NNI a0 leaves the labeling unchanged. However,
NNI a00 changes the label of the deeper internal node,
thereby eliminating a duplication. In Figure 6(b), one
rearrangement again leaves the mapping unchanged.
The other rearrangement (b00) changes M(�) and moves
the duplication to the deeper node.

As in the case of unrooted trees, the tree that repre-
sents the best hypothesis for the duplication history of
the gene family can be selected with respect to an op-
timization criterion, such as the function C(�) de�ned
in the previous section. Formally, let W be the set of
edges with bootstrap values below a threshold provided
by the user and let GW be the set of trees that can be
derived from G by NNI operations across edges in W .
Given a GFT G, a set of weak edges W , and a species
tree T , �nd the tree G0 2 GW such that G0 optimizes
some criterion.

As a heuristic, rearrangements associated with in-
dividual edges can be evaluated, and accepted or re-
jected, independently for each edge. Below we describe
a heuristic for deciding whether to accept a rearrange-
ment around a weak edge.

Greedy NNI (GNNI): Let e = (x; y) be a
weak edge in a rooted tree, G, where x is a
descendent of y. Let M(x) be the label of x
and M 0(x) the label of x after an NNI rear-
rangement. (We call x the pivot of the NNI
rearrangement.) Perform an NNI if M 0(x) is
a strict descendent of M(x) in T .

This heuristic is based on the \trickle up" e�ect:
when nodes in G are incorrectly mapped to labels high
in T , false duplication nodes can result. GNNI attempts
to eliminate such false duplications by accepting rear-
rangements that remap the pivot to a lower node. It will
accept such arrangements even if it causes the pivot to
be converted from a speciation node to a duplication



mouse

mousefish

fish
vertebrate

vertebrate

vertebrate

mammal

vertebratevertebrate

mouse

mouse

mouse
fishmouse

fish

mouse

frog
mousemouse fish

frog fish

frog

vertebrate
vertebrate

vertebrate

tetrapod

vertebratevertebrate

(b)

(a)
(a’)

(a")

(b’) (b")

Figure 6: Two tree fragments, each with the three possible Nearest Neighbor Interchanges around the edge shown
in bold. Duplication nodes are shown as grey circles.

node, the logic being that this change may eliminate
false duplications further up the tree.

In Figure 6(a), we present a scenario where the frog
and �sh genes were incorrectly placed with respect to
each other due to weak signal in the sequence data.
Since NNI (a00) lowers the label at the pivot, the greedy
heuristic corrects this error, eliminating a false duplica-
tion node. The example in Figure 6(b) is more ambigu-
ous. The middle tree represents a duplication before
the divergence of �sh followed by a loss in the �sh lin-
eage. Figure 6(b00) represents a duplication after the
�sh-tetrapod split. Which scenario is more likely re-
quires specialized knowledge of the processes of dupli-
cation and loss and probably depends on the speci�c
properties of gene family as well. GNNI will select 6(b00)
because it reduces the label of the pivot from vertebrate
to mammal.

Like the cost function, C(�), GNNI implies a hidden
evolutionary model: by moving duplications towards
the leaves of the tree, it has the e�ect of selecting hy-
potheses with fewer duplications and losses. It also en-
courages more recent duplications. Notice that GNNI
does not take global properties of G and G0 into ac-
count. If several edges are rearranged in succession, the
order in which they are visited may a�ect the tree ulti-
mately obtained. Since GNNI is based on the \trickle
up" e�ect, it should be applied bottom up.

6 Experimental Results

The algorithms described in the previous section have
been implemented in Java program called Notung.
Notung takes a gene family tree, G, a species tree,
T and a bootstrap threshold, � , as input. Input trees
are represented in Newick format [17]. For rooted trees,
Notung generates a gene duplication history as out-
put; that is, a list of duplication nodes, with bounds
on the time of duplication for each one. Notung also
applies the Greedy NNI heuristic to edges with boot-
strap value less than � in bottom up order, generating
an alternate tree, G0, if rearrangements at any of the
edges are accepted. In this case, it also presents the du-
plication history for G0 and the list of node swaps that
converted G to G0. For unrooted trees, Notung con-
siders all possible rootings and computes a duplication
history for each. These histories are ranked according
to the cost function, C(�), presented in Section 4. Note
that Notung, as designed, works equally with binary
and higher degree trees, though the exact implemen-
tation of NNI heuristics in a tree with degree greater
than two is somewhat problematic, both in terms of in-
creased computation time, and in terms of generating
biologically reasonable heuristics.

