Y ou download this file from web-site: http://www.pcports.ru

Parallel Port
Complete

Programming, Interfacing,
& Using the PC's
Parallel Printer
Port

B Includes EPP ECP
- IEEE-1284

I Sourcecodein
Visual Basic

I Usertips

INCLUDES
DISK

Jan Axelson

Table of Contents

Introduction ix

1 Essentials 1

Defining the Port 1
Port Types
System Resources 4
Addressing
Interrupts
DMA Channels
Finding Existing Ports
Configuring 6
Port Options
Drivers
Adding a Port
Port Hardware 9
Connectors
The Circuits Inside
Cables
Multiple Uses for One Port 11
Security Keys
Alternativesto the Parallel Port 13
Serial Interfaces

Parallel Port Complete

Other Parallel Interfaces
Custom I/O Cards
PC Cards

2 Accessing Ports 17
The Signals 17
Centronics Roots
Naming Conventions
The Data Register
The Status Register
The Control Register
Bidirectional Ports
Addressing 24
Finding Ports
Direct Port 1/0O 26
Programming in Basic
Other Programming Languages
Other Ways to Access Ports 31
LPT Access in Visual Basic
Windows API Calls
DOS and BIOS Interrupts

3 Programming Issues 39
Options for Device Drivers 39
Simple Application Routines
DOS Drivers
Windows Drivers
Custom Controls
Speed 45

Hardware Limits
Software Limits

4 Programming Tools 53
Routines for Port Access 53
Data Port Access
Status Port Access
Control Port Access
Bit Operations
A Form Template 60

Saving Initialization Data
Finding, Selecting, and Testing Ports

5 Experiments 85
Viewing and Controlling the Bits 85
Circuits for Testing

Output Types
Component Substitutions

Parallel Port Complete

Cables & Connectorsfor Experimenting 99
Making an Older Port Bidirectional 100

Cautions
The Circuits
The Changes

Interfacing 105
Port Variations 105

Drivers and Receivers
Level 1 Devices
Level 2 devices

Interfacing Guidelines 110

General Design
Port Design

Cable Choices 112

Connectors

Cable Types

Ground Returns

36-wire Cables

Reducing Interference

Line Terminations

Transmitting over Long Distances

Port-powered Circuits 124

When to Use Port Power
Abilities and Limits
Examples

Output Applications 129

Output Expansion 129
Switching Power to a Load 132

Choosing a Switch
Logic Outputs

Bipolar Transistors
MOSFETs

High-side Switches
Solid-state Relays
Electromagnetic Relays
Controlling the Bits
X-10 Switches

Signal Switches 143

Simple CMOS Switch
Controlling a Switch Matrix

Displays 148

Input Applications 149
Reading a Byte 149

Parallel Port Complete

Latching the Status Inputs
Latched Input Using Status and Control Bits
5 Bytes of Input
Using the Data Port for Input
Reading Analog Signals 154
Sensor Basics
Simple On/Off Measurements
Level Detecting
Reading an Analog-to-digital Converter
Sensor Interfaces
Signal Conditioning
Minimizing Noise
Using a Sample and Hold

9 Synchronous Serial Links 165

About Serial Interfaces 165
A Digital Thermometer 166
Using the DS 1620
The Interface
An Application
Other Serial Chips

10 Real-time Control 183

Periodic Triggers 183
Simple Timer Control
Time-of-day Triggers
Loop Timers
Triggering on External Signals 189
Polling
Hardware Interrupts
Multiple Interrupt Sources
Port Variations

11 Modes for Data Transfer 203

The | EEE 1284 Standard 203
Definitions 15 F
Communication modes

Detecting Port Types 207
Using the New Modes
Port Detecting in Software
Disabling the Advanced Modes

Negotiating a M ode 210
Protocol

Controller Chips 212
Host Chips
Peripheral Chips
Peripheral Daisy Chains

Vi Parallel Port Complete Parallel

12

13

14

15

Programming Options 220

Compatibility and Nibble Modes 223

Compatibility M ode 223
Handshaking
Variations
Nibble M ode 228
Handshaking
Making a Byte from Two Nibbles
A Compatibility & Nibble-mode Application 232
About the 82C55 PPI
Compatibility and Nibble-mode Interface

Byte Mode 249

Handshaking 249
Applications 250
Compatibility & Byte Mode
Compatibility, Nibble & Byte Mode with Negotiating

Enhanced Parallel Port: EPP 267

Insidethe EPP 267
Two Strobes
The Registers
Handshaking 269
Four Types of Transfers
Switching Directions
Timing Considerations
EPP Variations 275
Use of nWait
Clearing Timeouts
Direction Control
An EPP Application 277
The Circuit
Programming

Extended Capabilities Port: ECP 285

ECP Basics 286
The FIFO
Registers
Extended Control Register (ECR)
Internal Modes
ECP Transfers 289
Forward transfers
Reverse Transfers
Timing Considerations
Interrupt Use

Parallel Port Complete

16

O w >

viii

Using the FIFO
Other ECP Modes 296

Fast Centronics

Test Mode

Configuration Mode
An ECP Application 298

PC-to-PC Communications 305

A PC-to-PC Cable 305

Dos and Windows Tools 306
MS-DOS's Interlnk
Direct Cable Connection

A PC-to-PC Application 311

Appendices
Resources 323

Microcontroller Circuit 327
Number Systems 329

Index 333

Parallel Port Complete

C o T © © @ 5 7

ti

Parallel

Introduction

'ntroduction

From its origin as a simple printer interface, the personal computer's parallel port
has evolved into a place to plug in just about anything you might want to hook to
acomputer. The parallel port is popular because it's versatile-you can use it for
output, input, or bidirectional links-and because it's available-every PC has
one.

Printers are still the most common devices connected to the port, but other popular
optionsinclude external tape and disk drives and scanners. Laptop computers may
use a parallel-port-based network interface or joystick. For special applications,
there are dozens of parallel-port devices for use in data collection, testing, and
control systems. And the parallel port isthe interface of choice for many
one-of-a-kind and small-scale projects that require communications between a
computer and an external device.

In spite of its popularity, the parallel port has always been a bit of a challenge to
work with. Over the years, several variations on the original port's design have
emerged, yet there has been no single source of documentation that describes the
port in its many variations.

| wrote this book to serve as a practical, hands-on guide to all aspects of the paral-
lel port. It covers both hardware and software, including how to design external

Parallel Port Complete iX

Introduction

circuits that connect to the port, as well as how to write programs to control and Visu
monitor the port, including both the original and improved port designs. Micrc
PCs,
Who should read this book? program
enable
The book is designed to serve readers with a variety of backgrounds and interests: the ft
Programmers will find code examples that show how to use the port in all of its includ
modes. If you program in Visual Basic, you can use the routines directly in your register
programs. Becau
For hardware designers, there are details about the port circuits and how to inter- writes
face them to the world outside the PC. | cover the port's original design and the add th
many variations and improvements that have evolved. Examples show how to and 3:
design circuits for reliable data transfers.
System troubleshooters can use the programming techniques and examples for Aoplcatons
finding and testing ports on a system. Be;idgs
Experimenters will find dozens of circuit and code examples, along with expla- e qrcwts
nations and tips for modifying the examples for a particular application. Icunds.
Teachers and students have found the parallel port to be a handy tool for experi- p?)z clan
ments with electronics and computer control. Many of the examples in this book how ti
are suitable as school projects. serial
And last but not least, users, or anyone who uses a computer with printers or other trigger
devices that connect to the parallel port, will find useful information, including calend
advice on configuring ports, how to add a port, and information on cables, port as the
extenders, and switch boxes.
Cable
What's Inside The prop
one th
This book focuses on several areas related to the parallel port: cable,
Using the New Modes PC-to-P
Some of the most frequently asked parallel-port questions relate to using, pro- Althoug
gramming, and interfacing the port in the new, advanced modes, including the andal
enhanced parallel port (EPP), the extended capabilities port (ECP), and the ring in
PS/2-type, or simple bidirectional, port. This book covers each of these. Examples link us
show how to enable a mode, how to use the mode to transfer data, and how to use 0NN prograr
software negotiation to enable a PC and peripheral to select the best mode avail-
able.

Parallel Port Complete Parallel Port

Introduction

About the Program Code

Xii

Every programmer has afavorite language. The choices include various imple-
mentations of Basic, CIC++, and Pascal/Delphi, and assembly language.

For the program examplesin this book, | wanted to use a popular language so as
many readers as possible could use the examples directly, and this prompted my
decision to use Microsoft's Visual Basic for Windows. A big reason for Visual
Basic's popularity is that the programming environment makes it extremely easy
to add controls and displays that enable users to control a program and view the
results.

However, this book isn't atutorial on Visual Basic. It assumes you have abasic
understanding of the language and how to create and debug a Visual-Basic pro-
gram.

| developed the examples originally using Visual Basic Version 3, then ported
them to Version 4. As much as possible, the programs are designed to be compat-
ible with both versions, including both 16- and 32-bit Version-4 programs. The
companion disk includes two versions of each program, one for Version 3 and one
for 16- and 32-bit Version 4 programs.

Onereason | decided to maintain compatibility with Version 3 isthat the standard
edition of Version 4 creates 32-bit programs only. Because Windows 3.1 can't run
these programs, many users haven't upgraded to Version 4. Also, many paral-
lel-port programs run on older systems that are put to use as dedicated controllers
or dataloggers. Running the latest version of Windows isn't practical or necessary
on these computers.

Of course, in the software world, nothing stays the same for long. Hopefully, the
program code will remain ‘compatible in most respects with later versions of
Visual Basic.
Compatibility with Version 3 does involve some tradeoffs. For example, Version
3 doesn't support the Byte variable type, so my examples use Integer variables
even where Byte variables would be appropriate (as in reading and writing to a
byte-wide port). In afew areas, such as some Windows API calls, I've provided
two versions, one for use with 16-bit programs, Version 3 or 4, and the other for
use with Version 4 programs, 16- or 32-hit.
In the program listings printed in this book, | use Visual Basic 4's line-continua-
tion character () to extend program lines that don't fit on one line on the page. In
other words, this:

PortType =

L eft$(ReturnBuffer, NumberOf Characters)

isthe same as this:

Parallel Port Complete

Introduction

PortType = Left$(ReturnBuffer, NumberOfCharacters)
To remain compatible with Version 3, the code on the disk doesn't use this fea-
ture.

Most of the program examples are based on a general-purpose Visual-Basic form
and routines introduced early in the book. The listings for the examples in each
chapter include only the application-specific code added to the listings presented
earlier. The routines within alisting are arranged alphabetically, in the same order
that Visual Basic displays and prints them.

Of course, the concepts behind the programs can be programmed with any lan-
guage and for any operating system. In spite of Windows' popularity, MS-DOS
programs still have uses; especially for the type of control and monitoring pro-
grams that often use the parallel port. Throughout, I've tried to document the code
completely enough so that you can trandate it easily into whatever programming
language and operating system you prefer.

Several of the examplesinclude a parallel-port interface to a microcontroller cir-
cuit. The companion disk has the listings for the microcontroller programs.

About the Example Circuits

This book includes schematic diagrams of circuits that you can use or adapt in
parallel-port projects. In designing the examples, | looked for circuits that are as
easy as possible to put together and program. All use inexpensive, off-the-shelf
components that are available from many sources.

The circuit diagrams are complete, with these exceptions:

Power-supply and ground pins are omitted when they are in standard locations
on the package (bottom left for ground, top right for power, assuming pin 1is
top left).

Power-supply decoupling capacitors are omitted. (This book explains when and
how to add these to your circuits.)

Some chips may have additional, unused gates or other elements that aren't
shown.

The manufacturers data sheets have additional information on the components.

Parallel Port Complete Xii i

Introduction

Conventions

These are the typographic conventions used in this book:

Item Convention Example

Signal name italics Busy, DO

Active-low signal leading n nAck nStrobe

Signal complement overbar CO, S7 (equivalent to
-CO, -S7 or ICO, /S7)

Program code monospace font DoEvents, End
Sub

File name italics win.ini, inpout16.d11

Hexadecimal number trailing h 3BCh (same as&h3BCin
Visua Basic)

Corrections and Updates

In researching and putting together this book, I've done my best to ensure that the
information is complete and correct. | built and tested every circuit and tested all

of the program code, most of it multiple times. But | know from experience that
on the way from test to publication, errors and omissions do occur.

Any corrections or updates to this book will be available at L akeview Research's
World Wide Web site on the Internet at http://Mww Ivr.com. Thisis also the place
to come for links to other parallel-port information on the Web, including data
sheets for parallel-port controllers and software tools for parallel-port program-

ming.

Thanks!

