
You download this file from web-site: http://www.pcports.ru

Routines for Port Access

Parallel Port Complete

4

Many programs that access the parallel port do many of the same things, including
reading and writing to the port registers and finding and testing ports on a system .
Another common task is reading, setting, clearing, and toggling individual bits in
a byte . This chapter introduces tools to perform these functions in any
Visual-Basic program.

Listing 4-1 is a set of subroutines and functions that simplify the tasks of reading
and writing to the port registers and performing bit operations . You can add the
file as a .bas module in your parallel-port programs (use AddModule) and call the
routines as needed in your code .
The individual routines are very short. The reason to use them is convenience . For
the port-write subroutines, you pass the base address of a port and a value to write
to the port . The routines automatically calculate the register address from the base
address and invert the appropriate bits, so the value passed matches the value that
appears at the connector . You don't have to worry about calculating an address
and inverting the bits every time you write to a port . For the port-read functions,
you pass a base address and the function returns the value at the port connector .
For the bit operations, you pass a variable and bit number, and the routine auto-

53

Chapter 4

Function BitRead% (Variable%, BitNumber%)
'Returns the value (0 or 1) of the requested bit in a Variable .
Dim BitValue%
'the value of the requested bit
BitValue -- 2 ^ BitNumber
BitRead = (Variable And BitValue) \ BitValue
End Function

Sub BitReset (Variable%, BitNumber%)
'Resets (clears) the requested bit in
Dim BitValue, CurrentValue%
'the value of the requested bit
BitValue = 2 ^ BitNumber
Variable = Variable And (&HFFFF
End Sub

Sub BitSet (Variable%, BitNumber%)
'Sets the requested bit in a Variable .
Dim BitValue, CurrentValue%
'the value of the requested bit
BitValue - 2 ^ BitNumber
Variable = Variable Or BitValue
End Sub

Sub BitToggle (Variable%, BitNumber%)
'Toggles the requested bit in a
Dim BitValue, CurrentValue%
'the value of the requested bit
BitValue = 2 ^ BitNumber
'Is the current value 0 or 1?
CurrentValue = Variable And BitValue
Select Case CurrentValue

Case 0
'If current value = 0, set it
Variable = Variable Or BitValue

Case Else
'If current value - 1, reset it
Variable = Variable

End Select
End Sub

54

Variable .

a Variable .

- BitValue)

And (&HFFFF - BitValue)

Listing 4-1 : Routines for reading and writing to the parallel port registers and for
reading, setting, clearing, and toggling individual bits in a byte . (Sheet 1 of 2)

Parallel Port Complete

Function ControlPortRead% (BaseAddress%)
'Reads a parallel port's Control port .
'Calculates the Control-port address from the port's
'base address, and inverts bits 0, 1, & 3 of the byte
'The Control-port hardware reinverts these bits,
'so the value read matches the value at the connector .
ControlPortRead -- (Inp(BaseAddress + 2) Xor &HB)
End Function

Sub ControlPortWrite (BaseAddress%, ByteToWrite%)
'Writes a byte to a parallel port's Control port .
'Calculates the Control-port address from the port's
'base address, and inverts bits 0, 1, & 3 .
'The Control-port hardware reinverts these bits,
'so Byte is written to the port connector .
Out BaseAddress + 2, ByteToWrite Xor &HB
End Sub

Function DataPortRead% (BaseAddress%)
'Reads a parallel port's Data port .
DataPortRead = Inp(BaseAddress)
End Function

Sub DataPortWrite (BaseAddress%, ByteToWrite%)
'Writes a byte to a parallel port's Data port .
Out BaseAddress, ByteToWrite
End Sub

Function StatusPortRead% (BaseAddress%)
'Reads a parallel port's Status port .
'Calculates the Status-port address from the
'base address, and inverts bit 7 of the byte
'The Status-port hardware reinverts these bits,
'so the value read matches the value at the connector .
StatusPortRead = (Inp(BaseAddress + 1) Xor &H80)
End Function

able .

Parallel Port Complete

port's
read .

Programming Tools

read .

Listing 4-1 : Routines for reading and writing to the parallel port registers and for
reading, setting, clearing, and toggling individual bits in a byte . (Sheet 2 of 2)

matically sets, resets, toggles, or returns the value of the requested bit in the vari-

Most of the example programs in this book use these routines . The routines
require the Inpout DLL described in Chapter 2. Because the routines are funda-
mental to accessing the parallel port, I'll explain them in detail .

55

Chapter 4

Data Port Access

DataPortWrite and DataPortRead access a port's Data register (DO-D7),
which controls the eight Data outputs (pins 2-9) . In a printer interface, these lines
hold the data to be printed. For other applications, you can use the Data lines for
anything you want . If you have a bidirectional port, you can use the Data lines as
inputs .
To control the states of pins 2-9 on the parallel connector, you write the desired
byte to the Data register. The address of the Data register is the base address of the
port . DataPortwrite has just one line of code, which calls Out to write the
requested byte to the selected address . DataPortRead calls Inp. On an SPP or
a bidirectional Data port configured as output, it returns the last value written to
the port . On a bidirectional port configured as input, it returns the byte read on the
Data lines at the connector .

Status Port Access

StatusPortRead reads a port's Status register (SO-S7) . Bits 3-7 show the
states of the five Status inputs at pins 15, 13, 12, 10, and 11 . Bit 0 may be used as
a time-out flag, but isn't routed to the connector, and bits 1 and 2 are usually
unused .
The Status register is at base address +1, or 379h for a port at 378h . However, as
Chapter 2 explained, the value that you read doesn't exactly match the logic states
at the connector . Bits 3-6 read normally-the bits in the Status register match the
logic states of their corresponding pins . But bit 7 is inverted between the pin and
its register bit, so the logic state of bit 7 in the register is the complement of the
logic state at its connector pin. To match the connector, you have to complement,
or re-invert, bit 7.

Using Xor to Invert Bits
The Boolean Exclusive-Or (Xor) operator is an easy way to invert one or more
bits in a byte, while leaving the other bits unchanged . This is the truth table for an
Exclusive-OR operation:

A B A Xor B
0 0 0

0 1 1

1 0 1

1 1 0

The result is 1 only when the inputs consist of one 1 and one 0. Xoring a bit with 1
has the result of inverting, or complementing, the bit.
If the bit is 0:

0 Xor 1 =
and if the bit is l :

1 Xor 1 =
To invert selected bits in a byte, you first create a mask byte, where the bits to
invert are 1s, and the bits to ignore are Os . For example, to invert bit 7, the mask
byte is 10000000 (binary) or 80h. If you Xor this byte with the byte read from the
Status register, the result is the value at the connector . The zeros mask, or hide, the
bits that you don't want to change . The StatusPortRead subroutine uses this tech-
nique to return the value at the connector .
Here's an example:

10101XXX
00101XXX
10000000
10101XXX

0 .

Programming Tools

StatusPortRead also automatically adds 1 to the base address passed to it . This
way, the calling program doesn't have to remember the Status-port address .
Because the Status port is read-only (except for the timeout bit in EPPs), there is
no StatusPortWrite subroutine .

Control Port Access

Status port, bits 3-7, at the connector. (X=don't care)
Result when you read the Status register . (Bit 7 is inverted .)
Mask byte to make bit 7 match the connector
The result of Xoring the previous two bytes (matches the byte
at the connector)

ControlPortRead and ControlPortWrite access a port's Control regis-
ter (CO-C7). Bits 0-3 show the states of the four Control lines at pins 1, 14, 16, and
17 . On an SPP, the Control port is bidirectional and you can use the four lines as
inputs or outputs, in any combination . The Control register's address is base
address + 2, or 37Ah for a port with a base address of 378h .
Bits 4-7 aren't routed to the connector . When bit 4 = 1, interrupt requests pass
from the parallel-port circuits to the interrupt controller . When bit 4 = 0, the inter-
rupt controller doesn't see the interrupt requests .
If you don't want to use interrupts, bit 4 should remain low . However, in most
cases just bringing bit 4 high has no effect because the interrupt isn't enabled at
the interrupt controller or at the interrupt-enable jumper or configuration routine,
if used . Chapter 10 has more on interrupt programming.

Parallel Port Complete 57

Chapter 4

In ports with bidirectional Data lines, bit 5 (or rarely, bit 7) may configure the
Data port as input (1) or output (0)1. Usually, you must enable bidirectional ability
on the port before setting pin 5 will have an effect . But to be safe, you should take
care not to change bit 5 in your programs unless you intend to change the direction
of the Data port .
As on the Status port, the Control port has inverted bits . In fact, only bit 2 at the
connector matches the logic state of its bit in the Control register . The circuits
between the connector and the register invert bits 0, l, and 31. In other words, if
you write 1111 (Fh) to the lower four bits in the Control register, the bits at the
connector will read 0100 (4h)1.
As with the Status port, you can make the bits match what you read or write by
re-inverting the inverted bits . To make the value you write match the bits at the
connector, Xor the value you want to write with 0Bh (00001011 binary). The
Control-port routines use this technique so that the values passed to or read from
the Control port match the logic states at the connector .

Keeping Bits Unchanged
In writing to the Control port, you can use logic operators to keep the upper bits
from changing . (You can use the same technique anytime you want to change
some bits in a byte, but keep others unchanged.)
These are the steps to changing selected bits :

I 1.	XXXX1010

	

Determine the bits to write . (X=don't change)

Reading External Signals
To read an external input at a Control bit, you must first bring the corresponding
output high . You can use the Control-port bits as inputs or outputs in any combi-
nation . Because of this, the ControlPortRead routine doesn't bring the bits high
automatically; the application program is responsible for doing it . (To bring all
four outputs high, call ControlPortWrite with ByteToWrite=&hOF.)

2. 11001100 Read the port's current value.
31. 11111010 Create a byte containing all i s except the bits desired to be 01.
41. 11001000 AND the bytes in steps 2 and 31.

5 . 00001010 Create a byte containing all Os except the bits desired to be 11.

61. 110 01010 OR the bytes in steps 4 and 5. Bits 0-3 now match the desired
logic states from step 1 and bits 4-7 are unchanged from the
original byte read in step 21.

As with the outputs, the value read at the Control port has bits 0, 1, and 3 inverted
from their logic states at the connector . To re-invert bits 0, 1, and 3 and return the
value at the connector, ControlPortRead Xors the byte read with 0Bh .

Optimizing for Speed
These routines are designed for ease of use, rather than fast execution . These tech-
niques will increase the speed of the routines :
Eliminate subroutine and function calls by placing the code directly in the routine
that would otherwise make the calls . The routines are short, and easily copied.
Assign the Status and Control-port addresses to variables instead of calculating
them from the base address each time . You then need to specify the appropriate
address instead of using the base address. To use this technique, do the following:
Eliminate this line from StatusPortRead:

StatusPortAddress--BaseAddress+l
Eliminate this line from ControlPortWrite and ControlPortRead :

Parallel Port Complete

ControlPortAddress=BaseAddress+2
In your application:
Assign the Status and Control port's addresses to variables:

StatusPortAddress=BaseAddress+l
ControlPortAddress=BaseAddress+2

And use these calls:
StatusPortData = Inp(StatusPortAddress)
ControlPortWrite Value, ControlPortAddress
ControlPortData = Inp(ControlPortAddress)

Programming Tools

Instead of re-inverting the inverted Status and Control bits each time you read or
write to them, you can just take the inverted bits into account in the program. For
example, if a 1 at Control bit 0 switches on a relay, have the software write 0 to
the bit when it wants the relay to switch on . Keeping track of which bits are
inverted can be difficult however! One way to keep the program readable is to
assign the values to constants :

Const Relay30n% -- 0
Const Relay30ff% = 1

Often, while you're developing an application, you don't have to be concerned
about speed. When the code is working properly, you can do some or all of the
above to speed it up .

59

Chapter 4

" Parallel Port Resource

Figure 4-1 : A form with a setup menu that enables uses to select and test ports.

Bit Operations

Sometimes you just want to set, reset, or toggle one bit in a byte, toggle a control
signal, or set or read a switch . The BitSet, BitReset, BitToggle, and
BitRead routines perform these operations, which you can use any time you
want to read or write to a bit in an integer variable . Each routine is passed a vari-
able and a bit number . The routine calculates the value of the selected bit and uses
logic operators to perform the requested action on the individual bit.
For example, to set bit 4 in the variable PortData :

BitSet PortData, 4
and to read back this bit's value:

Bit4 = BitRead(POrtData, 4)

A Form Template

Figure 4-1 shows a second tool for parallel-port programs : a set of Visual-Basic
forms that you can use as a template, or starting point, for programs. The startup
form is blank except for a Setup menu with a Port submenu, which displays a
form that enables users to select a port, find the ports on a system, and test the
ports . (You can add other items to the Setup menu.)