Our intent is to provide an exploratory analysis tool
that allows the user to review all alternate hypotheses.
Heuristics are used to suggest which alternatives are



most worthy of attention. One goal of the experimen-
tal work presented below is to determine whether our
heuristics rank alternative hypotheses e�ectively. Below
we describeNotung's performance on rooted trees, un-
rooted trees and trees with low bootstrap values. As
test data, we used all \non-pathological" trees from
three recent articles on large scale duplication [8, 22, 23].
We eliminated non-binary trees and trees based on
genes with complicated internal structure such as mo-
saic genes or genes with repeated domains, and trees
that show evidence of horizontal gene transfer. We an-
alyzed the remaining thirteen trees using Notung and
compared the automatically generated results with the
verbal analysis presented in the source paper.

The program compares the input GFT with a species
tree to infer the duplication history. Since there are
many competing hypotheses concerning the topology of
the Tree of Life, our program allows the user to supply
a species tree as input. In the experiments described
below, we tried, to the extent that it was possible to
determine from the text, to use the same Tree of Life
as the authors who originally analyzed the tree. Most
authors used a tree consistent with that shown in Fig-
ure 2. Pebusque et al. [22] used a variant in which
nematodes are included in the Protostome clade. Our
standard species tree is constructed from information in
the University of Arizona Tree of Life project [13] and
the NCBI Taxonomy database [16].

6.1 Rooted Trees

The rooted trees in our data set, representing the
NOTCH2, RXR, C, PBX, TEN and HSP70 gene fam-
ilies, were originally presented by Hughes [8]. The his-
tories constructed by the program were consistent with
Hughes' analysis in all cases. Generally, Notung �nds
a superset of the duplications discussed by Hughes,
since he only mentions those duplications that are rel-
evant to the biological question he is addressing. This
was true of all the trees reported here; the authors of the
original studies did not attempt to describe the entire
duplication history. They simply reported the aspects
they considered relevant to their research. In contrast,
Notung reports the entire history, including variants,
and allows the user to triage the information.

As an example, we show the duplication history gen-
erated by Notung for the RXR tree shown in Figure 1:

Cost = 0

Duplication at 15 LB: jaw UB: pro

Duplication at 14 LB: jaw UB: pro

Duplication at 6 LB: dani reri UB: jaw

Duplication at 3 LB: xeno.laevi UB: tet

Here \jaw" refers to jawed vertebrate, \pro" to

2A rat sequence was removed from the NOTCH tree to obtain a
binary tree.
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fission yeast*grp78

17 [100]
4 [100]

fission yeast*ssa1
fission yeast*ssa2

16 [77]
fruitfly*87c1

15 [53]
6 [100]

5 [53]
petunia*hsp70
corn*hsp70

tomato*hsc-1

14 [99]
AMNIOTE*HSC70

13 [88]
clawed frog*hsp70
AMNIOTE*HSC70

18
3

AMNIOTE*GRP78
fission yeast*grp78

17
6

5
petunia*hsp70
tomato*hsc-1

corn*hsp70

16
4

fission yeast*ssa1
fission yeast*ssa2

15
fruitfly*87c1

14
clawed frog*hsp70

13
AMNIOTE*HSC70
AMNIOTE*HSC70

Figure 7: The HSP [8] tree before and after NNI
rearrangements. The trees have been simpli�ed by
compressing clades containing only mammals and
birds (AMNIOTE*GRP78m, AMNIOTE*HSP70, AM-
NIOTE*HSC70). No rearrangements were accepted in
these clades. Internal nodes are given numerical labels.
In the upper tree, the bootstrap values of edges with
bootstrap support above 50 are labeled with square
brackets.

protostomes and \tet" to tetrapods. Both duplications
occurred after the divergence of protostomes (insects
and molluscs) from deuterostomes (�sh and tetrapods),
which is consistent with Hughes' analysis. It also �nd
the more recent duplications not discussed by Hughes.

6.2 Alternate Hypotheses for Weak Branches

Alternate hypotheses were evaluated for every branch
with a bootstrap value less than 90% in the six trees
described in the previous section. Rearrangement trees
were generated for three of them. In the remaining
trees, no NNI's were accepted under the greedy heuris-
tic. All accepted rearrangements fell into the two cate-
gories described in Section 5: phylogenetic corrections
(e.g., Figure 6(a)) and more controversial alternate hy-
potheses characterized by more recent duplications and
fewer gene losses (e.g., Figure 6(b)).