AV

Finally, | want to say thanks to everyone who helped make this book possible. |
credit the readers of my articlesin The Microcomputer Journal for first turning

me on to this topic with their questions, comments, and article requests. The series
| wrote for the magazine in 1994 was the beginning of this book.

Others deserving thanks are product vendors, who answered many questions, and
the Usenet participants who asked some thought-provoking questions that often
sent me off exploring areas | wouldn't have thought of otherwise.

Special thanksto SoftCircuits (PO Box 16262, Irvine, CA 92713, Compuserve
72134,263, WWW: http://www.softcircuits.com) for the use of Vbasm.

Parallel Port Complete

http://Www.Ivr.com.This
http://Www.Ivr.com.This
http://Www.Ivr.com.This

Essentials

Essentials

A first step in exploring the parallel port islearning how to get the most from a
port with your everyday applications and peripherals. Things to know include
how to find, configure, and install a port, how and when to use the new bidirec-
tional, EPP, and ECP modes, and how to handle a system with multiple paral-

lel-port peripherals. This chapter presents essential information and tips relating
to these topics.

Defining the Port

What isthe "parallel port"? In the computer world, a port is a set of signal lines

that the microprocessor, or CPU, uses to exchange data with other components.

Typical uses for ports are communicating with printers, modems, keyboards, and |
displays, or just about any component or device except system memory. Most
computer ports are digital, where each signal, or bit, isO or 1. A parallel port

transfers multiple bits at once, while a serial port transfers a bit at atime (though it

may transfer in both directions at once).

This book is about a specific type of parallel port: the one found on just about
every PC, or IBM-compatible personal computer. Along with the RS-232 serial
port, the parallel port is aworkhorse of PC communications. On newer PCs, you

Parallel Port Complete

Chapter 1

may find other ports such as SCSI, USB, and IrDA, but the parallel port remains
popular because it's capable, flexible, and every PC has one.

Theterm PC-compatible, or PC for short, refersto the IBM PC and any of the
many, many personal computers derived from it. From another angle, aPC isany
computer that can run Microsoft's MS-DOS operating system and whose expan-
sion bus is compatible with the ISA busin the original IBM PC. The category
includesthe PC, XT, AT, PS/2, and most computers with 80x86, Pentium, and
compatible CPUSs. It does not include the Macintosh, Amiga, or IBM mainframes,
though these and other computer types may have ports that are similar to the par-

alel port on the PC.

The original PC's parallel port had eight outputs, five inputs, and four bidirec-
tional lines. These are enough for communicating with many types of peripherals.
On many newer PCs, the eight outputs can also serve as inputs, for faster commu-
nications with scanners, drives, and other devices that send data to the PC.

The parallel port was designed as a printer port, and many of the original names
for the port's signals (PaperEnd, AutoLineFeed) reflect that use. But these days,
you can find all kinds of things besides printers connected to the port. The term
peripheral, or peripheral device is acatch-all category that includes printers,
scanners, modems, and other devices that connect to a PC.

Port Types

Asthe design of the PC evolved, several manufacturers introduced improved ver-
sions of the parallel port. The new port types are compatible with the original
design, but add new abilities, mainly for increased speed.

Speed isimportant because as computers and peripherals have gotten faster, the
jobs they do have become more complicated, and the amount of information they
need to exchange has increased. The original parallel port was plenty fast enough
for sending bytes representing ASCI I text characters to a dot-matrix or
daisy-wheel printer. But modern printers need to receive much more information
to print a page with multiple fonts and detailed graphics, oftenin color. The faster
the computer can transmit the information, the faster the printer can begin pro-
cessing and printing the result.

A fast interface also makesit feasible to use portable, external versions of periph-
erals that you would otherwise have to install inside the computer. A parallel-port
tape or disk drive is easy to move from system to system, and for occasional use,
such as making back-ups, you can use one unit for several systems. Because a

backup may involve copying hundreds of Megabytes, the interface has to be fast
to be worthwhile.

2 Parallel Port Complete

Essentials

This book covers the new port typesin detail, but for now, hereis a summary of
the available types:

Original (SPP)

The parallél port in the original IBM PC, and any port that emulates the original
port's design, is sometimes called the SPP, for standard parallel port, even though
the original port had no written standard beyond the schematic diagrams and doc-
umentation for the IBM PC. Other names used are AT-type or 1SA-compatible.

The port in the original PC was based on an existing Centronics printer interface.
However, the PC introduced a few differences, which other systems have contin-
ued.

SPPs can transfer eight bits at once to a peripheral, using a protocol similar to that
used by the original Centronicsinterface. The SPP doesn't have a byte-wide input
port, but for PC-to-peripheral transfers, SPPs can use a Nibble mode that transfers
each byte 4 bits at atime. Nibble mode is slow, but has become popular as a way
to use the parallel port for input.

PS/2-type (Simple Bidirectional)

An early improvement to the parallel port was the bidirectional data port intro-

duced on IBM's model PS/2. The bidirectional port enables a peripheral to trans-

fer eight bits at once to a PC. The term PS/2-type has come to refer to any parallel

port that has a bidirectional data port but doesn't support the EPP or ECP modes

described below. Byte mode is an 8-bit data-transfer protocol that PS/2-type ports
can use to transfer data from the peripheral to the PC.

EPP

The EPP (enhanced parallel port) was originally developed by chip maker Intel,

PC manufacturer Zenith, and Xircom, a maker of parallel-port networking prod-

ucts. As on the PS/2-type port, the data lines are bidirectional. An EPP can read or
write a byte of datain one cycle of the SA expansion bus, or about 1 microsec-
ond, including handshaking, compared to four cycles for an SPP or PS/2-type
port. An EPP can switch directions quickly, so it's very efficient when used with
disk and tape drives and other devices that transfer data in both directions. An
EPP can also emulate an SPP, and some EPPs can emulate a PS/2-type port.

ECP

The ECP (extended capabilities port) was first proposed by Hewlett Packard and
Microsoft. Like the EPP, the ECP is bidirectional and can transfer data at | SA-bus
speeds. ECPs have buffers and support for DMA (direct memory access) transfers

Parallel Port Complete 3

Chapter 1

and data compression. ECP transfers are useful for printers, scanners, and other
peripherals that transfer large blocks of data. An ECP can also emulate an SPP or
PS/2-type port, and many ECPs can emulate an EPP as well.

Multi-mode Ports

Many newer ports are multi-mode ports that can emulate some or all of the above
types. They often include configuration options that can make all of the port types
available, or allow certain modes while locking out the others.

System Resources

The parallel port uses a variety of the computer's resources. Every port uses a
range of addresses, though the number and location of addresses varies. Many
ports have an assigned IRQ (interrupt request) level, and ECPs may have an
assigned DMA channel. The resources assigned to a port can't conflict with those
used by other system components, including other parallel ports

Addressing

The standard parallel port uses three contiguous addresses, usually in one of these
ranges:

3BCh, 3BDh, 3BEh

378h, 379h, 37Ah

278h, 279h, 27Ah
The first address in the range is the port's base address, also called the Data regis-
ter or just the port address. The second address is the port's Status register, and the
third is the Control register. (See Appendix C for a review of hexadecimal num-
bers.)

EPPs and ECPs reserve additional addresses for each port. An EPP adds five reg-
isters at base address + 3 through base address + 7, and an ECP adds three regis-
ters at base address + 400h through base address + 402h. For a base address of

378h, the EPP registers are at 37Bh through 37Fh, and the ECP registers are at
778h through 77Fh.

On early PCs, the parallel port had a base address of 3BCh. On newer systems, the
parallel port is most often at 378h. But all three addresses are reserved for parallel
ports, and if the port's hardware allows it, you can configure a port at any of the
addresses. However, you normally can't have an EPP at base address 3BCh,
because the added EPP registers at this address may be used by the video display.

4 Parallel Port Complete

Essentials

IBM's Type 3 PS/2 port also had three additional registers, at base address +3
through base address + 5, and allowed a base address of 1278h or 1378h.

Most often, DOS and Windows refer to the first port in numerical order as LPTI,
the second, LPT2, and the third, LPT3. So on bootup, LPT1 is most often at 378h,
but it may be at any of the three addresses. LPT2, if it exists, may be at 378h or
278h, and LPT3 can only be at 278h. Various configuration techniques can
change these assignments, however, so not all systemswill follow this conven-
tion. LPT stands for line printer, reflecting the port's original intended use.

If your port's hardware allows it, you can add a port at any unused port address in
the system. Not all software will recognize these non-standard ports as LPT ports,
but you can access them with software that writes directly to the port registers.

Interrupts

Most parallel ports are capable of detecting interrupt signals from a peripheral.
The peripheral may use an interrupt to announce that it's ready to receive a byte,
or that it has a byte to send. To use interrupts, a parallel port must have an
assigned interrupt-request level (IRQ).

Conventionally, LPT1 uses IRQ7 and LPT2 uses IRQ5. But IRQ5 is used by
many sound cards, and because free IRQ levels can be scarce on a system, even
IRQ7 may be reserved by another device. Some ports allow choosing other IRQ
levels besides these two.

Many printer drivers and many other applications and drivers that access the par-
allel port don't require parallel-port interrupts. If you select no IRQ level for a
port, the port will still work in most cases, though sometimes not as efficiently,
and you can use the IRQ level for something else.

DMA Channels

ECPs can use direct memory access (DMA) for datatransfers at the parallel port.
During the DMA transfers, the CPU isfree to do other things, so DMA transfers
can result in faster performance overall. In order to use DMA, the port must have
an assigned DMA channel, in therange 0 to 3.

Finding Existing Ports
DOS and Windows include utilities for finding existing ports and examining other

system resources. In Windows 95, click on Control Panel, System, Devices, Ports,
and click on a port to see its assigned address and (optional) IRQ level and DMA

Parallel Port Complete 5

Essentials

For this reason, every port shoul d come with asimple way to configure the port. If
the port is on the motherboard, ook in the CMOS setup screens that you can
access on bootup. Other ports may use jumpers to enable the modes, or have con-
figuration software on disk.

The provided setup routines don't always offer all of the available options or
explain the meaning of each option clearly. For example, one CMOS setup I've
seen alows only the choice of AT or PS/2-type port. The PS/2 option actually con-
figures the port as an ECP, with the ECP's PS/2 mode selected, but there is no

documentation explaining this. The only way to find out what mode is actually

selected isto read the chip's configuration registers. And although the port also 1
supports EPP, the CMOS. setup includes no way to enable it, so again, accessing 4
the configuration registersis the only option.

If your port is EPP- or ECP-capable but the setup utility doesn't offer these as
choices, alast resort isto identify the controller chip, obtain and study its data
sheet, and write your own program to configure the port.

The exact terminology and the number of available options can vary, but these are
typical configuration options for a multi-mode port:

SPP. Emulates the original port. Also called AT-type or ISA-compatible.

PS/2, or simple bidirectional. Like an SPP, except that the data port is bidirec-
tional.

EPP. Can do EPP transfers. Also emulates an SPP. Some EPPs can emulate a
PS/2-type port.

ECP. Can do ECP transfers. The ECP's internal modes enable the port to emulate
an SPP or PS/2-type port. An additional internal mode, Fast Centronics, or Paral-
lel-Port FIFO, usesthe ECP's buffer for faster data transfers with many old-style
(SPP) peripherals.

ECP + EPP. An ECP that supports the ECP's internal mode 100, which emulates
an EPP. The most flexible port type, because it can emulate all of the others.

Drivers

After setting up the port's hardware, you may need to configure your operating
system and applications to use the new port.

For DOS and Windows 3.1 systems, on bootup the operating system looks for
ports at the three conventional addresses and assigns each an LPT number.

In Windows 3.1, to assign a printer to an LPT port, click on Control Panel, then
Printers. If the printer model isn't displayed, click Add and follow the prompts.

Parallel Port Complete 7

Chapter 1

ECP Printer Port (LPT1) Properties

General | Driver Resources

ECP Printer Port (LPT1)

P.eaource settings

wg_@‘ing
0378-037A

Interrupt Request 03

Direct Memory Access 01

Resource

Setting basedon |B

Change Setting. | I- Use autorrnatic setting=_

Conflicting device list:

|nterrupt Request 03 used by
Communications Port (CCiM'2)

Direct Memory Access 01 used by:
Media Vision Thunder Board

Cancel

Figure 1-1: In Windows 95, you can select a port configuration in the Device
Manager's Resources Window. A message warns if Windows detects any system
conflicts with the selected configuration.

Select the desired printer model, then click Connect to view the available ports.
Select aport and click OK, or Cancel to make no changes.