60

	

Parallel Port Complete

Most of the programs in this book use these elements as a base, with command
buttons, text boxes, other controls and application-specific code added to the main
form or in other modules.
Listing 4-2 contains the code for the form that displays the Ports. Listing 4-3 has
the startup form's small amount of code . Most of the code is in a separate bas
module, Listing 4-4. In Visual Basic 3, procedures in a form module are local to
the form, but all forms can access procedures in a .bas module . Version 4 is more
flexible, with the ability to declare procedures Public or Private . Still,
grouping the general routines in one module is useful for keeping the code orga-
nized.
The listings show the Visual Basic 4 version of the program. The Version-3 code
differs in just a few areas, such as the calls for getting and saving initialization
data . The companion disk includes both Version 3 and Version 4 code .

Saving Initialization Data

Programming Tools

Each time the program runs, Listing 4-4's GetIniData subroutine retrieves
information about the system's ports. When the program ends, Write Inidata
stores the information to be retrieved the next time the program runs . This way,
the program can remember what ports a system has, which port is selected, and
any other information the program wants to store. Remembering these isn't essen-
tial, but it's a convenience that users will appreciate .

In! Files
One way to access initialization data is to use Visual Basic's file I/O statements to
read and write to a file . Under Windows, however, there are other options. Win-
dows defines a standard method for storing data in ini files, which are text files
normally found in the Windows directory . The best-known ini file is win.ini,
which holds information used by Windows and may also contain data sections for
individual applications . An application may also have its own ini file . This is the
method used by Listing 4-4, which accesses a file called Lptprogs .ini . Listing 4-5
shows an example ini file . Ini files must follow a standard format consisting of
one or more section names in square brackets [lptdata] , with each section
name followed by data assignments.
Although you can use ordinary file I/O statements to read and write to an ini file,
Windows provides API functions for this purpose. Calling an API function in a
Visual-Basic program is much like calling other functions. As when calling a
DLL, the program must declare the API function before it can call it . The listing
includes the Declare statements for the API functions GetPrivatePro-

Chapter 4

Private Sub cboEcpMode Click(Index As Integer)
SetEcpMode (cboEcpMode(Index) .ListIndex)
End Sub

Private Sub cmdAddPort_Click()
'Display a text box to enable user to add a port
, at a nonstandard address .
frmNewPortAddress .Show
End Sub

Listing 4-2: Code for Figure 4-1's form that enables users to find, test, and select
ports. (Sheet 1 of 4)

62

	

Parallel Port Complete

Private Sub cmdFindPorts Click()
'Test the port at each of the standard addresses,
'and at the non-standard address, if the user
Dim Index%
Dim PortExists%
Dim Count%
Index = 0
'First, test address 3BCh
Port(Index) .Address = &H3BC
PortExists -- TestPort(Index)
'If the port exists, increment
If Not (Port(Index) .Address) =

Index = Index +
End If
'Test address 378h
Port (Index) . Address
PortExists = TestPort(Index)
'If the port exists, increment
If Not (Port(Index) .Address) =

Index = Index +
End If
'Test address 278h
Port (Index) . Address
PortExists = TestPort(Index)
'Disable option buttons of unused
For Count = Index + 1 To 2

optPortName(Count) .Enabled = False
Port(Count) .Enabled = False

Next Count
If Not

	

(Port (3) .Address = 0)

	

Then
PortExists = TestPort(Index)

Else
optPortName(3) .Enabled = False

End If
End Sub

-- &x278

Private Sub cmdOK Click()
frmSelectPort .Hide
End Sub

Parallel Port Complete

-- &x378

the index .
0 Then

the index .
0 Then

LPT ports

has

Programming Tools

entered one .

Listing 4-2 : Code for Figure 4-1's form that enables users to find, test, and select
ports . (Sheet 2 of 4)

63

Chapter 4

Private Sub cmdTestPort Click()
Dim PortExists%
Dim Index%
'Get the address of the selected port
Index = -1
Do

Index = Index + 1
Loop Until optPortName(Index) .Value = True
PortExists = TestPort(Index)
Select Case PortExists

Case True
MsgBox "Passed : Port " + Hex$(BaseAddress) +
"h is " + Port(Index) .PortType + " .", 0

Case False
MsgBox "Failed port test . ", 0

End Select

End Sub

Listing 4-2 : Code for Figure 4-11's form that enables users to find, test, and select
ports . (Sheet 3 of 4)

64

	

Parallel Port Complete

	

F

Private Sub Form Load()
Dim Index%
Left = (Screen .Width - Width) / 2
Top = (Screen .Height - Height) / 2

'Load the combo boxes with the ECP modes .
For Index = 0 To 3

cboEcpMode(Index) .AddItem "SPP (original)"
Next Index
For Index = 0 To 3

cboEcpMode(Index) .AddItem "bidirectional"
Next Index
For Index = 0 To 3

cboEcpMode(Index) .AddItem "Fast Centronics"
Next Index
For Index = 0 To 3

cboEcpMode(Index) .AddItem "ECP"
Next Index
For Index = 0 To 3

cboEcpMode(Index) .AddItem "EPP"
Next Index

'Enable the option buttons for existing ports .
For Index = 0 To 3

optPortName(Index) .Enabled = Port(Index) .Enabled
Next Index
UpdateLabels
End Sub

Private Sub optPortName Click(Index As Integer)
'Store the address and index of the selected port .
Dim Count%
BaseAddress = Port(Index) .Address
IndexOfSelectedPort = Index
EcpDataPortAddress = BaseAddress + &H400
EcrAddress = BaseAddress + &H402
For Count = 0 To 3

cboEcpMode(Count) .Enabled
Next Count
cboEcpMode (Index) . Enabled = True
End Sub

Parallel Port Complete

= False

Programming Tools

Listing 4-2 : Code for Figure 4-1's form that enables users to find, test, and select
ports . (Sheet 4 of 4)

65

Chapter 4

Private Sub Form-Load(
StartUp
End Sub

Private Sub Form Unload(Cancel%)
ShutDown
End
End Sub

Private Sub mnuPort Click(Index%)
frmSelectPort .Show
End Sub

Listing 4-3 : The startup form for the sample project is blank except for a menu .
You can add whatever controls you need for a specific application .

fileString and WritePrivateProfileString. The API calls differ
slightly under Windows 3.1 and Windows 95 . The Version-4 code uses Visual
Basic's conditional compile ability to decide which calls to declare. You can add
these statements to any bas module in a program. In Version 3, you use only the
declares following # E 1 s e.

GetIniData uses GetPrivateProfileString to retrieve several values,
including the address and type of each existing port, and a value that indicates the
port that was selected the last time the program ran. WriteIniData uses
WritePrivateProfileString to save these values when the program
ends .

System Registry
Windows' System Registry offers another way to store program information.
Visual Basic 4's SaveSetting and GetSetting are a simple way to store
and retrieve information related to Visual Basic programs, and you can use these
in a similar way to save port information .
Under Windows 95, two API functions enable programs to find and add system
ports . EnumPorts returns the LPT number and a brief description of each paral-
lel port that Windows is aware of, and AddPort displays a dialog box that
enables users to add a port to the list .

Finding, Selecting, and Testing Ports

Because the parallel-port's address can vary, programs must have a way of select-
ing a port to use. There are several ways to accomplish this .

66

	

Parallel Port Complete

Chapter 4

Private Sub Form-Load(
StartUp
End Sub

Private Sub Form Unload(Cancel%)
ShutDown
End
End Sub

Private Sub mnuPort Click(Index%)
frmSelectPort .Show
End Sub

Listing 4-3 : The startup form for the sample project is blank except for a menu .
You can add whatever controls you need for a specific application .

fileString and WritePrivateProfileString. The API calls differ
slightly under Windows 3.1 and Windows 95 . The Version-4 code uses Visual
Basic's conditional compile ability to decide which calls to declare. You can add
these statements to any bas module in a program. In Version 3, you use only the
declares following # E 1 s e.

GetIniData uses GetPrivateProfileString to retrieve several values,
including the address and type of each existing port, and a value that indicates the
port that was selected the last time the program ran. WriteIniData uses
WritePrivateProfileString to save these values when the program
ends .

System Registry
Windows' System Registry offers another way to store program information.
Visual Basic 4's SaveSetting and GetSetting are a simple way to store
and retrieve information related to Visual Basic programs, and you can use these
in a similar way to save port information .
Under Windows 95, two API functions enable programs to find and add system
ports . EnumPorts returns the LPT number and a brief description of each paral-
lel port that Windows is aware of, and AddPort displays a dialog box that
enables users to add a port to the list .

Finding, Selecting, and Testing Ports

Because the parallel-port's address can vary, programs must have a way of select-
ing a port to use. There are several ways to accomplish this .

66

	

Parallel Port Complete

#If Win32 Then
Declare Function GetPrivateProfileStringByKeyName& Lib _
"Kernel32" Alias "GetPrivateProfileStringA" _
(ByVal 1pApplicationName$, ByVal 1pszKey$, ByVal lpszDefault$, _
ByVal lpszReturnBuffer$, ByVal cchReturnBuffer&, ByVal 1pszFile$)

Declare Function WritePrivateProfileString& Lib _
"Kernel32" Alias "WritePrivateProfileStringA" _
(ByVal 1pApplicationName$, ByVal 1pKeyName$, ByVal 1pString$, -
ByVal 1pFileName$)

Declare Function GetWindowsDirectory& Lib "Kernel32" -
Alias "GetWindowsDirectoryA" (ByVal lpBuffer$, ByVal nSize%)

#Else

Declare Function GetPrivateProfileStringByKeyName% Lib "Kernel" -
Alias "GetPrivateProfileString" _
(ByVal 1pApplicationName$, ByVal 1pKeyName$, ByVal 1pDefault$, -
ByVal 1pReturnedString$, ByVal nSize%, ByVal 1pFileName$)

Declare Function WritePrivateProfileString% Lib "Kernel" -
(ByVal 1pApplicationName$, ByVal lpKeyName$, _
ByVal 1pString$, ByVal 1pFileName$)

Declare Function GetWindowsDirectory% Lib "Kernel"
(ByVal lpBuffer$, ByVal nSize%)

#End If

Programming Tools

Listing 4-4 : Code for finding and testing ports, and getting and saving initialization
data from an ini file .

	

(Sheet 1 of 14)

Parallel Port Complete

	

67

Chapter 4

Type PortData
Name As String
Address As Integer
PortType As String
EcpModeDescription As String
EcpModeValue As Integer
Enabled As Integer

End Type
Global Port(0 To 3) As PortData
Global BaseAddress%
Global PortType$
Global IniFile$

Global
Global
Global
Global
Global
Global

EcrAddress%
EcrData%
EcpDataPortAddress%
EppDataPortOAddress%
IndexOfSelectedPort%
PortDescription$

Global EcpExists%
Global SppExists%
Global PS2Exists%
Global EppExists%

Function GetEcpModeDescription$(EcpModeValue%)
Select Case EcpModeValue

End Select
End Function

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file . (Sheet 2 of 14)

68

	

Parallel Port Complete

Case 0
GetEcpModeDescription = "SPP"

Case 1
GetEcpModeDescription = "PS/2"

Case 10
GetEcpModeDescription = "Fast Centronics"

Case 11
GetEcpModeDescription = "ECP"

Case 100
GetEcpModeDescription = "EPP"

Case 110
GetEcpModeDescription = "Test"

Case 111
GetEcpModeDescription = "Configuration"

Sub GetIniData()
'Use the Windows API call GetPrivateProfileString to read
'user information from an ini file .
Dim NumberOfCharacters
Dim ReturnBuffer As String * 128
Dim Index%
Dim WindowsDirectory$
'Get the Windows directory, where the ini file is stored .
NumberOfCharacters = GetWindowsDirectory(ReturnBuffer, 127)
WindowsDirectory = Left$(ReturnBuffer, NumberOfCharacters)
IniFile = WindowsDirectory + "\lptprogs .ini"

'If the ini file doesn't exist, don't try to read it .
If Not Dir$(IniFile) -- "" Then

'The port addresses :
Port(0) .Address = _

CInt(VbGetPrivateProfileString("lptdata","PortOAddress",
IniFile))

Port(1) .Address = _
CInt(VbGetPrivateProfileString("lptdata","PortlAddress",
IniFile))

Port(2) .Address = _
CInt(VbGetPrivateProfileString("lptdata","Port2Address",
IniFile))

Port(3) .Address = _
CInt(VbGetPrivateProfileString("lptdata","Port3Address",
IniFile))

'The port types :
Port(0) .PortType = -

VbGetPrivateProfileString("lptdata", "PortOType", IniFile)
Port(1) .PortType = _

VbGetPrivateProfileString("lptdata", "PortlType", IniFile)
Port(2) .PortType -- _

VbGetPrivateProfileString("lptdata", "Port2Type", IniFile)
Port(3) .PortType = _

VbGetPrivateProfileString("lptdata", "Port3Type", IniFile)

Parallel Port Complete

Programming Tools

Listing 4-4 : Code for finding and testing ports, and getting and saving initialization
data from an ini file .