Both types of rearrangement appear in the HSP70
trees shown in Figure 7. These trees have been simpli-
�ed for the purposes of exposition. Subtrees containing
only birds and mammals have been compressed and are
shown in capital letters. The upper tree shows the orig-
inal topology before rearrangements were considered.
This tree contains �ve branches with bootstrap values
below the threshold. Two of them are adjacent. Ini-
tially, our program inferred a duplication history with



nine duplications (nodes 4, 6, 8, 10, 12, 14, 16, 17 and
18) and a score of three (nodes 16, 17 and 18 were la-
beled M� = eukaryotes). The structure of this tree,
(fungi (insects (plants, vertebrates))), is at odds with
the structure of the Tree of Life, (plants (fungi, ani-
mals)). The structure within the plant clade also dis-
agrees with the Tree of Life since petunias and tomatoes
are more closely related to each other than either is to
corn.

In contrast, the topology after rearrangement (the
lower tree) had three fewer duplication nodes and a
score of one. Duplications at nodes 6, 16 and 17 were
eliminated and 14 was replaced by 13. The removal of
duplications from nodes 6, 16 and 17 can be interpreted
as correcting errors in the original topology. That topol-
ogy implies that an ancestral HSP gene was duplicated
twice early in the eukaryote lineage; subsequently each
of the four resulting copies survived in only one lineage
(fungi, insects, plants and vertebrates, respectively) and
was lost in the other three. In view of the low bootstrap
support, it seems more plausible that the yeast and y
sequences are placed incorrectly. In the rearranged tree,
the branching of plants, yeast and insects is compatible
with the Tree of Life. This second hypothesis is more
compelling than the original hypothesis of two early du-
plications followed by massive gene loss. The exchange
of the corn and tomato genes to remove the duplica-
tion at node 6 also appears to correct an error in the
reconstruction of the tree topology. The rearrangement
of the frog sequence that led to the replacement of the
duplication at node 14 with one at node 13 is more
controversial. It is open to interpretation whether a
duplication in the amniote lineage is more or less likely
than a duplication before the divergence of amphibians
followed by loss of one copy.

Several aspects of the NNI method are illustrated
by this example. First, rearrangement can result in
substantially di�erent hypotheses. The number of du-
plication nodes in the rearranged HSP tree decreased
from nine to six. As this illustrates, although it is pos-
sible to pick out individual rearrangements of low con�-
dence branches by eye, when a tree contains many weak
branches it is helpful to have a tool to integrate all the
alternate hypotheses automatically. Second, when weak
branches are adjacent, the order in which NNI's are ap-
plied matters. If NNI were not applied bottom up, the
rearrangements leading to the elimination of duplica-
tion nodes 16 and 17 would not have been accepted.

6.3 Unrooted Trees

We tested Notung on seven unrooted trees: the TCF,
CRYB and LIM families [23] , the VMAT, ANK and
EGR families [22] and the PSMB family [8]. For each
tree, Notung computed the duplication history for ev-
ery root and ranked them according to the cost func-
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clawed frog*lfb3

rat*vhnf1   mouse*tcf2

pig*vhnf1

human*tcf2
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Figure 8: An unrooted tree for the TCF family [23].
Each edge, e, is labeled with the cost, C(�) of the tree
rooted at e. Edges in bold correspond to rootings sup-
ported by the analysis in [23].

tion, C(�). We compared this ranking with the rootings
favored by the authors.

Although possible rootings are rarely, if ever, men-
tioned explicitly by the author's whose trees we tested,
they frequently imply that only a subset of the possi-
ble rootings lead to plausible hypotheses. Consider, for
example, the TCF family tree, shown in Figure 8 with
rooting scores labeling each edge. In their analysis, Ru-
vinsky and Silver [23] state that \it is di�cult to con-
clude whether the split between the TCF1 and TCF2
subfamilies occurred before or after the separation be-
tween �sh and tetrapods," but \in any case, divergence
between the two sub families has taken place prior to
the amniote-amphibian separation." These conclusions
are consistent with a rooting on the bold edges in Fig-
ure 8 and no others.

For each tree, we partitioned the set of edges into
plausible and implausible rootings from the analysis
presented by the original authors and compared this
partition with the output of Notung. For �ve out of
the seven trees, all plausible rootings ranked above all
implausible rootings. For the remaining two trees, the
costs of all implausible rootings were greater than or
equal to the costs of all plausible rootings. For one of
these, the PSMB tree, the set of highest ranked edges is
a superset of the rootings deemed plausible by Hughes.