In Windows 95, the Control Panel lists available ports under System Properties,
Device Manager, Ports. There's also abrief description of the port. Printer Port
means that Windows treats the port as an ordinary SPP, while ECP Printer Port
means that Windows will use the abilities of an ECP if possible. To change the
driver, select the port, then Properties, Driver, and Show All Drivers. Select the
driver and click OK. If an ECP doesn't have an IRQ and DMA channel, the Win-
dows 95 printer driver will use the ECP's Fast Centronics mode, which transfers
data faster than an SPP, but not as fast as ECP.

The Device Manager also shows the port's configuration. Select the port, then
click Resources. Figure 1-1 shows an example. Windows attempts to detect these
settings automatically. If the configuration shown doesn't match your hardware
setup, de-select the Use Automatic Settings check box and select a different con-
figuration. If none matches, you can change a setting by double-clicking on the

8 Parallel Port Complete

Essentials

resource type and entering a new value. Windows displays a message if it detects
any conflicts with the selected settings. To assign a printer to a port, click on Con-
trol Panel, Printers, and select the printer to assign.

Parallel-port devices that don't use the Windows printer drivers should come with
their own configuration utilities. DOS programs generally have their own printer
drivers and methods for selecting a port as well.

Adding a Port

Most PCs come with one parallel port. If there's a spare expansion slat, it's easy
to add one or two more. Expansion cards with parallel ports are widely available.

Cards with support for bidirectional, EPP, and ECP modes are the best choice
unless you're sure that you won't need the new modes, or you want to spend as lit-

tle as possible. Cards with just an SPP are available for aslittle as $15. A card sal-

vaged from an old computer may cost you nothing at all.

Y ou can get more use from aslot by buying a card with more than a parallel port.
Because the port circuits are quite simple, many multi-function cardsinclude a
parallel port. Some have serial and game ports, while others combine a disk con-
troller or other circuits with the parallel port. On older systems, the parallel port is
on an expansion card with the video adapter. These should include away to dis-
able the video adapter, so you can use the parallel port in any system.

When buying a multi-mode port, it's especially important to be sure the port
comes with utilities or documentation that shows you how to configure the port in
all of its modes. Some multi-mode ports default to an SPP configuration, where all
of the advanced modes are locked out. Before you can use the advanced modes,
you have to enable them. Because the configuration methods vary from port to
port, you need documentation.

Also, because the configuration procedures and other port details vary from chip

to chip, manufacturers of ECP and EPP devices may guarantee compatibility with
specific chips, computers, or expansion cards. If you're in the market for a new

parallel port or peripheral, it's worth trying to find out if the peripheral supports
using EPP or ECP mode with your port.

Port Hardwar e

The parallel port's hardware includes the back-panel connector and the circuits
and cabling between the connector and the system's expansion bus. The PC's
microprocessor uses the expansion bus's data, address, and control lines to trans-

Parallel Port Complete 9

Chapter 1

Figure 1-2: The photo on the left shows the back panel of an expansion card, with
a parallel port's 25-pin female D-sub connector on the left side of the panel. (The
other connector is for a video monitor.) The photo on the right shows the 36-pin
female Centronics connector used on most printers.

fer information between the parallel port and the CPU, memory, and other system
components.

Connectors

10

The PC's back panel has the connector for plugging in a cable to a printer or other
device with a parallel-port interface. Most parallel ports use the 25-contact D-sub
connector shown in Figure 1-2. The shell (the enclosure that surrounds the con-

tacts) isroughly in the shape of an upper-case D. Other names for this connector
are the subminiature D, DB25, D-shell, or just D connector. The IEEE 1284 stan-

dard for the parallel port callsit the IEEE 1284-A connector.

Newer parallel ports may use the new, compact, 36-contact | EEE 1284-C connec-

tor described in Chapter 6.

The connector on the computer is female, where the individual contacts are sock-

ets, or receptacles. The cable has a mating male connector, whose contacts are
pins, or plugs.

The parallel-port connector is usually the only female 25-pin D-sub on the back
panel, so there should be little confusion with other connectors. Some serial ports
use a 25-contact D-sub, but with few exceptions, a 25-pin serial D-subonaPC is
male, with the female connector on the cable-the reverse of the parallel-port
convention. (Other serial ports use 9-pin D-subs instead.)

SCSl is another interface whaose connector might occasionally be confused with
the parallel port's. The SCSI interface used by disk drives, scanners, and other
devices usually has a 50-contact connector, but some SCSI devices use a 25-con-

tact D-sub that isidentical to the parallel-port's connector.

If you're unsure about which is the parallel-port connector, check your system
documentation. When all else fails, opening up the enclosure and tracing the cable
from the connector to an expansion board may offer clues.

Parallel Port Complete

Essentials

The CircuitsInside

Inside the computer, the parallel-port circuits may be on the motherboard or on a
card that plugs into the expansion bus.

The maotherboard is the main circuit board that holds the computer's microproces-
sor chip aswell as other circuits and sots for expansion cards. Because just about
al computers have a parallel port, the port circuits are often right on the mother-

board, freeing the expansion slot for other uses. Notebook and laptop computers
don't have expansion slots, so the port circuits in these computers must reside on
the system's main circuit board.

The port circuits connect to address, data, and control lines on the expansion bus,
and these in turn interface to the microprocessor and other system components.

Cables

Most printer cables have a 25-pin male D-sub connector on one end and a male
36-contact connector on the other. Many refer to the 36-contact connector as the
Centronics connector, because it's the same type formerly used on Centronics
printers. Other names are parallel-interface connector or just printer connector.
|EEE 1284 callsit the 1284-B connector.

Peripherals other than printers may use different connectors and require different
cables. Some use a 25-pin D-sub like the one on the PC. A device that uses only a
few of the port's signals may use a telephone connector, either a4-wire RJl | or
an 8-wire RJ5. Newer peripherals may have the 36-contact 1284-C connector.

In any case, because the parallel-port's outputs aren't designed for transmitting
over long distances, it's best to keep the cable short: 6 to 10 feet, or 33 feet for an
| EEE-1284-compliant cable. Chapter 6 has more on cable choices.

Multiple Uses for One Port

If you have more than one parallel-port peripheral, the easiest solution isto add a
port for each. But there may be times when multiple ports aren't an option. In this
case, the alternatives are to swap cables as needed, use a switch box, or
daisy-chain multiple devicesto one port.

If you use only one device at atime and switch only occasionally, it's easy enough
to move the cable when you want to use a different device.

For frequent swapping, a more convenient solution is a switch box. A typical
manual switch box has three female D-sub connectors. A switch enables you route

Parallel Port Complete 11

Chapter 1

the contacts of one connector to either of the others. To use the switch box to
access two peripherals on one port, you'll need a cable with two male D-subs to

connect the PC to the switch box, plus an appropriate cable from the switch box to
each peripheral.

Y ou can also use a switch box to enable two PCsto share one printer or other
peripheral. This requires two cables with two male D-subs on each, and one
peripheral cable. Switch boxes with many other connector types are also avail-

able.

Manual switches are inexpensive, though some printer manufacturers warn that
using them may damage the devices they connect to. A safer choice is a switch
that uses active electronic circuits to route the signals. Some auto-sensing
switches enable you to connect multiple computers to one printer, with first-come,
first-served access. When aprinter isidle, any computer can access it. When the
printer isin use, the switch prevents the other computers from accessing it. How-
ever, these switches may not work properly if the peripherals use bidirectional

communications, or if the peripheral uses the control or status signals in an uncon-
ventional way.

The parallel ports on some newer peripherals support a daisy-chain protocol that

allows up to eight devices to connect to a single port. The PC assigns a unique
address to each peripheral, which then ignores communications intended for the
other devices in the chain. The software drivers for these devices must use the

protocol when they access the port. The last device in the chain can be
daisy-chain-unaware; it doesn't have to support the protocol. Chapter 11 has more
on daisy chains.

Security Keys

12

Security keys, or dongles, are aform of copy protection that often uses the parallel
port. Some software-usually expensive, specialized applications-includes a
security key that you must plug into the parallel port in order to run the software.
If you don't have the key installed, the software won't run.

The key isasmall device with amale D-sub connector on one end and afemale
D-sub on the other. Y ou plug the key into the parallel-port connector, then plug
your regular cable into the security key. When the software runs, it attempts to
find and communicate with the key, which contains a code that the software rec-
ognizes. The key usually doesn't use any conventional handshaking signals, so it
should be able to live in harmony with other devices connected to the port.

Parallel Port Complete

Essentials

The keys do require power, however. If you have a key that draws more than a
small amount of current, and if your parallel port has weak outputs, you may have
problems in using other devices on the same port as the key.

Alternatives to the Parallel Port

The parallel port isjust one of many ways to interface inputs and outputsto a
computer. In spite of its many virtues, the parallel port isn't the best solution for
every project. These are some of the aternatives:

Serial Interfaces

One large group of parallel-port alternativesis serial interfaces, where data bits
travel on asingle wire or pair of wires (or in the case of wirelesslinks, asingle
transmission path.) Both ends of the link require hardware or software to translate
between serial and parallel data. There are many types of serial interfaces avail-
able for PCs, ranging from the ubiquitous RS-232 port to the newer RS-485, USB,
IEEE-1394, and IrDA interfaces.

RS-232

Just about every PC has at |east one RS-232 serial port. Thisinterface is especially
useful when the PC and the circuits that you want to connect are physically far
apart.

Asarule, parallel-port cables should be no longer than 10 to 15 feet, though the
|EEE-1284 standard describes an improved interface and cable that can be 10

meters (33 feet). In contrast, RS-232 links can be 80 feet or more, with the exact
limit depending on the cable specifications and the speed of data transfers.

RS-232 links are dow, however. Along with each byte, the transmitting device
normally adds a start and stop hit. Even at 115,200 hits per second, whichis atyp-
ical maximum rate for a serial port, the data-transfer rate with one start and stop
bit per byteisjust 11,520 bytes per second.

RS-485

Another useful serial interface is RS-485, which can use cables as long as 4000
feet and allows up to 32 devices to connect to a single pair of wires. Y ou can add
an expansion card that contains an RS-485 port, or add external circuits that con-
vert an existing RS-232 interface to RS-485. Other interfaces similar to RS-232
and RS-485 are RS-422 and RS-423.

Parallel Port Complete 13

Chapter 1

Universal Serial Bus

A new option for I/O interfacing is the Universal Serial Bus (USB), a project of a
group that includes Intel and Microsoft. A single USB port can have up to 127
devices communicating at either 1.5 Megabits/second or 12 Megabits/second over
a4-wire cable. The USB standard also describes both the hardware interface and
software protocols. Newer PCs may have a USB port built-in, but because it's so

new, most existing computers can't use it without added hardware and software
drivers.

|EEE 1394

The IEEE-1394 high-performance serial bus, also known as Firewire, is another
new interface. It allows up to 63 devices to connect to a PC, with transmission
rates of up to 400 Megabits per second. The 6-wire cables can be aslong as 15

feet, with daisy chains extending to over 200 feet. The interface is especially pop-

ular for connecting digital audio and video devices. |EEE-1394 expansion cards
are available for PCs.

IrDA

The IrDA (Infrared Data Association) interface allows wireless serial communica-
tions over distances of 3 to 6 feet. The link transmits infrared energy at up to
115,200 hits/second. It's intended for convenient (no cables or connectors) trans-
mitting of files between a desktop and laptop computer, or any short-range com-
munications where a cabled interface is inconvenient. Some computers and
peripherals now have IrDA interfaces built-in.

Other Parallel Interfaces

14

SCSI and IEEE-488 are two other parallel interfaces used by some PCs.

SCSI

SCSI (small computer system interface) is a parallel interface that allows up to
seven devices to connect to a PC along a single cable, with each device having a
unique address. Many computers use SCS| for interfacing to internal or external
hard drives, tape back-ups, and CD-ROMs. SCSI interfaces are fast, and the cable
can be aslong as 19 feet (6 meters). But the parallel-port interface is simpler,
cheaper, and much more common.

IEEE 488

The |EEE-488 interface began as Hewlett Packard's GPIB (general-purpose inter-
face bus). It'saparallel interface that enables up to 15 devices to communicate at

Parallel Port Complete

Essentials

speeds of up to 1 Megabyte per second. Thisinterface has long been popular for
interfacing to lab instruments. Expansion cards with |EEE-488 interfaces are
available.

Custom 1I/O Cards

Many other types of input and output circuits are available on custom expansion
cards. An advantage of these isthat you're not limited by an existing interface
design. The card may contain just about any combination of analog and digital
inputs and outputs. In addition, the card may hold timing or clock circuits, func-
tion generators, relay drivers, filters, or just about any type of component related
to the external circuits. With the standard parallel port, you can add these compo-

nents externally, but a custom 1/O card allows you to place them inside the com-
puter.