	

(Sheet 3 of 14)

69

Chapter 4

'Port enabled?
Port(0) .Enabled = _

CInt(VbGetPrivateProfileString("lptdata",
"PortOEnabled",IniFile))

Port(1) .Enabled = _
CInt(VbGetPrivateProfileString("lptdata",
"PortlEnabled",IniFile))

Port(2) .Enabled -- _
CInt(VbGetPrivateProfileString("lptdata",
"Port2Enabled",IniFile))

Port(3) .Enabled = _
CInt(VbGetPrivateProfileString("lptdata",
"Port3Enabled",IniFile))

'The selected port
IndexOfSelectedPort =

Int(VbGetPrivateProfileString("lptdata", _
"IndexOfSelectedPort", IniFile))
End If
End Sub

Function ReadEcpMode%(TestAddress%)
'The Ecr mode is in bits 5, 6, and 7
EcrAddress = TestAddress + &H402
EcrData = Inp(EcrAddress)
ReadEcpMode = (EcrData And &HEO)
End Function

of

&H20

the ECR .

Function ReadEppTimeoutBit%(BaseAddress%)
'Reads and clears the EPP timeout bit (Status port bit 0) .
'Should be done after each EPP operation .
'The method for clearing the bit varies, so try 3 ways :
'1 . Write 1 to Status port bit 0 .
'2 . Write 0 to Status port, bit 0 .
'3 . Read the Status port again .
Dim StatusPortAddress%
StatusPortAddress = BaseAddress + 1
ReadEppTimeoutBit = BitRead(StatusPortRead(BaseAddress), 0)
Out StatusPortAddress, 1
Out StatusPortAddress, 0
ReadEppTimeoutBit = BitRead(StatusPortRead(BaseAddress), 0)
End Function

Listing 4-4 : Code for finding and testing ports, and getting and saving initialization
data from an ini file .

	

(Sheet 4 of 14)

70

	

Parallel Port Complete

Sub ShutDown()
WriteIniData
End
End Sub

Sub StartUp()
Dim PortExists%
Dim Index%
'Get information from the ini file .
GetIniData

'Load the forms .
frmMain .Left = (Screen .Width - frmMain .Width) / 2
frmMain .Top = (Screen .Height - frmMain .Height) / 2
Load frmSelectPort
frmSelectPort .optPortName(IndexOfSelectedPort) . Value
frmMain .Show
End Sub

Parallel Port Complete

Programming Tools

Sub SetEcpMode(EcpModeValue%)
'Store the Ecp mode's value and description in the Port array .
Port (IndexOfSelectedPort) .EcpModeValue -- EcpModeValue
Port (IndexOfSelectedPort) EcpModeDescription
GetEcpModeDescription(EcpModeValue)
EcrAddress = BaseAddress + &H402
'Read the ECR & clear bits 5, 6, 7 .
EcrData = Inp(EcrAddress) And &HIF
'Write the selected value to bits 5, 6, 7 .
EcrData = EcrData + EcpModeValue * &H20
Out EcrAddress, EcrData
End Sub

True

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file .

	

(Sheet 5 of 14)

71

Chapter 4

Function TestForEcp%(TestAddress%)
'Test for the presence of an ECP .
'If the ECP is idle and the FIFO empty,
'in the ECP's Ecr (at Base Address+402h),
'bit l(Fifo full)=0, and bit O(Fifo empty)=1 .
'The first test is to see if these bits differ from the
'corresponding bits in the Control port (at Base Address+2) .
'If so, a further test is to write 34h to the Ecr,
'then read it back . Bit 1 is read/write, and bit 0 is read-only .
'If the value read is 35h, the port is an ECP .
Dim EcrBitO%, EcrBitl%
Dim ControlBitO%, ControlBitl%
Dim ControlPortData%
Dim TestEcrAddress%
Dim OriginalEcrData%
TestForEcp = False
EcrAddress = TestAddress + &H402
'Read ECR bits 0 & 1 and Control Port bit 1 .
EcrData -- Inp(EcrAddress)
EcrBitO = BitRead(EcrData, 0)
EcrBitl = BitRead(EcrData, 1)
ControlPortData = ControlPortRead(TestAddress)
ControlBitl -- BitRead(ControlPortData, 1)
If EcrBitO = 1 And EcrBitl = 0 Then

'Compare Control bit 1 to ECR bit 1 .
'Toggle the Control bit if necessary,
'to be sure the two registers are different .
If ControlBitl = 0 Then

ControlPortWrite TestAddress, &HF
ControlPortData = ControlPortRead(TestAddress)
ControlBitl = BitRead(ControlPortData, 1)

End If
If EcrBitl <> ControlBitl Then

OriginalEcrData = EcrData
Out EcrAddress, &H34
EcrData = Inp(EcrAddress)
If EcrData -- &H35 Then

TestForEcp = True
End If
'Restore the ECR to its original value .
Out EcrAddress, OriginalEcrData

End If
End If
End Function

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file . (Sheet 6 of 14)

72

	

Parallel Port Complete

Function TestForEpp%(TestAddress%)
'Write to an Epp register, then read it back .
'If the reads match the writes, it's probably an Epp .
'Skip this test if TestAddress = 3BCh .
Dim ByteRead%
Dim StatusPortData%
Dim EppAddressPort%
Dim TimeoutBit%
Dim StatusPortAddress%
StatusPortAddress = TestAddress + 1
TestForEpp = False
'Use EppAddressPort for testing .
'SPPs, ECPs, and PS/2 ports don't have this register .
EppAddressPort = TestAddress + 3
Out EppAddressPort, &H55
'Clear the timeout bit after each EPP operation .
TimeoutBit = ReadEppTimeoutBit%(TestAddress%)
ByteRead = Inp(EppAddressPort)
TimeoutBit = ReadEppTimeoutBit%(TestAddress%)
If ByteRead = &H55 Then

Out EppAddressPort, &HAA
TimeoutBit = ReadEppTimeoutBit%(TestAddress%)
ByteRead = Inp(EppAddressPort)
TimeoutBit = ReadEppTimeoutBit%(TestAddress%)
If ByteRead = &HAA Then

TestForEpp = True
End If

End If
End Function

Programming Tools

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file .

	

(Sheet 7 of 14)

Parallel Port Complete 73

Function TestForEpp%(TestAddress%)
'Write to an Epp register, then read it back .
'If the reads match the writes, it's probably an Epp .
'Skip this test if TestAddress = 3BCh .
Dim ByteRead%
Dim StatusPortData%
Dim EppAddressPort%
Dim TimeoutBit%
Dim StatusPortAddress%
StatusPortAddress = TestAddress + 1
TestForEpp = False
'Use EppAddressPort for testing .
'SPPs, ECPs, and PS/2 ports don't have this register .
EppAddressPort = TestAddress + 3
Out EppAddressPort, &H55
'Clear the timeout bit after each EPP operation .
TimeoutBit = ReadEppTimeoutBit%(TestAddress%)
ByteRead = Inp(EppAddressPort)
TimeoutBit = ReadEppTimeoutBit%(TestAddress%)
If ByteRead = &H55 Then

Out EppAddressPort, &HAA
TimeoutBit = ReadEppTimeoutBit%(TestAddress%)
ByteRead = Inp(EppAddressPort)
TimeoutBit = ReadEppTimeoutBit%(TestAddress%)
If ByteRead = &HAA Then

TestForEpp = True
End If

End If
End Function

Programming Tools

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file .

	

(Sheet 7 of 14)

Parallel Port Complete 73

Chapter 4

Function TestForPS2%(TestAddress%)
'Tests a parallel port's Data port for bidirectional ability .
'First, try to tri-state (disable) the Data outputs by
'setting bit 5 of the Control port .
'Then write 2 values to the Data port and read each back
'If the values match, the Data outputs are not disabled,
'and the port is not bidirectional .
'If the values don't match,
'the Data outputs are disabled and the port is bidirectional .
Dim DataInput%
Dim ControlPortData%
Dim OriginalControlPortData%
Dim OriginalDataPortData%

'Set Control port bit 5 .
ControlPortWrite TestAddress, &H2F
TestForPS2 = False
'Write the first byte and read it back :
DataPortWrite TestAddress, &H55
DataInput -- DataPortRead(TestAddress)
'If it doesn't match, the port is bidirectional .
If Not DataInput -- &H55 Then TestForPS2 = True
'If it matches, write another and read it back .
If DataInput = &H55 Then

DataPortWrite TestAddress, &HAA
DataInput = DataPortRead(TestAddress)
'If it doesn't match, the port is bidirectional
If Not DataInput = &HAA Then

TestForPS2 = True
End If

End If
'Reset Control port bit 5
ControlPortWrite TestAddress, &HF
End Function

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file . (Sheet 8 of 14)

74

	

Parallel Port Complete

Parallel Port Complete

Programming Tools

Function TestForSpp%(TestAddress%)
'Write two bytes and read them back .
'If the reads match the writes, the port exists .
Dim ByteRead%
'Be sure that Control port bit 5 = 0 (Data outputs enabled)
ControlPortWrite TestAddress, &HF
TestForSpp = False
DataPortWrite TestAddress, &H55
ByteRead = DataPortRead(TestAddress)
If ByteRead = &H55 Then

DataPortWrite TestAddress, &HAA
ByteRead = DataPortRead(TestAddress)
If ByteRead = &HAA Then

TestForSpp = True
End If

End If
End Function

Listing 4-4 : Code for finding and testing ports, and getting and saving initialization
data from an ini file .

	

(Sheet 9 of 14)

75

Chapter 4

Function TestPort%(Portlndex%)
'Test for a port's presence, and if it exists, the type of port .
'In order, check for presence of ECP, EPP, SPP, and PS/2 port .
'Update the information in the Port array and the display .

PortType
TestAddress = Port(PortIndex) .Address
'Begin by hiding all port details .
frmSelectPort .lblAddress(PortIndex) .Visible = False
frmSelectPort .lblType(PortIndex) .Visible = False
frmSelectPort .cboEcpMode(PortIndex) .Visible = False
EcpExists = TestForEcp(TestAddress)
If EcpExists Then

PortType = "ECP"
'Read the current Ecp mode .
EcpModeValue = ReadEcpMode(TestAddress)

Else
'If it's not an ECP, look for an EPP .
'If TestAddress = 3BCh, skip the EPP test .
'EPPs aren't allowed at 3BCh due to possible conflict
'with video memory .
frmSelectPort .cboEcpMode(PortIndex) .Visible = False
If TestAddress = &H3BC Then

EppExists = False
Else

EppExists = TestForEpp(TestAddress)
End If
frmSelectPort .cboEcpMode(PortIndex) .Visible = False
EppExists = TestForEpp(TestAddress)
If EppExists Then

PortType = "EPP"

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file . (Sheet 10 of 14)

76

	

Parallel Port Complete

Dim
Dim
Dim

EcpModeValue%
TestAddress%

EcpModeDescription$

TestPort = False
EcpExists = False
EppExists = False
SppExists = False
PS2Exists = False

End

If

Else
'If it's not an EPP, look for an SPP .
SppExists = TestForSpp(TestAddress)

SppExists Then
'Test for a PS/2 port only if
'(because if the port doesn't
'it will pass the PS/2 test!)
PS2Exists = TestForPS2(TestAddress)

Then
= "PS/2"

End
if

if

If PS2Exists
PortType

Else
PortType

End If
Else

PortType
End If
if

= "SPP"

the SPP
exist,

PortType = "" Then
frmSelectPort .optPortName(Portlndex)

El

Port(PortIndex) .EcpModeValue = EcpModeValue
Port(PortIndex) .EcpModeDescription -- -
GetEcpModeDescription(EcpModeValue)

End If
End If
UpdateLabels
End Function

Parallel Port Complete

.Enabled

Programming Tools

exists

False

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file .