One of these edges has weak bootstrap support. When
the NNI heuristic was applied to this edge, a rearrange-
ment was accepted according to the greedy criterion.
When the rearranged tree was rescored, the set of lowest
cost edges exactly agreed with Hughes' analysis. In the
other case, the CRYB tree, there were eight top-ranked
rootings of equal cost, while the authors' analysis im-
plied that only one rooting is possible. The duplication
histories (i.e., the set of duplication nodes with time
ranges) were identical for the eight edges. Only the or-
dering of the duplication nodes di�ered. This suggests
either that the authors did not consider all alternate sce-
narios, possibly missing something of interest, or that
they had additional information about the gene family,
such as the biochemical properties or functional roles of
the proteins, that allowed them to rule out other root-
ings.

Within the set of plausible rootings, the ordering of
scores does not always agree with the biologists' assess-
ments. In contrast to the analysis of Ruvinsky and Sil-
ver, who ranked the three best edges equally, the edge
adjacent to the �sh sequence is ranked higher than the
other two because the scoring function favors more re-
cent duplications. In fact, this decision should reect
an evolutionary model explicitly chosen by the user.

6.4 Discussion

In this study, we analyzed every non-pathological tree
in three papers [8, 22, 23]. The duplication histories
generated and the rankings of alternate rootings were
consistent with the analyses of the authors of the orig-
inal papers for all trees considered. This con�rms that
Notung is a useful exploratory data analysis tool. The
cost function used to rank alternate rootings correctly
identi�ed unlikely hypotheses, providing the user with
a way to control the quantity of output to be reviewed.
For edges with low bootstrap values, the GNNI heuristic
was e�ective in correcting errors in the duplication his-
tory stemming from errors in the original tree topology.
It also identi�ed more controversial alternatives. While
these are of interest and should be presented to the
user for consideration, it would be useful to be able to
separate likely and speculative rearrangements. Since
these are very simple heuristics, we are con�dent that
with further experimentation and better models of gene
duplication and loss, improved evaluation methods for
duplication histories and rearrangements can be devel-
oped.

Currently, there is a great deal of interest in using
gene duplications to study the role of whole genome du-
plications in genome evolution [25, 28]. This will require
dating all paralogs in a genome. In its current form,
Notung can be used to estimate duplication dates of
rooted GFT's automatically. With more reliable evalu-
ation methods, Notung can also be adapted to the au-

tomatic analysis of unrooted trees and rearrangements
of trees with weak edges.

Acknowledgements

The authors wish to thank Jim Brown, Ilya Ruvin-
sky, Lee Silver and Mona Singh for helpful discussions.
Species trees in Newick format were downloaded from
the Ribosomal Database Project [14]. Most �gures in
this paper were drawn with Treetool, an interactive
tree-plotting program written by Mike Maciukenas, for
the Ribosomal Database Project [14].

References

[1] Bradley Efron and Gail Gong. A leisurely look at
the bootstrap, jackknife, and cross-validation. The
American Statistician, 37(1):36{48, 1983.

[2] T. Endo, T. Imanishi, T. Gojobori, and H. Inoko.
Evolutionary signi�cance of intra-genome duplica-
tions on human chromosomes. Gene, 205(1-2):19{
27, 1997.

[3] O. Eulenstein, B. Mirkin, and M. Vingron. Com-
parison of a annotating duplication, tree mapping,
and copying as methods to compare gene trees with
species trees. Mathematical Hierarchies and Biol-
ogy, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 37:71{93, 1996.

[4] O. Eulenstein, B. Mirkin, and M. Vingron.
Duplication-based measures of di�erence between
gene and species trees. Journal of Computational
Biology, 5:135{148, 1998.

[5] A. Go�eau, B. G. Barrell, H. Bussey, R. W. Davis,
B. Dujon, H. Feldmann, F. Galibert, J. D. Ho-
heisel, C. Jacq, M. Johnston, E. J. Louis, H. W.
Mewes, Y. Murakami, P. Philippsen, H. Tettelin,
and S. G. Oliver. Life with 6000 genes. Science,
274(5287):563{7, 1996.

[6] M. Goodman, J. Czelusniak, G.W. Moore, A.E.
Romero-Herrera, and G Matsuda. Fitting the gene
lineage into its species lineage, a parsimony strat-
egy illustrated by cladograms constructed from
globin sequences. Syst Zool, 1979.