To use an expansion card, you of course need an empty expansion slot, which
isn't available in portable computers and some desktop systems. And the custom
hardware requires custom software.

PC Cards

Finally, instead of using the expansion bus, some UO cards plug into a PC Card
sot, which accepts slim circuit cards about the size of aplaying card. An earlier
name for these was PCMCIA cards, which stands for Personal Computer Memory
Card International Association, whose members developed the standard. Many
portable computers and some desktop models have PC-Card slots. Popular uses
include modems and data acquisition circuits. There are even PC Cards that func-
tion as parallel ports. You don't need an internal expansion slot, and you don't
have to open up the computer to plug the card in. But again, the standard paral-
lel-port interface is cheaper and more widely available.

Chapter 1

16 Parallel Port Complete

Accessing Ports

2

Accessing Ports

Windows, DOS, and Visual Basic provide several ways to read and write to paral-
lel ports. The most direct way is reading and writing to the port registers. Most
programming languages include this ability, or at least allow you to add it. Visual
Basic includes other options, including the Printer object, the PrintForm method,
and Open LPTx. Windows also has API callsfor accessing LPT ports, and 16-bit
programs can use BIOS and DOS software interrupts for LPT access.

This chapter introduces the parallel port's signals and ways of accessing them in
the programs you write.

The Signal s

Table 2-1 shows the functions of each of the 25 contacts at the parallel port's
connector, along with additional information about the signals and their corre-
sponding register bits. Table 2-2 shows the information arranged by register rather
than by pin number, and including register bits that don't appear at the connector.
Most of the signal names and functions are based on a convention established by
the Centronics Data Computer Corporation, an early manufacturer of dot-matrix
printers. Although Centronics no longer makes printers, its interface lives on.

Parallel Port Complete 17

Chapter 2

Table 2-1: Parallel Port Signals, arranged by pin number.

Pin: |Signal Function Source |Register Inverted [Pin:
D-sub Name |Bit # at con- Centron-
nector? [ics

1 nStrobe Strobe DO-D7 pCL Control [0 Y 1

2 DO Data Bit 0 PC, Data 0 N 2

3 D1 DataBit 1 pc2 Data L N 3

4 D2 DataBit 2 pe2 Data 2 N 4

5 D3 DataBit 3 PC, Data 3 N 5

6 D4 DataBit 4 pC2 Data 4 N 6

7 D5 DataBit 5 pC Data 5 N 7

8 D6 DataBit 6 pC2 Data 6 N 8

9 D7 DataBit 7 pC2 Data 7 N 9

10 nAck Acknowledge (may trigger Printer Status 6 N 10

interrupt)

11 Busy Printer busy Printer Status 7 Y 1

12 PaperEnd Paper end, empty (out of paper) | Printer Status 5 N 12

13 Select Printer selected (on line) Printer [Status 4 N 13

14 nAutoLF Generate automatic linefeeds |pc1 Control | Y 14

after carriage returns

15 nError (nFault) Error Printer Status 3 N 32

16 ninit Initialize printer (Reset) pc! Control 2 N 31

17 nSelectin Select printer (Placeonling) |pc| Control |3 Y 36

18 Gnd Ground return for nStrobe, DO 19,20

19 God Ground return for D1, D2 21,22

20 God Ground return for D3, D4 23,24

21 God Ground return for D5, D6 25,26

22 Gnd Ground return for D7, nAck 27,28

23 Gnd Ground return for nSelectln 33

24 Gnd Ground return for Busy 29

25 God Ground return for ninit 30
Chassis Chassis ground 7
NC No connection 15,18,34
NC Signal ground 16
NC +5V Printer 35

Setting this bit high allows it to be used as an input (SPP only).

2Some Data ports are bidirectional.

18

The signal names in the tables are those used by the parallel port in the original
IBM PC. The names describe the signals functions in PC-to-peripheral transfers.
In other modes, the functions and names of many of the signals change.

Parallel Port Complete

Accessing Ports

Table 2-2: Parallel port bits, arranged by register.

Data Register (Base Address)

Bit Pin: D-sub Signal Name |Source Inverted at Pin: Centron-
connector? ics
0 2 Datahit 0 PC no 2
1 3 Databit 1 PC no 3
2 4 Data bit 2 PC no 4
3 5 Data bit 3 PC no 5
4 6 Data bit 4 PC no 6
5 7 Datahit 5 PC no 7
6 8 Data bit 6 PC no 8
7 9 Databit 7 PC no 9

Some Data ports are bidirectional. (See Control register, bit 5 below.)

Status Register (Base Address +1)

Bit Pin: D-sub Signal Name |Source Inverted at Pin: Centron-
connector? ics

3 15 nError (nFault) | Peripheral no 32

4 13 Select Peripheral no 13

5 12 PaperEnd Peripheral no 12

6 10 nAck Peripheral no 10

7 11 Busy Peripheral yes 1

Additional bits not available at the connector:
0: may indicate timeout (1=timeout).
1, 2: unused.

Control Register (Base Address +2)

Bit Pin: D-sub Signal Name |Source Inverted at Pin: Centron-
connector? ics

0 ! nStrobe PCI yes 1

! 14 nAutoLF ! yes 14

2 16 ninit PC. no 3

3 17 nSelectin pPC' yes 36

"When high, PC can read external input (SPP only).

Additional bits not available at the connector:

4: Interrupt enable. 1=IRQs pass from nAck to system'sinterrupt controller. O=IRQs do not pass
to interrupt controller.

5. Direction control for bidirectional Data ports. O=outputs enabled. 1 =outputs disabled; Data port
can read external logic voltages.

6,7: unused

Parallel Port Complete 19

Chapter 2

Centronics Roots

The original Centronics interface had 36 lines, and most printers still use the same

36-contact connector that Centronics printers had. The PC, however, has a 25-pin
connector, probably chosen because it was small enough to allow room for
another connector on the back of an expansion card.

The 25-pin connector obviously can't include all of the original 36 contacts. Some
non-essential control signals are sacrificed, along with some ground pins. The PC

also assigns new functionsto a couple of the contacts. Table 2-3 summarizes the

differences between the signals on the original Centronics and PC interfaces.

Naming Conventions

20

The standard parallel port uses three 8-bit port registersin the PC. The PC
accesses the parallel-port signals by reading and writing to these registers, com-
monly called the Data, Status, and Control registers.

Each of the signals has a name that suggestsits function in a printer interface. In
interfaces to other types of peripherals, you don't have to use the signals for their
original purposes. For example, if you're not interfacing to a printer, you don't
need a paper-end signal, and you can use the input for something else.

Because this book concentrates on uses other than the standard printer interface, |
often use more generic names to refer to the parallel-port signals. The eight Data
bits are DO-D7, the five Status bits are S3-S7, and the four Control bits are CO-C3.
The letter identifies the port register, and the number identifies the signal's bit
position in the register.

To complicate things, the port's hardware inverts four of the signals between the

connector and the corresponding register bits. For S7, CO, Cl, and C3, thelogic
state at the connector is the complement, or inverse, of the logic state of the corre-
sponding register bit. When you write to any of these bits, you have to remember
to write the inverse of the bit you want at the connector. When you read these hits,
you have to remember that you're reading the inverse of what's at the connector.

In this book, when | refer to the signals by their register bits, an overbar indicates
aconnector signal that is the inverse of its register bit. For example, register bit CO
becomes CO at the connector. The descriptive names (nStrobe, Busy) alwaysrefer
to the signals at the connector, with aleading n indicating that asignal is
active-low. For example, nStrobe and CO are the same signal. nStrobe tells you
that the signal is alow-going pulse whose function isto strobe data into a periph-
eral, but the name tells you nothing about which register bit controls the signal. CO
tells you that you that the signal is controlled by bit O in the Control register, and

Parallel Port Complete

Accessing Ports

Table 2-3: Differences between original Centronics interface and PC interface

Pin (Centronics) Original Function New (PC) Function

14 signal ground nAutoLF

15 oscillator out no connection

16 signal ground no connection

17 chassis ground no connection

18 +5V no connection

33 light detect Ground return for nSelectin
34 line count no connection

35 Ground return for line count no connection

36 Reserved nSelectin

The PC's D-sub connector has just 25 contacts, compared to the Centronics connector's 36. Six of
the original Centronics signals have no connection at the PC, and the PC has five fewer
ground-return pins.

The PC interface also redefines three signals. Pin 14 (Signal Ground) is nAutoLF on the PC, pin
36 (Reserved) is nSelectln, and pin 33 (Light Detect) is the ground return for nSelectin.

that the register bit is the inverse of the signal at the connector, but the name says
nothing about the signal's purpose. Whether to use nStrobe or CO depends on
which type of information is more relevant to the topic at hand.

The Data Register

The Data port, or Data register, (DO-D7) holds the byte written to the Data out-
puts. In bidirectional Data ports, when the port is configured as input, the Data
register holds the byte read at the connector's Data pins. Although the Centronics
interface and the IEEE-1284 standard refer to the Data lines as DI through D8, in
this book, | use DO-D7 throughout, to correspond to the register bits.

The Status Register

The Status port, or Status register, holds the logic states of five inputs, S3 through
S7. Bits SO-S2 don't appear at the connector. The Status register is read-only,
except for SO, which is a timeout flag on ports that support EPP transfers, and can
be cleared by software. On many ports, the Status inputs have pull-up resistors. In
their conventional uses, the Status bits have the following functions:

SO: Timeout. In EPP mode, this bit may go high to indicate a timeout of an EPP
data transfer. Otherwise unused. This bit doesn't appear on the connector.

Sl: Unused.

Parallel Port Complete 21

Chapter 2

S2: Unused, except for afew ports where this bit indicates parallel port interrupt
status (PIRQ). 0 = parallel-port interrupt has occurred; 1 = no interrupt has
occurred. On these ports, reading the Status register sets PIRQ = 1.

S3: nError or nFault. Low when the printer detects an error or fault. (Don't con-
fuse this one with PError (S5). below.)

S4: Select. High when the printer is on-line (when the printer's Data inputs are
enabled).

S5: PaperEnd, PaperEmpty, or PError. High when the printer is out of paper.

S6: nAck or nAcknowledge. Pulseslow when the printer receives abyte.- When
interrupts are enabled, atransition (usually the rising edge) on this pin triggers an
interrupt.

S7 Busy. Low when the printer isn't able to accept new data. Inverted at the con-
nector.

The Control Register

22

The Control port, or Control register, holds the states of four bits, CO through C3.

Conventionally, the bits are used as outputs. On most SPPs, however, the Control
bits are open-collector or open-drain type, which means that they may also func-
tion asinputs. To read an external logic signal at a Control bit, you write 1 to the
corresponding output, then read the register bit. However, in most ports that sup-
port EPP and ECP modes, to improve switching speed, the Control outputs are
push-pull type and can't be used as inputs. On some multi-mode ports, the Control

bits have push-pull outputs in the advanced modes, and for compatibility they
switch to open-collector/open-drain outputs when emulating an SPP. (Chapter 5
has more on output types.) Bits C4 through C7 don't appear at the connector. In
conventional use, the Control bits have the following functions:

CO: nStrobe. Therising edge of this|low-going pulse sighals the printer to read
DO-D7. Inverted at the connector. After bootup, normally high at the connector.
Cl: AutoLF or Automatic line feed. A low tellsthe printer to automatically gener-
ate aline feed (ASCII code OAh) after each Carriage Return (ASCII ODh).
Inverted at the connector. After bootup, normally high at the connector.

C2: ninit or ninitialize. Pulseslow to reset the printer and clear its buffer. Mini-
mum pulse width: 50 microseconds. After bootup, normally high at the connector.

C3: nSelectin. High to tell the printer to enable its Data inputs. Inverted at the con-
nector. After bootup, normally low at the connector.

C4: Enable interrupt requests. High to allow interrupt requests to pass from nAck
(S6) to the computer's interrupt-control circuits. If C4 is high and the port's IRQ

Parallel Port Complete

Accessing Ports

level isenabled at the interrupt controller, transitions at nAck will cause a hard-
ware interrupt request. Does not appear at the connector.

C5: Direction control. In bidirectional ports, setsthe direction of the Data port.
Set to O for output (Data outputs enabled), 1 for input (Data outputs disabled).

Usually you must first configure the port for bidirectional use (PS/2 mode) in
order for this bit to have an effect. Does not appear at the connector. Unused in
SPPs.

C6: Unused.

C7: Unused, except for afew ports where this bit performs the direction-setting
function normally done by C5.