	

(Sheet 11 of 14)

77

Port(PortIndex) .PortType =
Port(PortIndex) .Address
Port(PortIndex) .Enabled
e
TestPort = True

""
0
False

Port(PortIndex) .Enabled = True
Port(PortIndex) .PortType = PortType
Port(PortIndex) .Enabled = True
If EcpExists Then

Chapter 4

Sub UpdateLabels()
'Use the information in the Port array to update the display .
Dim Index%
Dim EcpModeValue%
For index = 0 To 3

frmSelectPort .lblAddress(Index) .Caption =
Hex$(Port(Index) .Address) + "h"

If Port(Index) .Enabled = True Then
frmSelectPort .optPortName(Index) .Enabled = True
frmSelectPort .lblAddress(Index) .Visible = True
frmSelectPort .lblType(Index) .Caption =

Port(Index) .PortType
frmSelectPort .lbIType(Index) .Visible = True
If Port(Index) .PortType = "ECP" Then

EcpModeValue = ReadEcpMode(Port(Index) .Address)
frmSelectPort .cboEcpMode(Index) .ListIndex =
EcpModeValue
Port(Index) .EcpModeValue = EcpModeValue
Port(Index) .EcpModeDescription = -
GetEcpModeDescription(EcpModeValue)
frmSelectPort .cboEcpMode(Index) .Visible = True

Else

Else

End If
Next Index
End Sub

frmSelectPort .cboEcpMode(Index) .Visible = False
End If

frmSelectPort .optPortName(Index) .Enabled = False
frmSelectPort .lblAddress(Index) .Visible = False
frmSelectPort .lblType(Index) .Visible = False
frmSelectPort .cboEcpMode(Index) .Visible -- False

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file . (Sheet 12 of 14)

78

	

Parallel Port Complete

Chapter 4

Sub UpdateLabels()
'Use the information in the Port array to update the display .
Dim Index%
Dim EcpModeValue%
For index = 0 To 3

frmSelectPort .lblAddress(Index) .Caption =
Hex$(Port(Index) .Address) + "h"

If Port(Index) .Enabled = True Then
frmSelectPort .optPortName(Index) .Enabled = True
frmSelectPort .lblAddress(Index) .Visible = True
frmSelectPort .lblType(Index) .Caption =

Port(Index) .PortType
frmSelectPort .lbIType(Index) .Visible = True
If Port(Index) .PortType = "ECP" Then

EcpModeValue = ReadEcpMode(Port(Index) .Address)
frmSelectPort .cboEcpMode(Index) .ListIndex =
EcpModeValue
Port(Index) .EcpModeValue = EcpModeValue
Port(Index) .EcpModeDescription = -
GetEcpModeDescription(EcpModeValue)
frmSelectPort .cboEcpMode(Index) .Visible = True

Else

Else

End If
Next Index
End Sub

frmSelectPort .cboEcpMode(Index) .Visible = False
End If

frmSelectPort .optPortName(Index) .Enabled = False
frmSelectPort .lblAddress(Index) .Visible = False
frmSelectPort .lblType(Index) .Visible = False
frmSelectPort .cboEcpMode(Index) .Visible -- False

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file . (Sheet 12 of 14)

78

	

Parallel Port Complete

Sub WriteIniData()
Dim BaseAddressWrite%
Dim PortTypeWrite%
Dim Index%
Dim IniWrite

'Use Windows API call WritePrivateProfileString to save
'initialization information .
'If the ini file doesn't exist, it will be created and stored in
'the Windows directory .

'The port addresses :
IniWrite = WritePrivateProfileString -
("lptdata", "PortOAddress", CStr(Port(0) .Address), IniFile)
IniWrite = WritePrivateProfileString -
("lptdata", "PortlAddress", CStr(Port(1) .Address), IniFile)
IniWrite = WritePrivateProfileString -
("lptdata", "Port2Address", CStr(Port(2) .Address), IniFile)
IniWrite = WritePrivateProfileString -
("lptdata", "Port3Address", CStr(Port(3) .Address), IniFile)

'The port types :
IniWrite = WritePrivateProfileString -
("lptdata", "PortOType", Port(0) .PortType, IniFile)
IniWrite -- WritePrivateProfileString -
("lptdata", "PortlType", Port(1) .PortType, IniFile)
IniWrite = WritePrivateProfileString
("lptdata", "Port2Type", Port(2) .PortType, IniFile)
IniWrite = WritePrivateProfileString -
("lptdata", "Port3Type", Port(3) .PortType, IniFile)

Programming Tools

'Port enabled?
IniWrite = WritePrivateProfileString
("lptdata", "PortOEnabled", CStr(Port(0) .Enabled), IniFile)
IniWrite = WritePrivateProfileString -
("lptdata", "PortlEnabled", CStr(Port(l) .Enabled), IniFile)
IniWrite = WritePrivateProfileString -
("lptdata", "Port2Enabled", CStr(Port(2) .Enabled), IniFile)
IniWrite = WritePrivateProfileString -
("lptdata", "Port3Enabled", CStr(Port(3) .Enabled), IniFile)

Listing 4-4 : Code for finding and testing ports, and getting and saving initialization
data from an ini file .

	

(Sheet 13 of 14)

Parallel Port Complete

	

79

Chapter 4

'Find the selected port and save it :
Index = 4
Do
Index = Index - 1
Loop Until (frmSelectPort .optPortName(Index) .Value
Or Index = 0
IniWrite = WritePrivateProfileString("lptdata", _
"IndexOfSelectedPort", CStr(Index), IniFile)

End Sub

Function VbGetPrivateProfileString$(section$, key$,
Dim KeyValue$
'Characters returned
Dim Characters
KeyValue = String$(128, 0)
Characters = GetPrivateProfileStringByKeyName
(section, key, "', KeyValue, 127, file)
KeyValue = Left$(KeyValue, Characters)
VbGetPrivateProfileString = KeyValue
FunctionEnd

80

BaseAddress = &H378
Out BaseAddress, &HAA

as integer in 16-bit, long

True)

file$)

in 32-bit .

Listing 4-4: Code for finding and testing ports, and getting and saving initialization
data from an ini file . (Sheet 14 of 14)

For a short test routine, you can just place the port address in the code :
Out &H378, &HAA

Or, you can set a variable equal to the port's address, and use the variable name in
the program code :

Using a variable has advantages . If the port address changes, you need to change
the code in just one place. And for anyone reading the code, a descriptive variable
name is usually more meaningful than a number .
Most programs will run on a variety of computers, and even on a single computer,
the port that a program accesses may change . In this case, it's best to allow the
software or user to select a port address while the program is running.

The Port Menu
In Figure 4-l , the startup form contains a Port item in the Setup menu . Clicking on
Port brings up a form that enables users to find, test, and select ports. Clicking on
Find Ports causes the program to look for a port at each of the three standard port
addresses . If a port exists, the program tests it to find out whether it's an SPP,

Parallel Port Complete

[lptdata]
PortOAddress=888
PortlAddress=632
Port2Address=0
Port3Address=256
PortOType=ECP
PortlType=SPP
Port2Type=
Port3Type=SPP
PortOEnabled=-1
PortlEnabled=-1
Port2Enabled=0
Port3Enabled=-1
IndexOfSelectedPort=1

Programming Tools

Listing 4-5 : The contents of an ini file that stores information about the system
ports .

PS/2-type, EPP, or ECP. If it's ECP, the program displays a combo box that
shows the currently selected ECP mode, which the user can change .
To select a port, you click its option button . The Test Port command button tests
an individual port and displays the result .
You can also use the routines to test a port under program control. For example, if
you're writing a program that will run on many different computers, you may want
the software to detect the port type so it can choose the best communications
mode available .

Adding a Non-standard Port
The Add A Port command button brings up a form that allows you to enter an
address of a user port with a non-standard address. You can then use Test Port to
determine its type .

Detecting an ECP
In testing a port, you might think that the first step would be to test for an SPP,
and work your way up from there . But if the port is an ECP, and it happens to be
in its internal SPP mode, the port will fail the PS/2 (bidirectional) test . For this
reason, the TestPort routine in Listing 4-4 begins by testing for an ECP.
An ECP has several additional registers . One of these, the extended control regis-
ter (ECR) at base address + 402h, is useful in detecting an ECP.

Parallel Port Complete 81

Chapter 4

Microsoft's ECP document (see Appendix A) recommends a test for detecting an
ECP. First, read the port's ECR at and verify that bit 0 (FIFO empty) =1 and bit 1
(FIFO full) =0. These bits should be distinct from bits 0 and 1 in the port's Control
register (at base address + 2) . You can verify this by toggling one of the bits in
the Control register, and verifying that the corresponding bit in the ECR doesn't
change . A further test is to write 34h to the ECR and read it back . Bits 0 and 1 in
the ECR are read-only, so if you read 35h, you almost certainly have an ECP.
If an ECP exists, you can read and set the port's internal ECP mode in bits 5, 6,
and 7 of the ECR. In Listing 4-4, a combo box enables users to select an ECP
mode when a port is ECP. Chapter 15 has more on reading, setting, and using the
ECP's modes.

Detecting an EPP
If the port fails the ECP test, the program looks for an EPP. Like the ECP, an EPP
has additional registers . In the EPP, they're at base address + 3 through base
address + 6. These additional registers, and the EPP's timeout bit, provide a cou-
ple of ways to test for the presence of an EPP.
One test is to write two values to one of the EPP registers and read them back,
much as you would test for an SPP. If there is no EPP-compatible peripheral
attached, the port won't be able to complete the EPP handshake. When the trans-
fer times out, the state of the Data port and the EPP register are undefined. How-
ever, in my experiments, I was able to read back values written to an EPP register,
while other port types failed the test . This is the method used in Listing 4-4. If the
reads aren't successful, either the port isn't an EPP or it is an EPP but doesn't pass
this test .
If the port's base address is 3BCh, the routine skips the EPP test . This address
isn't used for EPPs because the added EPP registers (3BFh-3C3) may conflict
with video memory. One such conflict is register 3C3h, which may contain a bit
that enables the system's video adapter. Writes to this register can blank the
screen and require rebooting!
Another possible test is to detect the EPP's timeout bit, at bit 0 of the Status port
(base address + 1) . On ports that aren't EPPs, this bit is unused . On an EPP, if a
peripheral doesn't respond to an EPP handshake, the timeout bit is set to 1 . If you
can detect the setting of the timeout bit, then clear the bit and can read back the
result, you almost certainly have an EPP.
The problem with using the timeout bit to detect an EPP is that ports vary in how
they implement the bit . On some EPPs (type 1 .9), the timeout bit is set if you
attempt an EPP transfer with nothing attached to the port . On others (type 1 .7), to
force a timeout you must tie nWait (Busy, or Status port bit 7) low. Ports also vary

82

	

Parallel Port Complete

Programming Tools

in the method required to clear the timeout bit. On some ports, you clear the bit to
0 by writing 1 to it . On others, reading the Status port twice clears the bit. And it's
possible that on still other ports, you clear the bit in the conventional way, by writ-
ing 0 to it.
So, to use the timeout bit to detect an EPP, you need to bring Status bit 7 low (in
case it's type 1 .7), then attempt an EPP read or write cycle, by writing a byte to
base address + 3, for example. Then read the timeout bit . If it's set to 1, write
both 1 and 0 to the bit to attempt to clear it, then read the bit . If it's zero, you have
an EPP. (You can also use this difference to detect whether an EPP is type 1 .7 or
1 .9 .) Some controller chips, such as Intel's 82091, don't seem to implement the
timeout bit at all, or at least don't document it . (The chip's data sheet doesn't men-
tion the timeout bit.)

Detecting an SPP
If a port fails both the ECP and EPP tests, it's time to test for an SPP. To do this
the program writes two values to the Data port and reads them back . If the values
match, the port exists . Otherwise, the port doesn't exist, or it's not working prop-
erly . Also note that the port-test routine only verifies the existence of the Data
port . It doesn't test the Status and Control lines. The other port types should also
pass this test .

Detecting a PS/2-type Port
If the port passes the SPP test, the final test is for simple bidirectional ability
(PS/2-type). The program first tries to put the port in input mode by writing 1 to
bit 5 in the port's Control register (base address + 2) . If the port is bidirectional,
this tri-states the Data port's outputs. Then the test writes two values to the Data
port and reads each back. If the outputs have been tri-stated, the reads won't
match what was written, and the port is almost certainly bidirectional . If the reads
do match the values written, the program is reading back what it wrote, which tells
you that the Data-port outputs weren't disabled and the port isn't bidirectional .
An ECP set to its internal PS/2 mode should also pass this bidirectional test . Some
EPPs support PS/2 mode, while other don't. You should test for a PS/2-type port
only after you've verified that a port exists at the address. Because the PS/2 test
uses the failure of a port read to determine that a port is bidirectional, a non-exis-
tent port will pass the test!