[7] R. Guigo, I. Muchnik, and T.F. Smith. Reconstruc-
tion of ancient phylogenies. Molecular Phylogenet-
ics and Evolution, 6:189{213, 1996.

[8] A. L. Hughes. Phylogenetic tests of the hypoth-
esis of block duplication of homologous genes on
human chromosomes 6, 9, and 1. MBE, 15(7):854{
70, 1998.



[9] A. L. Hughes. Phylogenies of developmentally im-
portant proteins do not support the hypothesis of
two rounds of genome duplication early in verte-
brate history. JME, 48(5):565{76, 1999.

[10] Joseph J�aJ�a. Introduction to Parallel Algorithms.
Addison-Wesley, Reading, MA, 1991.

[11] M. Kasahara. New insights into the genomic orga-
nization and origin of the major histocompatibility
complex: role of chromosomal (genome) duplica-
tion in the emergence of the adaptive immune sys-
tem. Hereditas, 127(1-2):59{65, 1997.

[12] R. C. King and W. D. Stans�eld. A Dictionary of
Genetics. Oxford University Press, 1990.

[13] D. R. Maddison and W. P. Maddison. Tree of life.
http://phylogeny.arizona.edu/tree/phylogeny.html.

[14] B. L. Maidak, J. R. Cole, C. T. Parker, G. M.
Garrity, N. Larsen, B. Li, T. G. Lilburn, M. J. Mc-
Caughey, G. J. Olsen, R Overbeek, S Pramanik,
T. M. Schmidt, J. M. Tiedje, and C. R. Woese.
A new version of the rdp (Ribosomal Database
Project). Nucleic Acids Res, 29(1):171{3, 1999.

[15] B. Mirkin, I. Muchnik, and T.F. Smith. A bio-
logically consistent model for comparing molecu-
lar phylogenies. Journal of Computational Biology,
2:493{507, 1995.

[16] The NCBI Taxonomy database. http://www.ncbi.
nlm.nih.gov/Taxonomy/tax.html.

[17] The Newick tree format. http://evolution.genetics.
washington.edu/phylip/newicktree.html.

[18] S. Ohno. Evolution by Gene Duplication. Springer-
Verlag, 1970.

[19] R.D.M. Page. Maps between trees and cladistic
analysis of historical associations among genes, or-
ganisms and areas. Syst Zool, 1994.

[20] R.D.M. Page and M.A. Charleston. Reconciled
trees and incongruent gene and species trees. Math-
ematical Heirarchies and Biology, DIMACS Series
in Discrete Mathematics and Theoretical Computer
Science, 37:57{70, 1996.

[21] R.D.M. Page and M.A. Charleston. From gene to
organismal phylogeny: Reconciled trees and the
gene tree/species tree problem. Molecular Phylo-
genetics and Evolution, 7:231{240, 1997.

[22] M.-J. Pebusque, F. Coulier, D. Birnbaum, and
P. Pontarotti. Ancient large-scale genome duplica-
tions: phylogenetic and linkage analyses shed light
on chordate genome evolution. MBE, 15(9):1145{
59, 1998.

[23] I. Ruvinsky and L. M. Silver. Newly indenti�ed
paralogous groups on mouse chromosomes 5 and
11 reveal the age of a t-box cluster duplication.
Genomics, 40:262{266, 1997.

[24] L. M. Silver. Mouse Genetics. Oxford University
Press, 1995.

[25] L. Skrabanek and K.H. Wolfe. Eukaryote genome
duplication - where's the evidence? Curr Opin
Genet Dev, 8(6):559{565, 1998.

[26] U. Stege. Gene trees and species trees: The gene-
duplication problem is �xed-parameter tractable.
In Proceedings of the 6th International Workshop
on Algorithms and Data Structures (WADS'99),
1999.

[27] D. L. Swo�ord, G. J. Olsen, P. J. Waddell, and
D. M. Hillis. Phylogeny inference. In D. M.
Hillis, C. Moritz, and B. K. Mable, editors,Molecu-
lar Systematics, pages 407{514. Sinauer Associates
Inc., Sunderland, MA., 1996.

[28] K. H. Wolfe and D. C. Shields. Molecular evi-
dence for an ancient duplication of the entire yeast
genome. Nature, 387:708{713, 1997.

[29] L. Zhang. On a Mirkin-Muchnik-Smith conjecture
for comparing molecular phylogenies. Journal of
Computational Biology, 4:177{188, 1997.