Bidirectional Ports

On the original parallel port, the Data port was designed as an output-only port.
The Status port does have five inputs, and on some ports the Control port's four
bits may be used as inputs, but reading eight bits of data requires reading two
bytes, either the Status and Control ports, or reading one port twice, then forming
abyte of datafrom the values read. For many projects it would be more conve-
nient to use the Data port as an 8-bit input, and sometimes you can do just this.

Inthe original PC's parallel port, a 74L S374 octal flip-flop drives the Data out-
puts (DO-D7). The Data-port pins also connect to an input buffer, which storesthe
last value written to the port. Reading the port's Data register returns this value.

If there were away to disable the Data-port's outputs, you could connect external

signalsto the Data pins and read these signals at the Data port's input buffer. The

741.S374 even has an output-enable (OE) pin. When OE islow, the outputs are
enabled, and when it's high, the outputs are tri-stated, or in ahigh-impedance
state that effectively disables them. On the original PC's port, OE is wired directly
to ground, so the outputs are permanently enabled.

Beginning with its PS/2 model in 1987, IBM included a bidirectional parallel port
whose Data lines can function as inputs as well as outputs. Other computer mak-
ersfollowed with their own bidirectional ports. EPPs and ECPs have other,
high-speed modes for reading the Data port with handshaking, but these ports can
also emulate the PS/2's simple bidirectional ability.

Configuring for Bidirectional Operation

Most bidirectional ports have two or more modes of operation. To remain compat-
ible with the original port, most have an SPP mode, where the Data port is out-
put-only. Thisis often the default mode, because it's the saf est-it's impossible to
disable the Data outputs accidentally. To use a bidirectional Data port for input,

Parallel Port Complete 23

Chapter 2

you must first configure the port as bidirectional. The configuration may be in a
software utility, or in the system's CMOS setup screen that you can access on
bootup, or it may be a jumper on the port's circuit board.

After the port is configured as bidirectional, you can use the Data lines as inputs
or outputs by setting and clearing bit 5 in the port's Control register, as described
earlier. A 0 selects output, or write (the default), and a 1 selects input, or read.
(Just remember that 1 looks like 1 for input, and 0 looks like O for output.) Chap-
ter 4 includes program code to test for the presence of a bidirectional port.

A few ports use bit 7 instead of bit 5 as a direction control. To ensure compatibil-
ity with all ports, software can toggle both bits 5 and 7 to set the direction.

In an SPP or a port that hasn't been configured as bidirectional, bit C5 may read as
1 or 0. It's also possible, though rare, to have a bidirectional port whose direction
bit is write-only, so you can set and clear the bit, but you can't read the bit to
determine its current state. This is especially important to be aware of if you use
the technique of reading the Control port, altering selected bits, then writing the
value back to the Control port. If bit 5 always reads 1, you'll end up always writ-
ing 1 back to the bit, even when you don't want to disable the Data-port outputs!
To avoid this problem, keep track of the desired state of bit 5 and always be sure
to set or clear it as appropriate when you write to the Control port.

If you have an older output-only parallel port with a 74LS374 driving the Data
port, it's possible to modify the circuits so that you can use the Data port for input.
Chapter 5 shows how.

On some output-only ports, you may be able to bring the Data outputs high and
drive the input buffer with external signals, with no modifications at all. But in
doing so, you run the risk of damaging the port circuits. The outputs on non-bidi-
rectional ports aren't designed to be used in this way, and connecting logic out-
puts to Data lines with enabled outputs can cause damaging currents in both
devices. Even if the circuits don't fail right away, the added stress may cause them
to fail over time. If the circuit does work, the voltages will be marginal and sus-
ceptible to noise, and performance will be slow. So, although some have used this
method without problems, | don't recommend it.

Addr essi ng

24

There are many ways to access a parallel port in software, but all ultimately read
or write to the port's registers. The registers are in a special area dedicated to
accessing input and output (1/0) devices, including printers as well as the key-
board, disk drives, display, and other components. To distinguish between /O

Parallel Port Complete

Accessing Ports

ports and system memory, the microprocessor uses different instructions and con-
trol signals for each. Y ou can read and write to the ports using assembly language
or higher-level languages like Basic, Pascal, and C.

On the original PC, port addresses could range from 0 to 3FFh (decimal 1024).
Many newer parallel ports decode an eleventh address line to extend the range to
7FFh (decimal 2048). The number of available ports may seem like alot, but
existing devices use or reserve many of these, so only afew areas are free for
other uses. Each address stores 8 hits.

Finding Ports

The PC has some parallel-port support built into its BIOS (Basic | nput/Output
Services), aset of program routines that perform many common tasks. The BIOS
routines are normally stored in a ROM or Flash-memory chip in the computer.

When a PC boots, a BIOS routine automatically tests for parallel ports at each of
three addresses; 3BCh, 378h, and 278h, in that order. To determine whether or not
aport exists, the BIOS writes to the port, then reads back what it wrote. If the read
is successful, the port exists. (This write/read operation doesn't require anything
connected to the port; it just reads the port'sinternal buffer.)

The BIOS routine stores the port addresses in the BIOS data area, a section of
memory reserved for storing system information. The port addresses arein atable
from 40:08h to 40:0Dh in memory, beginning with LPT1. Each address uses two
bytes. An unused address should read 0000.

In rare cases, the next two addresses in the BIOS data area (40:0Eh and 40:0Fh)
hold an address for LPT4. But few computers have four parallel ports and not all
software supports afourth port. Some systems use 40:0Eh to store the starting
address of an extended BIOS area, so in these systems, the location isn't available
for afourth port. Windows 95 doesn't depend on the BIOS table for storing port
addresses, and does allow afourth LPT port.

Many programs that access the parallel port use this table to get a port's address.
Thisway, usersonly haveto select LPTI, LPT2, or LPT3, and the program can
find the address. By changing the valuesin the BIOS table, you can swap printer
addresses or even enter a nonstandard address. This enables you to vary from the
port assignments that were stored on boot-up. For example, some older DOS soft-
ware supported only LPTL. If you want to use a printer assigned to LPT2, you can
do so by swapping the two printers addresses in the table. However, Windows
and most DOS programs now allow selecting of any available port, so the need to
swap addresses in the BIOS table has become rare. Windows 95's Control Panel
allows you to assign any addressto an LPT port.

Parallel Port Complete 25

Chapter 2

Direct Port I/O

Reading and writing directly to the port registers gives you the most complete
control over the parallel-port signals. Unlike other methods, direct 1/O doesn't
automatically add handshaking or control signals; it just reads or writes a byte to
the specified port. (In EPP and ECP modes, however, a ssmple port read or write
will cause an automatic handshake.)

To write directly to a port, you specify a port register and the data to write, and
instruct the CPU to write the data to the requested port. To read a port, you specify
aport register and where to store the data read, and instruct the CPU to read the
datainto the requested location.

Y ou can use direct port reads and writes under DOS, Windows 3.1, and Windows
95. Under Windows NT, the ports are protected from direct access by applica-
tions. Y ou can access ports under NT by using a kernel-mode device driver, such
as WIinRT's, described in Chapter 10.

Programming in Basic

26

Basic has long been popular as a programming language, partly because many

have found it easy to learn and use. Although the Basic language has evolved
hugely over the years, amajor focus of Basic has always been to make it as simple
as possible to get programs up and running quickly. The latest version of Visual

Basic is much more complicated and powerful than the BasicA interpreter that
shipped with the original PC, yet many of the keywords and syntax rules are still

familiar to anyone who's programmed in any dialect of Basic.

Basic under DOS

For creating DOS programs, two popular Basics are Microsoft's QuickBasic and
the QBasic interpreter included with MS-DOS. PowerBasic is another DOS Basic
that evolved from Borland's TurboBasic. In all of these, you use Inp and out to
access 1/0 ports.

This statement writes AAh to a Data port at 378h:
OUT(&h378, &AA)

This statement displays the value of a Status port at 379h, using hexadecimal
notation:

PRI NT HEX$(| NP(&h379))

Parallel Port Complete

Accessing Ports

Visual Basic for Windows

Microsoft's Visual Basic has been the most popular choice for Basic programmers
developing Windows programs. Unlike other Basics, however, Visual Basic for
Windows doesn't include I np and out for port access. However, you can add
I np and out to the language in a dynamic linked library (DLL).

A DLL contains code that any Windows program can access, including the pro-
grams you write in Visual Basic. This book includes two DLLs for port access:
inpout16.dil, for use with 16-bit programs, including all Visual Basic 3 programs
and 16-bit Visual Basic 4 programs, and inpout32.dll, for use with 32-bit Visual
Basic 4 programs.

The Inpoutlé files include these:

Inpout16.dil. This is the DLL itself, containing the routines that your programs
will access.

Inpout16.bas. This file (Listing 2-1) contains the declarations you must add to any
program that uses the new subroutine and function added by the inpout DLL.

Each Decl ar e statement names a subroutine or function, the argument(s) passed
to it, and the name of the DLL that contains the subroutine or function.

The use of Al i as in the Declares enables Visual Basic to use alternate names for
the routines. This feature is handy any time that you don't want to, or can't, use
the routines' actual names. In this case, the i np and out routines were compiled
with PowerBasic's DLL compiler. Because | np and Qut are reserved words in
PowerBasic, and a routine can't have the same name as a reserved word, | named
the routines 1npl6 and Qut16. Using Al i as enables you to call them in Visual
Basic with the conventional | np and Qut.

On the user's system, the file Inpout16.dil. should be copied to one of these loca-
tions: the default Windows directory (usually \windows), the default System
directory (usually \windows\System), or the application's working directory.
These are the locations that Windows automatically searches when it loads a
DLL. If for some reason the DLL is in a different directory, you'll need to add its
path to the filename in the Declare statements.

With | np and out declared in your program, you can use them much like | np
and Qut in QuickBasic. This statement writes AAh to a Data port at 378h:
Out(&h378,&hAA)

This statement displays the value of a Status port at 379h, using hexadecimal
notation:

Debug.Print HEX$(Inp(&h379))

Inpoutl6 is a 16-bit DLL, which means that you can call it from any 16-bit
Visual-Basic program.

Parallel Port Complete 27

Chapter 2

Decl are Function Inp%Lib "InpQut.DII" Alias "Inpl6" -

| By Val

Por t Addr ess%

Declare Sub Qut Lib "InpQut.DI" Alias "Qutl16" -

(ByVal

Listing

28

Port Addr ess% ByVal ByteToWite%

2-1: Declarations for Inp and Out in 16-bit programs.

Cdlling a 16-hit DLL from a 32-bit program will result in the error message Bad
DLL Calling Convention. A 32-bit program needs a 32-bit DLL, and this book
provides inpout32 for this purpose. Aswith inpoutl6, you copy the DLL toa
directory where Windows can find it, and declare Inp and out in a.bas module.

Listing 2-2 shows a single declaration file that you can use in both 16-bit and
32-bit Visual Basic 4 programs. It uses Version 4's conditional compiling ability
to decide which routines to declare. In a 32-bit program, Win3 2 is True, and the
program declares the INp32 and Out32 contained in inpout32. In a 16-hit pro-
gram, Visual Basic ignoresthe Win32 section and declaresthe Inpl6 and
out 16 contained in inpout16.

Visual Basic 3 doesn't support the conditional-compile directives, so version 3
programs have to use the 16-bit-only Declaresin Listing 2-1.

The Declares for inpout32 also use Aliases, but for a different reason. inpout32 is
compiled with Borland's Delphi. Inp and Out aren't reserved words in Delphi,
so the compiler doesn't object to these names. However, in Win32, DLLS

declared procedure names are case-sensitive. If the procedures had the names Inp
and out you would have to be very careful to call them exactly that, not INP,
out, or any other variation. The Alias enables Visual Basic to define Inp and
Out without regard to case, soif you type INP or inp, Visual Basic will know
that you're referring to the | np 3 2 function.

Why did Microsoft leave Inp, Out (and other direct memory-access functions)
out of Visual Basic? Direct writes to ports and memory have always held the pos-
sibility of crashing the system if acritical memory or port addressis overwritten
by mistake. Under Windows, where multiple applications may be running at the
same time, the dangers are greater. A program that writes directly to a parallel port
has no way of knowing whether another application is already using the port.
Under Windows 95, a more sophisticated way to handle port 1/0 isto use avirtua
device driver (VxD). The VXD can ensure that only applications with permission

to access aport are able to do so, and it can inform other applications when a port
isn't available to them.

Parallel Port Complete

Accessing Ports

Attribute VB Nanme = "inpout"
'Declare Inp and Qut for port 1/0
Two versions, for 16-bit and 32-bit prograns.

#If Wn32 Then

'DLL procedure nanes are case-sensitive in VB4.