Using the Port Information
The program stores information about the ports in a user-defined array. For each
port, the array stores the base address, port type, and whether or not it's the

Chapter 4

selected port . For ECPs, the array also stores two values : an integer equal to the
ECP's currently selected internal mode (as stored in the ECR) and a string that
describes the mode ("SPP", "ECP", etc.) . The port's array index ranges from 0 to
2, or Lpt number - 1, with the user port, if available, having an index of 3 .
Applications can use the information in the port array to determine which port is
selected, and what its abilities are.
When the programends, the ini file stores the port information. When the program
runs again, it reads the stored information into the port array. This way, the pro-
gram remembers what ports are available and which port the program used last . If
you add, remove, or change the configuration of any ports in the system, you'll
need to click Find Ports to update the information.

Automatic Port Selection
Rather than testing each of the standard addresses to find existing ports, another
approach is to read the port addresses stored in the BIOS data area beginning at
40:00. In 16-bit programs, you can use VbAsm's VbPeekW (See Chapter 2) to
read these addresses :

Dim PortAddress(1 to 3)~
Dim Segment
Dim LptNumber~
`memory segment of BIOS table
Segment = &H40
For LptNumber = 1 to 3

Offset = LptNumber * 2 + 6
PortAddress(LptNumber) = vbPeekw(Segment, Offset)

Next LptNumber

Autodetecting a Peripheral
An intelligent peripheral can enable an application to detect its presence automat-
ically . For example, on power-up, the peripheral might write a value to its Status
lines. The PC's software can read each of the standard port addresses, looking for
this value, and on detecting it, the PC's software can write a response to the Data
lines . When the peripheral detects the response, it can send a confirming value
that the PC's software recognizes as "Here I am!" The program can then select
this port automatically, without the user's having to know which port the periph-
eral connects to .

84

	

Parallel Port Complete

Experiments
You can learn a lot about the parallel port by doing some simple experiments with
it . This chapter presents a program that enables you to read and control each of the
port's 17 bits, and an example circuit that uses switches and LEDs for port exper-
iments and tests .

Viewing and Controlling the Bits

Experiments

5

Figure 5-1 shows the form for a program that enables you to view and control the
bits in a port's Data, Status, and Control registers . The program is based on the
form template described in Chapter 4. Listing 5-1 shows the code added to the
template for this project.
The screen shows the Data, Status, and Control registers for the port selected in
the Setup menu. Clicking the ReadAll button causes the program to read the three
registers and display the results. Clicking a Data or Control bit's command button
toggles the corresponding bit and rereads all three registers . The Status port is
read-only, so it has no command buttons. On the Control port, bits 6 and 7 have no
function and can't be written to . These bits do have command buttons, and you
can verify that the values don't change when you attempt to toggle them . On an
SPP, Control port bit 5 is read-only, and its state is undefined. In other modes, set-

Chapter 5

Figure 5-1 : The form for the port-test program.

ting bit 5 to 1 disables the Data outputs, so if this bit is 1, you won't be able to tog-
gle the Data-port bits .

Circuits for Testing

t Parallel Port Test Program
Setup

Rea

rData Port 2Eh

7 6 5 -0 3 2 1

0 Il 1 II 1 1 1

_ _- _

	

_.

Control Port 7h

6'5 A',3 1 2

-Status Port 38h

7 6 5 4 3 2 1 8

~.J

Figure 5-2 Figure 5-3, and Figure 5-4 show circuits you can use to test the opera-
tion of a parallel port, using Figure 5-1's program or your own programs .
In Figure 5-2, the port's Data outputs each control a pair of LEDs. As you click on
a Data button, the LEDs should match the display : red for 1 and green for 0.
Instead of using LEDs, you can monitor the bits with a voltmeter, logic probe, or
oscilloscope .
In Figure 5-3, switches determine the logic states at the Status inputs . Opening a
switch brings an input high, and closing it brings the input low. After clicking
Read Ports, the display should match the switch states .
Figure 5-4 shows the Control port . As with the Data port, a pair of LEDs shows
the states of the Control outputs. On an SPP, writing 1 to a Control bit enables you
to read the state of the switch connected to that bit. If you have an ECP, EPP, or
PS/2-type port, the Control bits may be open-collector type only when in SPP

gg

	

Parallel Port Complete

74HCT244

GND 18-25

	

S S ~-

	

~,~' -

PARALLEL -
CABLE

Figure 5-2: Buffer and LEDs for monitoring Data outputs.

2202 n,RGn

Experiments

Parallel Port Complete

	

87

PARALLEL PORT
D-CONNECTOR l IG

OCTAL BUFFER
+5V
O

zzen gg,~EN

D0
2
- SS
PARALLEL

8
2200 _~ ~_R~E~D_

CABLE >_

2204 ggtGREEN

D 3 SS I ., 6
2205 REL

--

2204 gg GREEN

D2
4

SS
4

2201?
~~

S i .

220i~ gwtGREEN
2D SS f 220f~ NRED

19 2G 220 g~GREEN

D4 6 S - 1 1
220Q

220f~ ggtGREEN

D5 7 SS 13
220f1

~-

2204 °~~GREEN

D6 8 SS 15
2205

2202 gwtGREEN

D7 9 SS
l7

Chapter 5

PARALLEL PORT
D-CONNECTOR

S3

S4

S5

S6

S7

GND

PARALLEL
CABLE

1 = SWITCH OPEN
0 = SWITCH CLOSED

1/2 74HCT244
OCTAL BUFFER

	

+SV

1/6 7407
HEX OPEN-COLLECTOR BUFFER

Figure 5-3: Driver and switches for testing Status port .

88

	

Parallel Port Complete

PARALLEL PORT
D-CONNECTOR

GND

PARALLEL
CABLE

Parallel Port Complete

19

1/2 74HCT244
OCTAL BUFFER

220f1 °~~GREEN

Figure 5-4 : Bufifer/driver, LEDs, and switches for Control-port testing .

Experiments

+5V

89

4/6 7407
HEX OPEN-COLLECTOR BUFFER 4 .7K

21 /I II

4 .7K
4 3

4 .7K
6 5
\

4 .7K
8 9

1 = SWITCH OPEN
0 = SWITCH CLOSED

C0 SS
-11

220f~

2?04

NRED

g~GREEN
C1 14 S 7

220 ~

V~~ -

2204 °figtGREEN
C2 l6 sS 5

220^ (t N~ RED

2204 ggtGREEN
C3 17 S 3

220

Chapter 5

Sub cmdControlBitToggle Click (Index As Integer)
`toggle a bit at the Control port
Dim ControlPortData As Integer
ControlPortData = ControlPortRead(BaseAddress)
BitToggle ControlPortData, Index
ControlPortWrite BaseAddress, ControlPortData
ReadPorts (BaseAddress)
End Sub

Sub cmdDataBitToggle Click (Index As Integer)
`toggle a bit at the Data port
Dim DataPortData As Integer
DataPortData = DataPortRead(BaseAddress)
BitToggle DataPortData, Index
DataPortWrite BaseAddress, DataPortData
ReadPorts (BaseAddress)
End Sub

Sub cmdReadAll Click ()
ReadPorts (BaseAddress)
End Sub

Listing 5-1 : Code for Figure 5-1 `s program. (Sheet 1 of 2)

90 Parallel Port Complete

1Bit(BitNumber) .Caption =

5-1 `s program . (Sheet 2 of 2)

in doubt, don't connect the 7407

..__ .., __~ _.___ _~_ __ .._ r:____..

Chapter 5

PARALLEL PORT
D-CONNECTOR

D0

D1

D2

D3

D4

D5

D6

D7

C3

GND

2

3

4

18-25 Sf

PARALLEL
CABLE

C3=1 ENABLES DATA OUTPUTS
C3=8 DISABLES DATA OUTPUTS

74HCT244
OCTAL BUFFER

1 = SWITCH OPEN
0 = SWITCH CLOSED

Figure 5-5: Circuit for reading external inputs on a bidirectional Data port.

92

	

Parallel Port Complete

Experiments

The 330-ohm resistors protect the circuits on both ends of the link in case the par-
allel port's outputs and the buffer outputs happen to be enabled at the same time .
The resistors limit the current in each line to under 15 milliamperes .
You can connect both Figure 5-2's andFigure 5-5's circuits to the Data port at the
same time . Connect the buffer inputs of the '244 (pins, 2, 4, etc.) in Figure 5-2 to
the PC (parallel-port D-sub connector) side of the 330-ohm resistors in Figure 5-5.

Buffers and Drivers
The circuit uses HCTMOS-family driver/buffers at inputs DO-D7 and CO-C3 and
outputs S3-S6. Using HCT-family logic has two benefits . HCT devices have
TTL-compatible input voltages, which are compatible with the parallel-port's out-
puts . Plus, unlike TTL logic, HCT-family outputs can both source and sink
enough current to power an LED from either a high or low output .
The outputs that drive inputs CO-C3 are 7407 open-collector buffers. One of the
remaining 7407 buffers drives S7, only because any other choice would require
adding another chip to the circuit . (You could use a 7407 in place of the 'HC14 in
Figure 5-5 as well . Just remember to add a pull-up resistor, and be aware that the
7407 doesn't invert like the 'HC14.)
The 7407's open-collector outputs help to protect the Control port's outputs. Each
Control output also connects to an input buffer. In early parallel ports, the Con-
trol-port outputs were 7405 open-collector inverters with 4.7K pull-up resistors.
When an open-collector Control output is high, you can drive its input buffer with
another digital output, which you can then read at the Control register . In newer
designs, the Control outputs may be push-pull type, so if you want a design to be
usable with any port, don't use the Control bits as inputs .

Output Types

To understand how to use the Control lines (and bidirectional Data lines) for
input, it helps to understand the circuits that connect to the port pins . Output con-
figurations common to digital logic are open-collector/open-drain, totem-pole,
push-pull, and 3-state.

Open Collector and Open Drain
Figure 5-6A shows an open-collector output . The collector of its output transistor
is open, or not connected to any circuits on-chip. To use the output, you have to
add a pull-up resistor to +SV. When the output transistor switches on, the low
resistance from the output pin to ground results in a logic-low output. When the

Chapter 5

LOGIC HIGH (1)

(A) Open collector outputs :
When two open-collector outputs connect together,
any low output brings the combined output low .

ON

VOUT=+4 .9 TO +5V
(DRIVING LSTTL
OR HCMOS INPUT)

+5V

+5V

LOW RESISTANCE

	

OFF
TO +5V

ON -

+5V

EXTERNAL PULLUP
RESISTOR TO +SV

	

4 .7K

VOUT=0 .4V
MAXIMUM

LOGIC LOW (0)

+5V

LOW RESISTANCE
TO GND

60Q~ ~~ VOUT=2 .4V

	

600
- VOUT=0 .4V

OFF ~

	

MINIMUM

	

ON

	

^/

	

~ MAXIMUM

LOW RESISTANCE
TO GND

LOGIC HIGH (1)

	

LOGIC LOW (0)

(B) Totem-pole outputs :

Cant be tied together . If one output is high and the other is low,

the logic level is unpredicatable and the resulting high currents

may damage the components .
+5V

OE

OE A Y
0 0 0
0 1 I
1 0 Z
I

	

1 Z

	

Z = HIGH IMPEDANCE

(C) 3-state outputs :
When _OE is low, the Y output follows the A input .
When OE is high, the output is high impedance .

Figure 5-6 : Output types used in digital logic .

g4

	

Parallel Port Complete

Aout

OPEN-COLLECTOR
DRIVER

Ain

Parallel Port Complete

+5V

Aout~BoutlAin ,Bin

OPEN-COLLECTOR
DRIVER

I NPUT

	

f NPUT
BUFFER

	

BUFFER

Experiments

Figure 5-7 : A simple way to make a bidirectional link is to use open-collector
drivers . When Aout is high, Ain follows Bout . When Bout is high, Bin follows Aout .

output transistor is off, the pull-up resistor brings the output pin to +SV. Another
name for the pullup resistor is passive pullup .
An advantage to open-collector logic is the ability to tie two or more outputs
together . When any of the outputs goes low, the low resistance from the output to
ground brings the combined output low.
This arrangement is sometimes called a wired-OR output, though it actually
behaves like an OR gate only if you assume negative logic, where a low voltage is
a logic 1 and a high voltage is logic 0. Using the more common positive logic, if
the individual gates are non-inverting buffers, the circuit behaves like an AND
gate : any low input brings the combined output low. If the gates are inverters, the
circuit is a NOR gate : any high input brings the combined output low .
You can use the ability to tie outputs together to create a bidirectional data line .
Figure 5-7 shows an example of a link with two nodes . Each node has an
open-collector output and an input buffer . When 1 is written to Aout, the input
buffers follow Bout. When 1 is written to Bout, the input buffers follow Aout.
With this arrangement, you can send data in either direction, one way at a time . If
both nodes' outputs are low at the same time, the inputs will be low, and the
pull-up resistor will limit the current.
In a link with multiple lines like this, you can configure the individual bits at each
node to act as inputs or outputs according to the needs of your circuit .