Use Alias so Inp and Qut don't have to have matching case in VB
Public Declare Function Inp Lib "inpout32.dlI"

Alias "Inp32" (ByVal PortAddress As Integer) As Integer

Public Declare Sub Qut Lib "inpout32.dlI"

Al'ias "Qut32" (ByVal PortAddress As Integer, ByVal Value

As Integer)

#El se

Public Declare Function Inp Lib "inpoutl6.DI"

Alias "Inpl6" (ByVal PortAddress As Integer) As Integer
Public Declare Sub Qut Lib "inpoutl6.D 1" -

Alias "Qut16" (ByVal PortAddress As Integer, ByVal Value As
I nteger)

#End | f

Listing 2-2: Declarations for Inp and Out in version 4 programs, 16-bit or 32-bit.

But sometimes a port isintended just for use with a single application. For exam-

ple, an application may communicate with instrumentation, control circuits, or
other custom hardware. If other applications have no reason to access the port,
direct I/0O with | np and out should cause no problems, and is much simpler than
writing a VxD. (Chapter 3 has more on VxDs.)

Other Programming Languages

Other programming languages, including C, Pascal/Delphi, and of course assem-
bly language, include the ability to access UO ports. Briefly, here's how to do it:

C

In C, you can access a parallel port with the i np and outp functions, which are
much like Basic's i np and out.

Thiswrites AAh to a Data port at 378h:

unsi gned Dat aAddr ess=0x378;
int DataPort;

return O;

Parallel Port Complete 29

Chapter 2

30

This displays the value of a Status port at 379h:

unsi gned St at usAddr ess=0x379;

int StatusPort;

St at usPort =i np(St at usAddr ess) ;

printf ("Status port = 9%h\n", StatusPort);
return O;

Pascal
Pascal programmers can use the port function to access parallel ports.

To write AAh to a Data port at 378h:
port[378h]: =AAh

To read a Status port at 379h:
val ue: =port [379h]

Delphi 2.0

The 32-bit version of Borland's Delphi Object Pascal compiler has no port func-
tion, but you can access ports by using the in-line assembler.

To write AAh to a Data port at 378h:

asm
push dx
mov dx, $378
mov al, $AA
out dx, al
pop dx
end;
To read a Status port at 379h into the variable ByteValue:

var
Byt eVal ue: byt e;
asm
push dx
mov dx, $379
in al,dx
nmov Byt eVal ue, a
pop dx
end,

Assembly Language

In assembly language, you use the microprocessor's | n and out instructions for
port access.

To write AAh to a Data port at 378h:

nov dx, 378h . store port address in dx

Parallel Port Complete

Accessing Ports

nov al , AAh ,store data to wite in al

out dx, al ;wite data in al to port address in dx
To read a Status port at 379h into register al:

nmov dx, 379h ;store port address in dx

in al,dx ;read data at port address into al

Other Ways to Access Ports

Visual Basic, Windows, and DOS include other ways to access ports that have
been assigned an LPT number. These options are intended for use with printers
and other devices with similar interfaces. They write bytesto the parallel port's
Data port, and automatically check the Status inputs and send a strobe pulse with
each byte. Because this book focuses on uses other than printer drivers, most of
the examples use direct port reads and writes rather than LPT functions. But the
other options do have uses. This section describes these alternate ways to access
ports.

LPT Access in Visual Basic

Although Visual Basic has no built-in ability for simple port I/O it doesinclude
ways to access LPT ports, including the Printer object,the Pri nt Form
method, and the open LPTx statement. Their main advantage is that they're
built into Visual Basic, so you don't have to declare a DLL to use them. The main

limitation is that these techniques perform only afew common functions. For

example, there's no way to write a specific value to the Control port, or to read the

Data port.

Each of the options for accessing LPT ports automates some of the stepsused in
accessing adevice. This can be a benefit or a hindrance, depending on the applica-
tion. When using these methods to write to a port, instead of having to include
code to toggle the strobe line and check the Status port, these details are taken care
of automatically. And instead of having to know a port's address, you can select
an LPT port by number.

But if your application doesn't need the control signals or error-checking, using
these techniques adds things you don't need, and will cause problemsif you're
using any of the Status and Control signalsin unique ways. For example, if you're
using the nStrobe output for another purpose, you won't want your program tog-
gling the bit every time it writes to the Data port.

Parallel Port Complete 31

Chapter 2

32

These methods won't write to the Data port if the Status port's Busy input is high.
Of course, if the Busy line indicates that the peripheral is busy, this is exactly what
you want, but it won't work if you're using the bit for something else.

The Printer Object

Visual Basic's Pri nt er object sends output to the default printer. (In Version 4
you can change the printer with a Set statement.) Sending the output requires two
steps. First, use the Pri nt method to place the data to write on the Printer object,
then use the NewPage or EndDoc method to send the data to the printer.

The Printer Object isn't very useful for writing to devices other than printers or
other peripherals that dxpect to receive ASCII text, because NewPage and End-
Doc send a form-feed character (OCh) after the data. The device has to be able to
recognize the form feed as an end-of-data character rather than as a data byte.

A possible non-printer use for the Printer object would be to send ASCII text to an
input port on a microcontroller. Plain ASCII text uses only the characters 21h to
7Eh, so it's easy to identify the form feeds and other control codes. For sending
numeric data, ASCII hex format provides a way to send values from 0 to 255
using only the characters 0-9 and A-F. Appendix C has more on this format.

For writing simple data to the parallel port, select Windows' printer driver for the
Generic Line Printer driver.

To send data to the Printer object, Status bit S3 must be high, and SS and S7 must
be low. If not, the program will wait.

Here's an example of using the Printer object.

'pl ace the byte AAh on the printer object
Printer.Print Chr$(&hAA)

'place the byte 1Fh on the printer object
Printer.Print Chr$(&h1lF)

ror use this format to send text
Printer.Print "hello"

'send the bytes to the printer

Pri nt er. NewPage

PrintForm

The Pri nt For mmethod sends an image of a form to the default printer. Because

the form is sent as an image, or pattern of dots, rather than as a byte to represent
each character, it's useful mainly for sending data to printers and other devices

that can print or display the images.
Here's an example of the PrintForm method:

'First, print "hello" on Fornl.
Form . Print "hello"

Parallel Port Complete

Accessing Ports

'Then senq thepf okt jyege to the printer.

Open "LPT1"

The documentation for Visual Basic's open statement refers only to using it to
open afile, but you can also use it to allow accessto a parallel (or seria) port.

Here's an example:

Byt eToW it e=&h55

Qpen "LPT1" for CQutput as #1

Print #1, Chr$(ByteToWite);
"LPT1" selectsthe port to.write to, and #1 is the unique file number, or in this
case the device number, assigned to the port. The semicolon after the value to
print suppresses the line-feed or space character that Visual Basic would other-
wise add after each write. At the Status port, nError (S3) must be high, and Paper-
End (S5) and Busy (S7) must be low. If Busy is high, the program will wait, while
incorrect levels at nError or PaperEnd will cause an error message.

Windows API Calls

The Windows API offers yet another way to access parallel ports. The API, or
Application Programming Interface, contains functions that give programs a sim-
ple and consistent way to perform many common tasks in Windows. The API's
purpose is much like that of the BIOS and DOS functions under DOS, except that
Windows and its APl are much more complicated (and capable). To perform a
task, aprogram calls an appropriate API function. Although Windows has no API
callsfor generic port I/O, it does have extensive support for printer access. If
Visual Basic doesn't offer the printer control you need, you can probably find a
solution in the API.

Windows uses printer-driver DLLsto handle the details of communicating with
different models of printers. Under Windows 3.1, there are dozens of printer driv-

ers, with each driver supporting just one model or a set of similar models. Under
Windows 95, most printers use the universal driver unidrv.dll, which inturn
accesses a datafile that holds printer-specific information. The Windows API
includes functions for sending documents and commands to a printer, controlling
and querying the print spooler, adding and deleting available printers, and getting
information about a printer's ahilities.

The API's QpenConm and W i t eCommfunctions offer another way to .write to
parallel ports.

Parallel Port Complete 33

Chapter 2

This book concentrates on port uses other than the printer interface, so it doesn't
include detail on the API's printer functions. Appendix A lists sources with more
on the Windows API.

DOS and BIOS Interrupts

34

In 16-bit programs, MS-DOS and BIOS software interrupts provide another way
to write to parallel ports. For DOS programs, QuickBasic has Cal | Inter
rupt and Call Interruptx. The QBasic interpreter included with DOS
doesn't have these, however.

In 16-bit Visual-Basic programs, you can use the Vbasm DLL on this book's
companion disk. Vbasm includes three interrupt functions: Vbl nt errupt,
Vbl nterrupt X, and VbReal Mbdel nt X. Each is useful in certain situations.
(Vbl nt errupt doesn't pass microprocessor registers ds and es, while Vbl n-
terrupt X and VbReal Mbdel nt X do. VbReal Model nt X switches the CPU
to real mode before calling the interrupt, while the others execute under Windows
protected mode. VbReal Model nt X is slower, but sometimes necessary.)
Vbasm includes many other subroutines and functions, such as Vbl np and
VbQut for port access (similar to inpout16), and Vbpeek and Vbpoke for read-
ing and writing to memory locations.

The Vbasm.txt file includes the declarations for Vbasm's subroutines and func-
tions. You declare and call the DLL's routines in the same way as the | np and
out examples above. Vbasm is for use with 16-bit programs only. There is no
equivalent for 32-bit programs.

BIOS Functions

The PC's BIOS includes three parallel-port functions. You call each with software
interrupt 17h.

The BIOS functions are intended for printer operations, but you can use them with
other devices with compatible interfaces. Before calling interrupt 17h of the
BIOS, you place information (such as the function number, port number, and data
to write) in specified registers in the microprocessor.

When you call the interrupt, the BIOS routine performs the action requested and
writes the printer status information to the microprocessor's ah register, where
your program can read it or perform other operations on it.

Just to keep things confusing, when the BIOS routine returns the Status register, it
inverts bits 3 and 6. Bit 7 is already inverted in hardware, so the result is that bits
3, 6, and 7 in ah are the complements of the logic states at the connector. (In con-

Parallel Port Complete

Accessing Ports

trast, if you read the Status register directly, only bit 7 will be inverted from the
logic states at the connector.)

These are the details of each of the BIOS functionsat INT 17h:

Function 00

Sends a byte to the printer.

Called with:

ah=0 (function number)

al=the byteto print

dx=0for LPT1, dx=1for LPT2, dx=2 for LPT3
Returns:

ah=printer status

When aprogram calls function O, the routine first verifies that Busy (S7) islow. If
it's high, the routine waits for it to go low. When Busy is low, the routine writes
thevaluein al to the LPT port specified in dx. nStrobe (CO) pulses low after
each write. The function returns with the value of the Status port in ah.

Listing 2-3 isan example of how to use interrupt 17, function O to write abyteto a
parallel port in Visual Basic:

Function 01

Initializes the printer.

Called with:

ah=1 (function number)

dx=0 for LPTI, 1 for LPT2, or 2 for LPT3

Returns:

ah=printer status
Calling function 01 brings ninit (C2) of the specified port low for at least 50
microseconds. It also stores the value read from the Status port in ah.

Function 02

Gets printer status.

Called with:

ah=2 (function number)

dx=0for LPT1, 1 for LPT2, or 2 for LPT3

Returns:

ah=printer status
Function 02 is a subset of Function 0. It reads the Status port and stores the value
read in ah, but doesn't write to the port.

MS-DOS Functions

In addition to the BIOS interrupt functions, MS-DOS has functions for paral-
lel-port access. Both use interrupt 21h. Like the BIOS functions, these pulse
nStrobe (CO) low on each write. These functions won't write to the port unless

Parallel Port Complete 35

Chapter 2

D m I nRegs As VbRegs
D m Qut Regs As VbRegs
D m LPT%

Di m Test Dat a%

Di m St at us%

'Change to 1 for LPT2, or 2 for LPT3
LPT = 0
TestData = &h55

"Place the data to wite in al, place the function# (0) in ah.
I nRegs. ax = TestData |,

"Place (LPT# - 1) in dl.

| NnRegs. dx = LPT

'Wite TestData to the port.

Cal |

Vbl nterrupt X(&H17, 1 nRegs, QutRegs)

"Status is returned in high byte of QutRegs.ax

Status = (CQutRegs.ax And &HFFO0) / &H100 - &HFFOO

"Reinvert bits 3, 6, & 7 so they match the logic states at the
' connect or.

Status = Hex$(Status Xor &HC8)

Listing 2-3: Using Bios Interrupt 17h, Function 0 to write to a parallel port.

36

Busy (S7) and Paper End (SS) are low and nError (S3) ishigh. If Busy ishigh, the
routine will wait for it to go low. Unlike the BIOS functions, the MS-DOS func-
tions don't return the Status-port information in a register.

Both of the following functions write to the PRN device, which is normally LPTI.
MS-DOS's MODE command can redirect PRN to another LPT port or a seria port.

Function 05

Writes a byte to the printer.

Called with:

ah=>5 (function number)

di=the byte to write
Listing 2-4 is an example of using Interrupt 21h, Function 5 with Vbasm in Visual
Basic.

Function 40h

Writes a block of datato afile or device:

Called with:

ah=40h (function number)

bx=file handle (4 for printer port)

Parallel Port Complete

Accessing Ports

Di m I nRegs As Vbregs

Di m Qut Regs As Vbregs

Dim1%

Dim LPT %

"Change to 1 for LPT2, or 2 for LPT3:
LPT = 0

TestData = &h55

InRegs.dx = TestData 'place the byte to wite in dl
I nRegs. ax = &H500 pl ace LPT#-1 in ah
| = VbReal Mbdel nt X(&H21, |nRegs, QutRegs)

Listing 2-4: Using DOS Interrupt 21 h, Function 5, to write to the parallel port.

cx= nhumber of bytesto be written
dx=offset of first byte of buffer to write

ds=segment of first byte in buffer to write
Returns:

ax=number of bytesread, or error code if carry flag (cf)=1:

5 (access denied), 6 (invalid handle).
Listing 2-5 is an example of using Interrupt 21h, Function 40h in Visual Basic.
Two additional DOS functions provide other options for accessing ports. Func-
tion 3Fh accesses files and devices (including the printer port) using a handle
assigned by DOS. The standard handle for the LPT or PRN device is 4. Function
44h reads and writes to disk drives and other devices, including devices that con-
nect to the parallel port.

Parallel Port Complete 37

Chapter 2

Dim ArrayByte
Dim BytesWritten%
,array containing data to write:
Dim A(0 To 127)
Dim DataWritten as String
LPT=0 "Change to 1 for LPT2, or 2 for LPT3
NL = Chr(13) + Chr(10) "new line
‘create an array that stores 128 bytes
For ArrayByte = 0 To 127
A(ArrayByte) = ArrayByte
Next ArrayByte
‘get the segment and offset of the array
ArraySegment = VbVarSeg(A(0))
ArrayOffset = VbVarPtr(A(0))
InRegs.dx = 4 “file handle for PRN device
InRegs.dx = 128 "number of bytes to write
InRegs.dx = ArrayOffset "array's starting address in segment
InRegs.ax = &H4000 “function # (40h) stored in ah

‘'write 128 bytes to the parallel port
BytesWritten = VbRealModelntX(&H21, InRegs, OutRegs)

Listing 2-5: Using DOS Interrupt 21 h, Function 40h, to write a block of data to the
parallel port.

38 Parallel Port Complete

Programming Issues

3

Programming Issues

In many ways, writing a program that accesses a parallel port is much like writing
any application. Two programming topics that are especially relevant to paral-
lel-port programming are where to place the code that communicates with the port
and how to transfer data as quickly as possible. This chapter discusses options and
issues related to these.

Options for Device Drivers

For communicating with printers and other peripherals, many programs isolate the
code that controls the port in a separate file or set of routines called a device
driver. The driver may be as simple as a set of subroutines within an application,
or as complex as aWindows virtual device driver that controls accessesto a port
by all applications.

The device driver trand ates between the specific commands that control a
device's hardware and more general commands used by an application program or
operating system. Using a driver isolates the application from the hardware
details. For example, adevice driver may translate commands like Print a charac-
ter or Read a block of data to code that causes these actions to occur in a specific
device. Instead of reading and writing directly to the device, the application or
operating system communicates with the driver, which in turn accesses the device.

Parallel Port Complete 39

Chapter 3

To access a different device, the application or operating system uses a different
driver.

Under MS-DOS, some drivers, such as the mouse driver, install on bootup and
any program may access the driver. Other drivers are specific to an application.
For example, DOS applications typically ship with dozens of printer drivers.
When you select a different printer, the application uses a different driver. Under
Windows, the operating system handles the printer drivers, and individual appli-
cations use Windows API calls to communicate with the drivers. Individual appli-
cations can also install their own device drivers under Windows.

There are several ways to implement a device driver in software. Y ou can include

the driver code directly in an application. Y ou can write a separate program and
assemble or compile it asaDOS device driver or as aterminate-and-stay-resident
program (TSR). Y ou can use any of these methods under MS-DOS and-with

some cautions-under Windows. Windows also has the additional options of

placing the device-driver code in adynamic link library (DLL) or avirtual device
driver (VxD). Each of these has its pluses and minuses.

Simple Application Routines

DOS

40

For simple port input and output with a device that a single application accesses,

you can include the driver code right in the application. This method is fine when

the application and driver code are short and simple. If the code isin an isolated
subroutine or set of subroutines, it's easy to reuse it in other applicationsif the
need arises. Most of the examplesin this book use this technique for the code that
handles port accesses.

Drivers

A driver installed as an MS-DOS device driver is accessible to all programs, so
it'suseful if multiple programs will access the same device. The code has a spe-

cial format and header that identifiesit as a device driver. MS-DOS drivers may
have an extension of .sys, .exe, or .com. A .sysdriver islistedin MS-DOS's con-
fig.sysfile, with the form device=driver. sys, with device being the
device name, and driver. sys being the filename of the driver. The driver then

installs automatically on bootup. An exe or com fileisan executable file that
users can run anytime. To install this type of driver on bootup, includeit in the

system's autoexec.bat file. A common use for DOS drivers is the mouse driver
(mouse.sys, mouse.com).

Parallel Port Complete

Programming Issues

DOS Drivers under Windows

DOS device drivers are usable under Windows, with some limitations and draw-
backs. Although this book concentrates on Windows programming and won't go
into detail about how to write a DOS device driver, some background about using
DOS device drivers under Windows is helpful in understanding the alternatives.

The 80286 and higher microprocessors used in PCs can run in either of two
modes, real or protected. In real mode, only one application runs at a time and the
application has complete control over memory and other system resources.
MS-DOS runs in real mode. Although early versions of Windows could run in
real mode, Windows 3.1 and higher require protected mode, which enables multi-
ple applications to run at the same time. To ensure that applications don't interfere
with each other, Windows has more sophisticated ways of managing memory and
other system resources.

In real mode, reading or writing to a specific memory address will access a partic-
ular location in physical memory. In protected mode, Windows uses a descriptor
table to translate between an address and the physical memory it points to.

When the microprocessor is in protected mode, Windows can run in either stan-
dard or enhanced mode. Most systems use enhanced mode because the operating
system can access more memory-up to 4 Gigabytes-and swap between mem-
ory and disk to create a virtual memory space that is much larger than the installed
physical memory. Systems with 80286 CPUs must use standard mode, however.

In enhanced mode, Windows divides memory into pages, and the operating sys-

tem may move the information on a page to a different location in physical mem-
ory or to disk. If a program bypasses the operating system and accesses memory
directly, there's no guarantee that a value written to a particular address will be at
that same physical address later.

MS-DOS device drivers must run in real mode. When a Windows program calls a
DOS driver, Windows has to translate between the real and protected-mode
addresses. Each time it executes the driver code, Windows switches from pro-

tected mode to real mode, then switches back when the driver returns control of
the system. All of this takes time, and while the MS-DOS driver has control of the

system, other programs can't access the operating system. In a single-tasking
operating system like MS-DOS, this isn't a problem. But under Windows, where
multiple applications may need to perform actions without delay, an MS-DOS
device driver may not be the best choice.

TSRs

Another option is a driver written as a TSR (terminate and stay resident) program.
A TSR can reside in memory while other DOS programs run, and users can load

Parallel Port Complete 41

Chapter 3

TSRs as needed. You can create TSRs with many DOS programming languages,
including C, Turbo Pascal, and PowerBasic, but not QuickBasic.

Like DOS device drivers, TSRs run in real mode, with the same drawbacks. An
added complication under Windows is that in a TSR, the program, rather than the
operating system, must translate between real- and protected-mode addresses.

Windows Drivers

42

Windows has other options for device drivers, including DLLs and VxDs. A
Visual-Basic program can call a DLL directly or use a Vbx or Ocx to access a
DLL or VxD.

DLLs

A DLL (dynamic linked library) is a set of procedures that Windows applications
can call. When an application runs, it links to the DLLs declared in its program
code, and the corresponding DLLs load into memory. Multiple applications can

access the same DLL. The application calls DLL procedures much like any other
subroutine or function.

Many programming languages enable you to write and compile DLLs. Creating a
DLL can be as simple as writing the code and choosing to compile it as a DLL
rather than as an executable (.exe) file. Basic programmers can use products like
PowerBasic's DLL Compiler to write DLLs in Basic. Visual-Basic programs can
call any DLL, whether it was originally written in Basic or another language.

As Chapter 2 showed, a DLL is also a simple way to add the Inp and out that
Visual Basic lacks.

VxDs

A VXD (virtual device driver) is the most sophisticated way of implementing a
device driver under Windows 3.1 or Windows 95. A VxD can trap any access to a
port, whether it's from a Windows or DOS program, and whether it uses a direct
port read or write or a BIOS or API call. When a program tries to access a port, the
VxD can determine whether or not the program has permission to do so. If it does,
the port access is allowed, and if not, the VxD can pass a message to the virtual
machine that requested it. A VxD also can respond quickly to hardware interrupts,

including interrupts caused by transitions at the parallel port's nAck input.

Creating a VxD isn't a simple process. It requires a wealth of knowledge about
Windows, the system hardware, and how they interact. Most VxD developers use
Microsoft's Device Developers Kit, which includes an assembler and other tools-
for use in developing VxDs. Some C compilers also support VxD development.

Parallel Port Complete

Programming Issues

Because how to write VxDs is a book-length topic in itself, this book won't go
into detail on it. Appendix A lists resources on VXD writing. But because
Visual-Basic programs can make use of VxDs, some background on how they
work is useful.

VxDs require Windows to be in enhanced mode, where a supervisor process
called the Virtual Machine Manager (VMM) controls access to system resources.

Instead of allowing Windows and DOS programs compl ete access to the system
hardware, the VMM creates one or more Virtual Machines, with each application

belonging to aVirtual Machine. The VMM creates a single System Virtual

Machine for the Windows operating system and its applications, and a separate
virtual machine for each DOS program.

To an application, the Virtual Machine that owns the application appearsto be a
complete computer system. In reality, many hardware accesses first go through
the VMM. The VMM also ensures that each Virtual Machine gets its share of
CPU time. This arrangement allows DOS programs, which know nothing about
multitasking or Windows, to co-exist with Windows programs.

A process called port trapping can control conflicts between DOS applications, or
between a DOS and Windows application. For example, if a Windows program is
using the printer port, the VMM will be aware of this, and can prevent a DOS pro-
gram from accessing the same port.

The VMM is ableto control port accesses from any program because it has a
higher level of privilege than the applicationsit's controlling. The 80386 and
higher CPUs allow four levels of privilege, though most systems use just two.
Ring 3 isthe lowest (least powerful), and Ring O is the highest. The Virtual

Machines run under Ring 3, and the VMM runs under Ring 0.

VxDs run under Ring 0, and thisiswhy they're powerful. A VXD can have com-
plete control over port accesses from any Virtual Machine, and can respond
quickly to parallel-port events.

Printer accesses in Windows 95 use two VxDs. Vcomm.vxd is the Windows 95
communications driver, which controls accesses to a variety of devices, including
the Windows print spooler. Womm in turn accesses a printer driver called Ipt.vxd,

which handles functions that are specific to parallel ports. And Ipt. vxd in turn

accesses data files that contain printer-specific information.

A Virtual Printer Device (VPD) handles contentions when a Windows program
requests to use a printer port that is already in use by another Windows program.

Windows may display adialog box that asks the user to decide which application
getsto use the port.

Parallel Port Complete 43

Chapter 3

Under Windows NT, a kernel-mode driver can control port accesses much like
VxDs do under Windows 95.

Hardware Interrupts

Interrupt service routines, like VxDs, run under Ring 0, in protected mode. When
ahardware interrupt occurs, the VMM switches to Ring 0 and passes the interrupt
request to a special VxD, called the VPICD, that acts as an interrupt controller.

A VxD that wantsto service a hardware interrupt must first register the inter-
rupt-service routine (ISR) with the VPICD. When the interrupt occurs, the VPICD
calsthe VxD.