95

B m B
B 1 B
1
1

m
1

B
1

Chapter 5

A disadvantage to open-collector logic is its slow switching speed. When an out-
put switches from low to high, the cable's capacitance has to charge through the
resistance of the pull-up. The larger the resistance, the more slowly the output
voltage changes.
In CMOS components, the equivalent to open-collector is the open-drain output .
An example is the 74HCT03, a CMOS quad NAND gate with open-drain outputs.
The technology is different, but the operation is much the same .
Some NMOS and CMOS devices have outputs that behave in a way similar to
open-collector or open-drain outputs. Instead of an external, passive pull-up, this
type of device has an internal transistor with a high resistance that acts as weak,
active pull-up. As with open-collector logic, writing 1 to this type of output
enables you to read an external logic signal at the bit. The ports on the 8051 and
80C51 microcontrollers are examples of this type of output . Another name for
these outputs is quasi-bidirectional .

Totem Pole
In contrast to open-collector logic, many LSTTL devices use a type of output
called totem pole, with two transistors stacked one above the other. Figure 5-6B
illustrates. When the output is low, the bottom transistor conducts, creating a
low-resistance path from the output to ground, as in an open-collector output .
When the output is high, the top transistor conducts, creating a low-resistance path
to +SV. The original parallel port used the totem-pole outputs of a 74LS374 to
drive the Data lines (DO-D7) .

In TTL logic, the resistance from a logic-high output to +SV is greater than the
resistance of a logic-low output to ground, so a totem-pole output can sink more
current to ground than it can source from +SV .
Their lower output resistance means that as a rule, totem-pole outputs can switch
faster than open-collector outputs. But it also means that the outputs aren't suit-
able for bidirectional links . If you tie two totem-pole outputs together, if one is
high and the other is low, you have one output with a low resistance to +SV and
another with a low resistance to ground . The result is an unpredictable logic level
and large currents that may destroy the components involved .
Tying a totem-pole output to an open-collector output is OK as long as the
open-collector output stays high . If the open-collector output goes low and the
totem-pole output is high, you can end up with the same high current and unpre-
dictable result .
On the parallel port, you can avoid the problem by using only open-collector out-
puts to drive the Control-port inputs on the parallel port . If you do connect a

Experiments

totem-pole output to an open-collector output, a 330-ohm series resistor in the line
will protect the circuits (though it will slow the switching speed) .

Push-pull
Outputs on most digital CMOS logic chips have complementary outputs that are
similar to totem-pole, except that the current-sourcing and sinking abilities of the
outputs are equal. This type of output is called push-pull.

3-state
A third type of output is 3-state, or tri-state, which has a control signal that dis-
ables the outputs entirely . For all practical purposes, disabling, or tri-stating, an
output electrically disconnects it from any circuits it physically connects to . Fig-
ure 5-6C illustrates. When the Output Enable line (OE) is low, the output follows
the input. When OE is high, both output transistors are off and the output has no
effect on external circuits .
Outputs that connect to computer buses are often 3-state, with address-decoding
circuits controlling the output-enable pins . This enables memory chips and other
components to share a data bus, with each enabled only when the computer selects
the component's addresses.
As with totem-pole logic, if two connected 3-state outputs are on at the same time,
the result will be unpredictable. If you can't guarantee the behavior of the outputs
in your circuit, open-collector is the safest choice .
Three-state logic also requires an extra input to control each set of outputs. One
output-enable bit typically controls all of the bits in a data bus. With open-collec-
tor logic, you can easily configure individual bits as either inputs or outputs, with
no extra control lines required .

Component Substitutions

If you don't have the exact chips on hand for the circuits in this chapter, you can
substitute . With some cautions, you can use almost any HC, HCT, or TTL/LSTTL
inverters in many simple circuits . The buffer/driver chips are recommended
because they have stronger drivers and their inputs have hysteresis, which gives a
clean output transition even when an input is noisy or changes slowly . If you use
the Control port for input, open-collector drivers will protect the circuits, as
described above.

Chapter 5

Logic Families
If you use a 74HC-family buffer instead of the 74HCT244 at DO-D7, add a l0K
pullup resistor from each buffer's input to +SV. The pullup ensures that the port's
outputs will go high enough to meet the 74HC-family's minimum for a logic high.
If you don't use a pullup, the circuit will probably work . However, a logic-high
TTL output is usually guaranteed to be just 2.4V, while SV HC-family logic
requires at least 3 .SV for a logic-high input. HCT-family logic is designed to work
with TTL logic voltages, so pull-ups aren't needed .
The Control outputs should already be pulled up by the port circuits, so you
shouldn't have to add pullups to them .
You can use a 74LS244 buffer instead of the 74HCT244, but because TTL logic
can sink, but not source, enough current to drive an LED, remove the red LEDs
and their current-limiting resistors . The green LEDs will light when the corre-
sponding outputs are low, and they will be off when the corresponding outputs are
high .
If you use 74HCT240 inverting buffers, swap the red and green LEDs . (Be sure to
keep the polarity of the LEDs correct . The cathode always connects to the more
negative voltage.) With inverters, the switches will read 1 when closed and 0
when open .

Switches and Power Supplies
You can use any SPST (single-pole, single-throw) toggle or slide switches to con-
trol the Data, Status, and Control inputs . Power the circuit with any +SV supply
that can provide at least 300 milliamperes . (The LEDs use most of the current.)

Inverting Bits in Hardware
One reason you might use inverters for some of the bits is to reinvert the bits that
the port's circuits invert between the connector and the register where you read
the port . If you use inverting buffers and drivers for just these bits, you don't have
to reinvert bits in software when you read or write to the ports.
For example, in Figure 5-3 you could replace bit 7's buffer with an inverting
buffer such as a 7405 . If the inverter is an ordinary LSTTL or HCMOS logic gate
(not a driver), wire the inverter's output to the 7407's input, and let the 7407 drive
the line .
You could also invert the signal by replacing the normally open switch with a nor-
mally closed one. Or rewire the normally open switch with a pull-down resistor
instead of a pull-up, so that an open switch is logic-low rather than logic-high .
With TTL and HCTMOS inputs, however, a pull-up resistor gives better noise
immunity . (Noise is usually a greater problem when the switch is open . With a

98

	

Parallel Port Complete

Experiments

pull-up, there's a 3V difference between +SV and the minimum TTL logic-high
input of 2V. With a pull-down, there's just 0.8V between 0V and the maximum
logic-low input.)
Using any of these approaches to reinvert the inverted signals, the values that you
write to a port will match the bits at your outputs, with no software complement-
ing required . But if you use any code that assumes that the bits will be inverted as
usual, you'll either have to change the routines or reinvert the bits elsewhere in
your program. The examples in this book assume no special inversions in the
hardware .

Cables & Connectors for Experimenting

Connecting a printer or another commercial product to a parallel port is usually
just a matter of plugging the device's cable into the computer and the printer. But
for experimenting, you need a cable that allows access to all of the lines. There are
several options, depending on whether you're soldering or wire-wrapping compo-
nents onto perfboard, or using a solderless breadboard .
One approach is to use a standard printer cable and wire a mating Centronics con-
nector to your circuits . This is probably the best solution because you can use a
readily available shielded printer cable for the link from the computer to your
device . You can buy PC-board-mountable connectors that solder onto perfboard .
Or you can use a solder-cup connector and solder individual wires to the connec-
tor, with the other ends of the wires soldered to perfboard or plugged into a solder-
less breadboard.
Another option is to use a cable with D-sub connectors on both ends . Although
there are PC-board-mountable D-subs, the pin spacings on the connector don't
match the 0.1" grid used by most perfboards . If you want to use perfboard, you'll
need to look for one with a hole pattern that will accept a D-sub. Of course, if
you're designing your own printed-circuit board, you can add holes and solder
pads for the D-sub. Or use a solder-cup D-sub and solder the individual wires to
perfboard or plug them into a breadboard.
Yet another possibility is to use ribbon cable with a dual-row socket connector
crimped onto one end, and plug the connector into a dual header soldered onto
perfboard.
For solderless breadboards, which typically have two parallel rows of contacts
spaced 0.3" apart, a convenient solution is to use a ribbon cable with a D-sub on
one end and a ribbon-cable DIP connector on the other. The DIP connector has
two rows of pins with the same spacing as a DIP IC : the pins within a row are 0.1"

Parallel Port Complete

	

99

Chapter 5

Cautions

apart, and the rows are 0.3" or 0.5" apart. Use an IDC (insulation-displacement
connector) tool or a vise to press the cable onto the contacts . Then plug the con-
nector into a breadboard or perfboard .
It's best to limit cable length to 10 feet if possible, 15 at most. You can try longer
cables - even much longer - and you may be able to use them without problems .
But if you stretch the limits like this, there are no guarantees . Chapter 6 has more
on cables and cable length .

Making an Older Port Bidirectional
If you have one of the older expansion cards that uses a 74LS374 for the Data out-
puts, a fairly simple modification will enable you to use the Data port for input.
Although buying a board with a true bidirectional port is a quick and inexpensive
solution, this section describes an alternative for the determined .

First of all, be warned that this method works only with parallel-port cards that
use the TTL chips described below. Not all cards will follow the exact design of
the original port, so unless you happen to have a schematic of your card, you'll
need to do some signal tracing with an ohmmeter to find out exactly how the sig-
nals on your card are routed . The modification requires cutting one lead on the
74LS374 and adding at least one jumper wire . You've been warned ; proceed at
your own risk!
Second, there is one difference about cards modified with this method . The modi-
fication allows you to use Control bit 5 to enable and disable the Data outputs, as
you do on other bidirectional ports. On these other ports, you can read this bit as
well as write to it . On a port that's modified to be bidirectional, the bit is
write-only, because the early cards have no input buffer for Control bit 5 (unless
you can find a spare buffer and wire the connections) . Because of this difference,
you have to be careful not to inadvertently turn off the Data outputs by writing 1
to Control bit 5 .
Reading the bit on a modified port returns a 1 . This means that if you read the
Control port, then write the same value back to the port, bit 5 will be set to 1,
which disables the Data outputs. A program that writes to the Control port of a
modified port should always write 0 to Control bit 5 if the Data port is being used
for output . If the Data port is being used for input, the program should always
write 1 to Control bit 5 .

100

	

Parallel Port Complete

CARD EDGE
CONNECTO

TO
CONTROL
CIRCUITS

SD0
SDI
SD2
SD3
SD4
SDS
SD6
SD7

BD6 1 7

2D
3D
4D
SD
6D
7D
80
CLK
OC

20
30
40
50
60
)0
80

IYI

	

IAI
1V2 IA2
1Y3 IA3
IY4 IA4
2Y1 a 2A1
2Y2 2A2
2Y3 2A3
2Y4 2A4
DIR
bE

DI
D2
D3
D4
DS
D6
CLK
CLR

OI
02
03

D 04
OS
06

19

CUT CONNECTION AT PIN 1 OF
74LS374 IAT "%"1 . CONNECT PIN I OF
74LS374 TO PIN IS OF 74LSI74
IDOiTED LINE1 .
ICOHPONENTS AND PIN NUMBERS
MAY VARY .)

Parallel Port Complete

PARALLEL PORT
EXPANSION CARD
(COMPONENT SIDE(

0 . 0022FcF

SDS
A31

	

A4 AI
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn I

IOCATION OF SDS ON FDGF CONNECTOR

BACK PANEL
CONNECTOR

Experiments

D0

D2
D3
D4
DS
D6
D7

C0

C2
C3

Figure 5-8: On many older parallel ports, you can make the Data port bidirectional
by cutting one connection and adding a jumper wire .

On most true bidirectional ports, you don't have to worry about whether the Data
port is input or output. You can just read the port and write back the same value
for bit 5, and the bit won't change .

Figure 5-8 shows the relevant parts in the design of a typical early parallel port .
Not shown are the Control and Status port's input buffers or the address-decoding
and other control signals .
Lines SDO-SD7 on the expansion bus carry Data bits DO-D7. On the parallel-port
card, a 74LS245 octal transceiver buffers ADO-AD7 . The lines that connect to

Chapter 5

AI-A8 on the transceiver form a bidirectional, buffered Data bus (BDO-BD7).