If no VXD has registered the interrupt, the | SR belongs to one of the Virtual
Machines. The VPICD must determine which Virtual Machine owns the interrupt,
and then schedule that Virtual Machine so it can service the interrupt. If the inter-
rupt was enabled when Windows started, the interrupt is global and any of the
Virtual Machines can execute the ISR. If the interrupt was enabled after Windows
started, the interrupt islocal, and the VPICD considers the owner of the interrupt
to be the Virtual Machine that enabled it.

Custom Controls

Visual-Basic programs can access a special type of software component called the
Custom Control. A common use for Custom Controlsisto add abilities and fea-

turesthat Visual Basic lacks, such as port 1/0 or hardware interrupt detecting.

Other Custom Controls don't do anything that you couldn't do in Visual Basic
alone, but they offer a quick and easy way to add needed functions to an applica-
tion, often with better performance. Visual Basic includes some Custom Controls,
and many more are available from other vendors. Visual Basic supports two types
of Custom Controls: the Vbx and the Ocx. Either of these may handle paral-
lel-port accesses.

V bx

A Vbx isa Custom Control that Visual-Basic 3 and 16-bit Visual-Basic 4 pro-
grams can use. A Vbx isaform of DLL that includes properties, events, and meth-
ods, much like Visual-Basic's Toolbox controls. The Grid control is an example
of a custom control included with Visual Basic. To use a Grid control, you add the
file Grid. vbx to your project. A Grid item then appears in the Toolbox, and you

can add a grid to your project and configure it much as you do with the standard
controls.

44 Parallel Port Complete

N

Programming Issues

Ocx

Visual Basic 4 introduced a new form of Custom Control: the Ocx. Like a Vbx, an
Ocx has properties and can respond to events. In addition, Ocx's use Object Link-
ing and Embedding (OLE) technology, which enables applications to display and
alter data from other applications. An Ocx may be 16-bit or 32-bit. Ocx's aren't
limited to Visual Basic; other programming languages can use them as well.
Visual Basic 3 programs can't use Ocx's, however. Chapter 10 shows an example
of an Ocx that handles port accesses and interrupts in 32-bit programs.

Speed

How fast can you transfer data at the parallel port? The answer depends on many
factors, both hardware- and software-related.

Hardware Limits
The circuits in the PC and peripheral are one limiting factor for port accesses.

Bus speed

The clock rate on the PC's expansion bus limits the speed of parallel-port
accesses. This is true even if the port's circuits are located on the motherboard,
because the CPU still uses the expansion bus's clock and control signals to access
the parallel port.

Figure 3-1 shows the timing of the signals on the ISA expansion bus for reading
and writing to a parallel port. The signal that controls the timing is BCLK. One
BCLK cycle equals one T-cycle, and a normal read or write to a port takes six
T-cycles. During T1, the CPU places the port address on SA0-SA19. These lines
connect to the port's address-decoding circuits. (The port hardware usually
decodes only the lower 10 or 11 address lines.) On the falling edge of IOR (read
I/O port) or IOW (write to 1/O port), the port latches the address.

For awrite operation, the CPU places the data on SDO-SD7, and on the rising edge
of IOW, the data is wiitten to the port register. A normal write allows four wait
states (T2-T5) before IOW goes high.

A read operation is similar, except that after four wait states, the data from a port

register is available on SDO-SD7, and the CPU reads the data on the rising edge of
DOR.

In most modern PC's, BCLK runs at about 8 Mhz, so a read or write to a port takes
at least 750 nanoseconds, for a maximum transfer rate of 1.33 Megabytes/second.

Parallel Port Complete 45

Chapter 3

SDO-SD7 (READ) —————

SDO-SD7 (WRITE) X DATA TO WRITE

,0ns 500ns
| \ | \
T1- T2 T3- T4-~-T5-+T6
sok /S
BALE
SAO-SA 19
IOR OR IOW

DATA TO READ

SRDY

IOCHRDY

Figure 3-1: Timing diagram for port 1/O cycles.

46

According to the IEEE's ISA-bus standard, BCLK may actually vary from 4 to
8.33 Mhz, so you can't assume it will be a particular value. The clock speed of the
bus and microprocessor in the original IBM PC was 4.77 Mhz. The 8.33 Mhz rate
is the result of dividing a 50-Mhz clock by 6.

For faster access, there is a shortened, or zero-wait-state memory-access cycle
achieved by eliminating three of the wait states on the bus. This occurs if the port
circuits bring NOWS (no wait states) on the ISA bus low during T2. The data to be
read or written must be available by the end of T2. This doubles the speed of port
accesses, to 2.67 Megabytes per second on an 8-Mhz bus. Using the shortened

cycles requires both hardware and software support. Some of the newer paral-
lel-port controllers support the shortened cycles.

CPU Speed

Because all applications do more than just read and write to ports, the CPU
(microprocessor) speed also affects the speed at which a program can transfer data
at the parallel port. The speed of a microprocessor's internal operations depends
on the clock rate of the timing crystal that controls the chip's operations; a faster

clock means faster processing.

Parallel Port Complete

Programming Issues

The internal architecture of the microprocessor chip also affects how fast it can
execute instructions. For example, the Pentium supports pipelining of instruc-
tions, which enables new instructions to begin feeding into the chip before previ-
ous instructions have finished. Older 80x86 chips don't have this ability.

EPP and ECP Support

A port that supports EPP or ECP modes of datatransfer has the best chance for
fast parallel-port transfers. An SPP requires four port writes to read the Status
port, write a byte to the port, and bring nStrobe low, then high. With this hand-
shaking, the fastest that you can write to the port isthe time it takes for four port
writes, or around 300,000 data bytes per second. If you use the DOS or BIOS soft-
ware interrupts to write to a port, the speed will be much less because these rou-
tines stretch the strobe pulse.

In EPP and ECP modes, the port's hardware takes care of the handshaking auto-
matically, within a single read or write operation. When the PC and peripheral
both support one of these modes, you can transfer data at the speed of port writes
on the ISA bus, typically 1.3 Mbytes/sec, or 2.7 Mbytes/sec with the shortened
cycles. ECPs also support DMA transfers and data compression, discussed below.

For faster switching, a port's Control outputs often switch from open-collector to
push-pull type when the port isin ECP or EPP mode.

Cables and Terminations

Cable design and the line-terminating circuits for the cable signals may also affect
the maximum speed of data transfers. Chapter 6 has more on this topic.

Software Limits

Software issues that affect access speed include the choice of programming lan-
guage as well as the program code itself.

Language Choices
Three basic categories of programming languages are assemblers, compilers, and
interpreters.

Assemblers

With an assembler, you write programs in an assembly language whaose instruc-
tions correspond directly to each of the instructions in the microprocessor's
instruction set. The assembler trandates the program code into machine-level,
binary instructions that the microprocessor executes.

Parallel Port Complete 47

Chapter 3

48

Because assembly language gives intimate control over the microprocessor,
assembly-language programs can be very fast. But assembly language is a very
low-level language that requires detailed knowledge of the microprocessor's
architecture. Even the simplest operation requires specifying particular registers in
the chip. For example, for the simple task of reading a port, you first store the port
address in the dx register, then read the port register into the al register. Then you

can perform calculations on the value or move the data to another memory loca-
tion.

Higher-Level Languages

Higher-level languages make things easier by providing functions, operators, and
other language tools that help you perform these and other complex operations
more easily.

For example, in Basic, this statement reads a port into a variable:
Dat aRead = | NP(Port Addr ess)

You can then use the Dat aRead variable in any way you wish, without concern-

ing yourself with the specific registers or memory locations where the data is
stored.

Higher-level languages also include tools that make it easy to display information,
read keyboard input, send text and graphics to a printer, store information in files,
perform complex calculations, and do other common tasks. Most higher-level lan-
guages also have programming environments with tools for easier testing, debug-
ging, and compiling of programs.

Higher-level languages are also somewhat portable. If you learn to program in
Basic on a PC, you don't have to learn an entirely new language in order to write
Basic programs for a Macintosh, or even a microcontroller like the 8052-Basic.

Two types of higher-level languages are compilers and interpreters.

Compilers

With a compiled language, you create one or more source files that hold your pro-
gram code. From the source files, the compiler program creates an executable file
that runs on its own. Like assembled programs, a compiled program consists of
machine code that the microprocessor executes. Examples of compiled languages

include the CIC++ compilers from Microsoft, Borland, and others, and Borland's
Delphi.

Interpreters

With an interpreted language, you also create source files, but there is no
stand-alone executable file. Instead, each time you want to run a program, you run

Parallel Port Complete

Programming Issues

an interpreter program that translates the source file line by line into machine
code.

An advantage to interpretersis that while you're developing a program, you can
run the program immediately without having to compile the code first. But
because the interpreter has to translate the code each time the program runs, inter-
preted programs tend to be much slower than compiled ones.

Although future versions may include a compiler, as of Version 4, Visual Basicis
an interpreted language. Visual-Basic does create executable (.exe) files, but the
.exe file must have accessto aVbrun DLL, which performs the function of an
interpreter on it. QBasic is also an interpreted language. QuickBasic's program-
ming environment includes an interpreter, and you can also compile QuickBasic
programs into.exe files.

Choices

Different vendors' implementations of the same language will also vary in execu-
tion speed. Some compilers allow in-line assembly code, so you can have the best
of both worlds by writing the most time-critical code in assembler. An optimizing
compiler examines the source files and uses various techniques to make the com-

piled program as fast as possible. Some compilers claim to produce programs that

are asfast as assembled programs, so there's no need to use assembly language at
al.

In aninterpreted language like Visual Basic, how you write programs has an espe-

cially big effect on execution speed. Visual Basic's documentation includes tips

for optimizing your code for faster performance, such as using integer variables
for calculations and assigning frequently-used object properties to variables. You

can also speed execution by eliminating subroutine and function callsin favor of
fewer, longer routines. But there's a tradeoff with this technique, because it also

tends to make the code less readabl e, less portable, and harder to maintain.

Programmers endlessly debate the merits of different languages and products, and

the products themselves change frequently. Visual Basic's strength isits ease of
use, rather than the performance, or speed, of its programs. When speed is essen-
tial, a Visual-Basic program can call aDLL that contains the critical code in com-

piled form. Power Basic's DLL Compiler offers an easy way to place codein a
compiled DLL, while still programming in adialect of Basic.

Windows versus DOS

For the fastest data transfers, and especially for the fastest response to hardware
interrupts, DOS beats Windows. A DOS system runs just one program at atime,
while a Windows application has to share system time with whatever other appli-

Parallel Port Complete 49

Chapter 3

50

cations a user decides to run. When a hardware interrupt occurs, a DOS program
can jump quickly to an interrupt-service routine. Under Windows, the operating
system has to decide which driver or virtual machine should service the interrupt
and pass contral to it, all the while handling the demands of whatever other appli-
cations are running. All of that takes time, so under Windows, the interrupt
latency, or the time before an interrupt is serviced, is much longer than under
DOS, and isn't as predictable.

Code Efficiency

In addition to the programming language you use, how you write your programs
can affect execution speed. A complete discussion on how to write efficient pro-
gram code is well beyond the scope of this book, but a simple example illustrates
the issues involved:

Y ou can generate a sine wave or other waveform by connecting a parallel port's
outputs to the inputs of a digital-to-analog converter (DAC, and writing a repeat-
ing series of bytesto the port. One way to generate the series of bytes would be to
use a Sine function to calculate the value for each point in the waveform before
writing it. Another, usually faster way isto calculate the values just once, store
them, and write the stored values in sequence to the port.

Data Compression

For the fastest data transfers, compressing the data in software can reduce the
number of bytes to write. Even though the number of port writes per second
doesn't change, the effective transmission rate (the amount of uncompressed data
sent per second) is greater. To use this method, you of course have to have soft-
ware on the receiving end that knows how to decompress what it receives. Parallel
ports in ECP mode can automatically decompress incoming data that uses ECP
mode's protocol for data compression.

Application-related Limits

The simplest I/0 operations just write data from aregister to the port, or read the
port into aregister. But al programs have to do more than just this, and the extra
time required for processing and moving datawill also limit the rate at which you
can access a port in an application.

For example, a program might read an analog-to-digital converter's output in two
nibbles, combine the nibblesinto a byte, store the byte along with time and date
information, display the information, and use the information to decide if the sys-
tem needs to take an action such as sounding an alarm or adjusting a temperature
control. All of thistakes time!

Parallel Port Complete

Programming Issues

Ports that support ECP mode can use direct memory access (DMA), where data
can transfer between memory and a port without intervention by the CPU. The
DMA transfers use the system's expansion bus, but the CPU is free to perform
other tasks during the DMA transfers, and this can speed up the overall perfor-
mance of some applications.

Chapter 3

52 Parallel Port Complete

Y ou download this file from web-site: http://www.pcports.ru