When the 74LS245's direction Control input (DIR) is low, Bl-B8 are inputs and
AI-A8 are outputs. When DIR is high,AI-A8 are inputs and Bl-B8 are outputs .
(Most of the chips in this circuit use the numbering 1 through 8 for sets of eight
bits, but the parallel port's Data and Control bits and the buffered data bus are
numbered beginning with 0.)
When the CPU writes to the Data port, BDO-BD7 drive the inputs of a 74LS374
octal flip-flop . The outputs of the flip-flops connect through 30-ohm resistors to
DCO-DC7 on the parallel-port connector. These lines also connect to the inputs of
a 74LS244 octal buffer, and the buffer's outputs connect back to BDO-BD7. This
buffer is what enables you to read the last byte written to the Data port.
The '374's Output-Control input (OC) connects to GND, so its outputs are always
enabled. If you could disable the outputs, external signals at the connector's
DO-D7 could drive the '244's inputs, and reading the Data port would tell you the
logic states of DO-D7 at the connector.
At the Control port, six bits (CO-CS) drive the inputs of a 74LS 174 hex flip-flop .
Outputs QI-Q4 connect to 7405 open-collector inverters, whose outputs are wired
to CO-C3 at the connector . Output QS (C4 in the Control register) controls the
interrupt-enable circuits . and output Q6 (CS) connects to nothing at all. This is the
bit you can use to enable and disable the Data outputs.

The Changes

To make the modification, you cut the connection from the 74LS374's OC (pin 1)
to ground and instead wire this pin to Q6 (pin 15) on the 74LS174.
To break pin 1's connection, use a wire snips to clip pin 1's lead, then bend the
stub on the chip so it doesn't touch the bottom of the leg it's cut away from . Then
take a short length of insulated wire (#30 wire-wrap wire works well) and trim
1/8" or so of insulation from each end. Solder one end of the wire to the stub of
pin 1 on the '374, and solder the other end to pin 15 on the 74LS 174.
Bit CS will then determine the port's direction. Writing 0 to CS enables the Data
outputs, for an output port, and writing 1 to CS disables the outputs and allows
you to use the Data port for input. Because CS has no input buffer, you can't read
it ; all reads of the bit will return 1 .
Not all cards will follow the exact wiring of Figure 5-7. To determine the wiring
on your card, first use an ohmmeter to find the connection between SDS and the
74LS245. The schematic shows the location of SDS (at A4) on the card connector.
The 74LS245 may be wired with either the A or B lines connected to the expan-
sion bus, so check all 16 signal pins to find the connection .

102

	

Parallel Port Complete

Experiments

If you don't find a connection, your card is too different from the original design
to speculate on here, so you're out of luck unless you can figure out the connec-
tions yourself.
If you do find a connection, you can determine which pin on the 74LS245 is the
corresponding I/O pin. Forexample, in Figure 5-8, pin 13 (B6) corresponds to pin
7 (A6) . (Again, the signal names are numbered from 1 to 8 rather than from 0 to
7.) This pin should connect to one of the D inputs on the 74LS 174. Use an ohm-
meter to find the connection .
On one board that I modified, there was no connection from BDS to the ' 174, but
the ' 174 did have an unused input. If you don't find the connection on your board,
you can use the process of elimination to see if you have a spare input. Use an
ohmmeter to trace the existing connections from BDO-BDS to the 74LS 174. Then
determine which input remains. If you don't see any pc-board traces connected to
this pin (check both sides of the board), chances are that it's unused and you can
solder a wire from it to BDS (in Figure 5-8, pin 7 of the '245).
When you've found the pin, determine its corresponding Q output . For example,
in Figure 5-8, pin 14 (D6) of the ' 174 corresponds to pin 15 (Q6) . Wire this Q out-
put to the stub of pin 1 on the 74LS374 and you're done . Reinstall the port card
and you're ready to test it . (Chapter 4 has a bidirectional-test program.)
Note that the Data outputs of this port are the totem-pole outputs of a74LS374. If
you intend to use the Data port for input, you must disable the Data outputs before
you connect external outputs to the Data lines . Otherwise, you risk damaging the
port circuits . To protect the outputs, you can add a 330-ohm series resistor on each
Data line, to limit the current in case this situation occurs . This will affect the
impedance match on the lines and limit the link's performance at high speeds,
however.

Chapter 5

104

	

Parallel Port Complete

Interfacing
Because parallel-port signals may travel over cables of ten feet or more, the
cable's design and the circuits that interface to the cable can mean the difference
between a circuit that works reliably and one that fails, if not completely and
immediately, then intermittently and unpredictably . The cable and interface can
also affect the maximum speed of data transfers . This chapter includes tips on
designing circuits that connect to the parallel port, and on choosing cables to con-
nect the circuits . There's also a section on how and when you can use the parallel
port as apower source for low-power devices.

Interfacing

6

Many parallel ports use ordinary TTL logic, or at best bus drivers and buffers, as
the cable interface. On the original parallel port, a 74LS374 flip-flop drove the
eight Data lines, 7405 open-collector inverters drove the Control lines, and the
Status lines connected to inputs of LSTTL logic gates. These days there's no way
to know exactly what components a PC or peripheral may use for its parallel-port
circuits .
Although all parallel ports have the same 17 bits, the bits can differ in characteris-
tics such as output impedance and noise immunity . Although every parallel port's
outputs should have at least the same current-sourcing and sinking ability as the

Parallel Port Complete

	

105

Chapter 6

original port, some ports do have weaker drivers. A symptom of weak drivers is
when a port works only with short cables, or at low speeds . Some very low-power
devices that connect to the parallel port don't use an external power supply, and
draw their current from the port's outputs, and these devices may not work with
weak ports.
The outputs of many of the newer port controllers meet the improved Level 2
interface described in IEEE 1284 . These ports can use cables of over 30 feet, if
they connect to another Leve12 device .

Drivers and Receivers

The IEEE 1284 standard specifies characteristics for parallel-port drivers and
receivers. It describes two types of devices : Level 1 devices are similar to the
design of the original parallel port, while Leve12 devices give better performance
while remaining compatible with the original interface. A port with Level-2 driv-
ers and receivers can connect to a port with Level-1 drivers and receivers without
problems, though you won't get the full benefit of using Level 2 devices unless
they're present on both ends of the link. Both assume a power supply of +SV .

Level 1 Devices

The specification for Level-1 drivers and receivers are met by off-the-shelf
LSTTL, TTL, and HCTMOS components, including those in the original parallel
port .

Drivers
These are the characteristics of Level 1 drivers :
Logic-high outputs: +2 .4V minimum at 0.32ma source current.

Logic-low outputs: +0.4V maximum at 12ma sink current.

Pullup resistors (if used): 1 .8K minimum on Control and Status lines, 1 .0K mini-
mum on Data lines .
Not surprisingly, since they were the chips used in the original parallel port,
LSTTL drivers are a good choice for the Data outputs, with 7405s or similar TTL
gates for the open-collector Control outputs.
LSTTL chips characterized as buffer/drivers easily meet the requirements . These
include the 74LS24X series and the 74LS374 octal flip-flop. On the 74LS240, low
outputs are guaranteed to sink 12 milliamperes at 0.SV, andhigh outputs are guar-
anteed to source 3 milliamperes at 2 .4V, compared to 4 and 0.4 milliamperes for
ordinary LSTTL. Table 6-1 shows chips you might use :

106

	

Parallel Port Complete

Interfacing

Table 6-1 : Level-1 driver and buffer chips for parallel-port circuits .

In normal operation, the outputs don't provide their maximum rated currents con-
tinuously, but the ability to source and sink high currents means that the output
has low impedance, and this in turn implies that the output can switch quickly . As
an output switches, the voltage must charge or discharge through the cable's
capacitance, and the lower the output impedance, the faster the voltage can
change .
Ordinary LSTTL logic gates, like the 74LS 14 hex inverter, are guaranteed to sink
just 8 milliamperes at 0.4V, so these aren't recommended for driving a parallel
cable. Standard TTL, such as the 7405, does meet the requirements . The drawback
to using standard TTL is that each chip draws 20-0 milliamperes, compared to
8-12 milliamperes for an equivalent LSTTL chip, or 15-35 milliamperes for an
LSTTL octal driver .
The HCMOS family has equivalents to most LSTTL chips. However, the data
sheets for the 74HC24X buffer/drivers don't include enough information to guar-
antee that these chips meet the Level 1 requirements . With a power supply of
4.SV, the outputs are guaranteed to sink 6 milliamperes at 0.33V . The sink current
will be greater with aSV supply and 0.4V output, but the data sheets don't include
figures for these conditions . Overall, the outputs of HCMOS driver chips aren't
are strong as LSTTL, although in most situations, they'll work without problems .

Receivers
These are the characteristics of Level 1 receivers :
Logic-high inputs : 2.0V maximum at 0.32ma sink current.
Logic-low inputs : 0.8V minimum at 12ma source current.

Parallel Port Complete

	

107

Drivers for the Data, Status, and Control inputs :

74LS244, 74HC(T)244 octal buffer
74LS240, 74HC(T)240 octal inverting buffer
7405, 7406 open-collector hex inverting buffer
7407, 7417 open-collector hex buffer
(Use open-collector drivers for the Control lines.)
Schmitt-trigger buffers for the Data or Control outputs:

74LS14, 74HCT14 hex inverter
74LS374 octal buffered flip-flop
74LS244 octal buffer
74LS240 octal inverting buffer

Chapter 6

Pullup resistors (if used): recommended minimum values are 470 ohms on Con-
trol and Status lines, 1000 ohms on Data lines .
Rise and fall time (between 0.8V and 2.0V) : 120ns maximum.
Input limits : inputs should withstand transient voltages from -2.0V to +7.0V.
Just about any LSTTL or HCTMOS input will meet the above requirements .
HCMOS chips aren't a good choice, however, because their minimum voltage
guaranteed for a logic-high input is 3 .SV, which is 1 .SV greater than the 2V
(TTL-compatible) requirement. If you do use an HCMOS chip, add a pull-up
resistor from the input to +SV. HCTMOS devices have TTL-compatible inputs, so
you don't need the pullups.
Although the specification doesn't mention it, Schmitt-trigger inputs will give
greater noise immunity . A Schmitt-trigger input has two switching thresholds : one
that determines when the gate switches on a low to high transition, and a second,
lower, threshold that determines when the input switches on a high to low transi-
tion .
For example, the output of a 74LS14 inverter won't go low until the input rises to
at least 1 .6V. After the output switches low, it won't go high again until the input
drops to at least 0.8V. The 0.8V hysteresis, or difference between the two thresh-
olds, means that the input will ignore noise or ringing of up to 0.8V. The hystere-
sis also prevents the output from oscillating when a slowly changing input reaches
the switching threshold.
The inputs of the 74LS24X buffer/driver series have Schmitt-trigger inputs with
0.4V of hysteresis . However, inputs of the 74HC(T)24X equivalents are ordinary,
non-Schmitt-trigger type . (But you may decide to use HCT inputs anyway, for
lower power consumption or CMOS's greater noise immunity .

Level 2 devices

Level 2 devices have stronger drivers and inputs with hysteresis .

Drivers
These are the characteristics of Level 2 drivers:
Logic-high outputs: +2 .4V minimum at 12ma source current . This is much greater
than Level 1's requirement of 0.32ma.
Logic-low outputs: +0.4V maximum at 12ma sink current. This is the same as the
Level-1 specification.
Driver output impedance: 45-55 ohms at the measured (Vox - VoL) .
Driver slew rate : 0.05 to 0.40 V/nsec .

108

	

Parallel Port Complete

DIR I HD
0

._O__

. . _I ___
1

0
_ i___

0. ._
1

DIRECTION
BI-B4 TO Al-A4
AS_=A7-- TO_ B5=.87._
BI-B4 TO Al-A4

AS_=A7__TO_ 85=_B7--
A I-A7 _TO__BI-B7 _

AI-A7 TO 81-87

Interfacing

OUTPUT TYPES
AI-A4, TOTEM POLE

__B5=_B7_,__OPEN_ DRAIN-
AI-A4, TOTEM POLE

__B5=_B7_,__TOTEM- POLE___B_I=_67_,__OPEN_ Df2AIN_
BI-B7, TOTEM POLE

Figure 6-1 : National's 74ACT1284 is a transceiver with seven lines that meet
IEEE 1284's Level 2 interface standard.

Ordinary LSTTL drivers can't sink enough current to meet the specification .
HC(T)MOS devices have equal source and sink currents, but aren't strong enough
to meet the standard's minimum. The outputs of many of the new controller chips,
including those from SMC andNational, do meet the Level-2 requirements .
For simple parallel-port I/O with a Level-2 interface, you can use National's
74ACT1284 IEEE 1284 transceiver, which, as the name suggests, is designed spe-
cifically as a parallel-port interface. Figure 6-1 shows the chip and pinout . It
includes four bidirectional lines and three one-way buffer/drivers . A Direction
input (DIR) sets the direction of the bidirectional lines. A high-drive-enable input
(HD) determines whether the B-side outputs are open-drain or push-pull type .
You can wire the 74ACT1284's in any of a number of ways, depending on your
application. For example, using three chips, you could use eight bidirectional bits
for the Data lines, four more for the Control lines, and use five of the remaining
bits for Status inputs, with four bits left over . For bidirectional use, the Control
outputs can emulate the original port's open-collector design . If you don't need

Parallel Port Complete

	

109

Chapter 6

bidirectional Control lines, you can use two chips for the Data and Status bits and
one Control bit, and use cheaper buffers for the remaining Control bits .
The 74ACT1284 is available in two surface-mount packages : an SOIC with 0.05"
lead spacing, and a very tiny SSOP with 0.025" lead spacing .

Receivers
These are the characteristics of Leve12 receivers :
Logic-high input: 2.0V maximum at 20~a sink current. (Same voltage as Level 1
devices, but much lower current.)
Logic-low input: 0.8V minimum at 20pa source current. (Same voltage as Level 1
devices, but much lower current.)
Receiver hysteresis : 0.2V minimum. Greater hysteresis, up to 1.2V, will give
greater noise immunity .
Again, many new parallel-port controller chips meet the Level-2 requirements for
receivers .
For simple I/O applications, you can use 74HCT14 Schmitt-trigger inverters or
74HCT24X series buffer/drivers as receivers . LSTTL inputs draw too much cur-
rent to meet the requirement. The inputs of the 74ACT1284 are also suitable as
Leve12 inputs, with a minimum input hysteresis of 0.35V .

Interfacing Guidelines
When you're designing circuits that connect to the parallel port, following some
guidelines will help to ensure that the link between the port andyour device works
reliably .

General Design

These are general guidelines for interfacing digital logic to a cable :
Use plenty of decoupling capacitors . Connect a capacitor from +SV to ground
near each IC that connects to the cable. Use a type with good high-frequency
response, such as ceramic, mica, or polystyrene . Keep the wires or traces between
the capacitor's leads and the chip's +SV and ground pins as short as possible . A
good, general-purpose value is 0.01pF, but the precise value isn't critical . Also
connect a l0pF electrolytic capacitor from +SV to ground, near where the 5-volt
supply enters the board.

Interfacing

The decoupling capacitors store energy needed by the logic gates as they switch .
All logic gates draw current as they respond to changes at their inputs . When the
current can be drawn from a nearby capacitor, the gate can switch quickly, with-
out causing voltage spikes in the power-supply or ground lines . The capacitor
should be near the chip it supplies, to minimize the inductance of the loop formed
by the electrical path connecting the capacitor and the chip . Lower inductance
means faster response .
The large electrolytic capacitor stores energy that the smaller capacitors can draw
on to recharge .
Buffer all clock and control signals. Add buffers like those in Table 6-1 to help
isolate clock and control signals from noise on the cable. Critical signals include
inputs and outputs of flip-flops, counters, and shift registers. Some chips, like the
74LS374 octal flip-flop, have buffered outputs on-chip.
Use the slowest logic family possible. LSTTL and HCTMOS chips are fine for
many links. Higher-speed logic can cause unwanted transmission-line effects
(described below) .
Don't leave CMOS inputs open. If you have unused inputs, tie them to +5 V or
ground. A floating CMOS input can cause the chip to draw large amounts of cur-
rent. You can leave unused TTL inputs open, or pull them high with a4.7K pullup
resistor . Without the pullup, a TTL input will float at around 1 .1 to 1 .4V, which is
usually treated as a logic high, though it's less than the 2V minimum specification
for a logic high input. An open TTL input won't draw large currents like CMOS
can, however.

Port Design

These guidelines apply specifically to PC parallel-port interfaces :
Status line cautions . If you're using DOS interrupts or other LPT functions to
access the port, tie S3 high and SS and S71ow (unless you're using these bits for
their intended purposes) . The BIOS interrupt requires only S7 to be low.
Control line cautions . Use the Control bits as inputs on the PC only on SPPs or
ports that emulate the SPP. If you do use the Control lines as inputs, drive them
with open-collector outputs. This will protect the port's circuits if a low Con-
trol-port output should connect to a high output . If you don't use open collector
devices, place a 330-ohm resistor in series with each Control line .
Bidirectional data cautions. Use series resistors to protect the outputs when you
use a bidirectional Data port for input. (Some controllers have current-limiting
circuits that protect against damaging currents, but this isn't guaranteed .)

Chapter 6

~ O l4
O O
OO OO OO OO OO OO OO OO OO

130 O 25

14

25 13

RECEPTACLE PLUG RECEPTACLE PLUG RECEPTACLE PLUG

IEEE 1284-A

	

IEEE 1284-B

	

IEEE 1284-C
(D-SUB)

	

(CENTRONICS)

Figure 6-2 : Parallel-port devices and cables may use any of these connector
types.

Cable Choices

Connectors

Parallel-port cables may vary in connector type, shielding, the arrangement of the
wires in the cable, and the number of ground wires.

The IEEE-1284 standard describes both the PC's D-sub connector and the Cen-
tronics connector found on many peripherals. It describes the conventional uses
for the connectors-a female D-sub on the PC and female Centronics connector
on the peripheral-but it doesn't recommend a particular connector for either
device . The standard does recommend using connectors with metal shells for
shielding continuity .
The standard calls the D-sub the 1284-A connector, and the Centronics connector,
the 1284-B . The standard also introduces a new connector, the 1284-C . It's a
36-contact connector similar to the Centronics type, but more compact, with the
contacts on 0.05" centers rather than 0.85" . With this connector, the standard rec-
ommends using female (receptacle) connectors on both the host and peripheral,
with male (plug) connectors on the cable. Table 6-2 shows the pin assignments
for all of the connectors .
Figure 6-2 shows the pin numbering for the connectors . The pin numbers are
labeled on most connectors, but the labeling typically consists of tiny,

112

	

Parallel Port Complete

Interfacing

Table 6-2: Pin assignments for D-sub, Centronics, and IEEE 1284C connectors .

hard-to-read numbers molded into the cable shell. Use bright light and a magni-
fier!

For a non-critical, low-speed link with a short cable, you can use just about any
assortment of wires and connectors without problems . For example, if you're
using the parallel port's inputs to read manual switches and using the outputs to

Parallel Port Complete

	

113

Slgnal Name Register Signal Pin Ground Return Pin
bit D-sub

(IEEE
1284-A)

Centron-
ics (IEEE
1284-B)

IEEE
1284-C

D-sub
(IEEE
1284-A)

Centron-
ics (IEEE
1284-B)

IEEE
1284-C

Data bit 0 DO 2 2 6 19 20 24

Data bit 1 DI 3 3 7 19 21 25

Data bit 2 D2 4 4 8 20 22 26

Data bit 3 D3 5 5 9 20 23 27

Data bit 4 D4 6 6 10 21 24 28

Data bit 5 DS 7 7 11 21 25 29

Data bit 6 D6 8 8 12 22 26 30

Data bit 7 D7 9 9 13 22 27 31

nError (nFault) S3 15 32 4 23 29 22

Select S4 13 13 2 24 28 20

PaperEnd SS 12 12 5 24 28 23

nAck S6 10 10 3 24 28 21

Busy S7 11 11 1 23 29 19

nStrobe CO 1 1 15 18 19 33

nAutoLF C1 14 14 17 25 30 35

nInit C2 16 31 14 25 30 32

nSelectIn C 17 36 16 25 30 34

HostLogicHigh 18 18

PeriphLogicHigh 36 36

Chapter 6

light LEDs, it doesn't really matter if the signals change slowly or have a few
glitches as they switch.
At other times, especially at higher speeds and over longer cables, cable design
may mean the difference between a link that works reliably and one that doesn't.

Some interfaces are designed to be able to carry signals over long cables . In an
RS-232 serial link, the drivers use large voltage swings and limited slew rates (the
rate at which the output switches) to help provide a good-quality signal at the
receiver . The RS-485 serial interface use differential signals, where the transmit-
ting end sends both the signal and its inverse and the receiving end detects the
voltage difference between the two. An advantage to this type of transmission is
that any noise common to both lines cancels out.
When you're using the PC's parallel port, you have to make do with many of the
limits built into the design . IEEE 1284's Level 2 drivers and receivers are
improved over the original design, but the improvement isn't dramatic because
the Level-2 components are designed to be compatible with the original interface .
You still can't use the parallel port for a 100-foot link . There are some things you
can do to ensure reliable communications, however.

Ground Returns

Most importantly, even though you might get by with just 18 wires in a paral-
lel-port cable, a full 25-wire cable is better, and a 36-wire twisted-pair cable is
better still .
In all circuits, current must flow back to its source . In a cabled link, the ground
wires provide the return path for the current. Although you may think of a ground
wire as having no voltage, every wire has some impedance, and current in the wire
induces a voltage. When multiple signals share a ground return, each of the inputs
sees the ground voltages caused by all of the others .
In the original Centronics interface, most signals had. their own ground returns,
with the signal wire and its return forming a twisted pair in the cable. In a twisted
pair, two wires spiral around each other, with a twist every inch or so .
The PC's D-sub connector has room for just eight ground contacts . The reduced
number of grounds is a compromise caused by the decision to use a 25-contact
connector on the PC, rather than Centronics' 36-contact connector . A few of the
contacts are designated as ground returns for a particular signal, while others are
the ground return for two signals . Some signals have no designated ground return
at all .
If a peripheral uses a 36-contact connector, each of the shared ground wires in a
25-wire cable connects to two or three contacts . For example, the returns for

C

d

d
ct

~a
For

Interfacing

nStrobe and DO share a wire . Using 1284-C connectors allows the return 36 con-
tacts on both ends .
In reality, ground currents will take the path of least resistance, and there's no way
to guarantee that a current will flow in a particular wire . Multiple ground wires do
lower the overall impedance of the ground returns, however, and this reduces
ground currents.
If you eliminate seven of the ground wires and wire all of the ground contacts to a
single wire, the interface will probably work, most of the time, especially at low
speeds and over short distances. But a cable with at least 25 wires is preferable .
In a ribbon cable that connects to a dual header, the ground lines (18-25) alternate
with signal lines, and this helps to reduce noise in the cable. Although ribbon
cables usually aren't shielded, they're acceptable for low-speed, shorter links .

36-wire Cables

IEEE 1284 introduces a new cable for the parallel port. The cable contains 18
twisted pairs, with each signal line paired with its own ground return . Compared
to the original parallel cable's 10-foot limit, the new cable may be as long as 10
meters, or 33 feet . A cable that meets the standard's requirements may be labeled
IEEE Std. 1284-1994 compliant.
The 18th pair (at pins 18 and 36) has the only wires with new functions . The host
and peripheral each use this pair to detect the presence of the other device. At the
host, pin 18, HostLogicHigh, is a logic-high output, and pin 36 is an input with
7.SK impedance to ground . At the peripheral, pin 36, PeripheralLogicHigh, is a
logic-high output and pin 18 is the 7.SKinput. When there is no device connected,
or when a device isn't powered, the inputs read logic low. With this arrangement,
the host can read pin 36 and the peripheral can read pin 18 to detect whether or not
the opposite device is present and powered.
If you use the new cable with 1284-C connectors, each contact connects to one
wire, as Table 6-3 shows. You can also use this cable with 1284-A and -B connec-
tors . In these cases, the ground returns for two or more signals connect to a single
contact on the connector. (Even though the Centronics connector has 36 contacts,
its conventional use doesn't include a ground return for every signal .) Table 6-4
shows the recommended wiring for a link with one D-sub and one Centronics con-
nector . Other combinations of connectors can use similar wiring schemes, with
each signal wire twisted with its ground wire .

Parallel Port Complete

	

115

Chapter 6

Table 6-3: Wiring for a 36-wire, twisted-pair cable with two IEEE 1284-C
connectors .

11 6

	

Parallel Port Complete

Cable Host Peripheral
Pair gignal Pin Pin Signal
1 S7 (Busy) 1 1 S7 (Busy)

Signal Ground (S7) 19 19 Signal Ground (S7)

2 S4 (Select) 2 2 S4 (Select)
Signal Ground (S4) 20 20 Signal Ground (S4)

3 S6 (nAck) 3 3 S6 (nAck)

Signal Ground (S6) 21 21 Signal Ground (S6)

4 S3 (nError) 4 4 S3 (nError)

Signal Ground (S3) 22 22 Signal Ground (S3)

5 SS (PaperEnd) 5 5 SS (PaperEnd)

Signal Ground (SS) 23 23 Signal Ground (SS)

6 Data Bit 0 (DO) 6 6 Data Bit 0 (DO)

Signal Ground (DO) 24 24 Signal Ground (DO)

7 Data Bit 1 (DI) 7 7 Data Bit 1 (DI)

Signal Ground (DI) 25 25 Signal Ground (DI)

8 Data Bit 2 (D2) 8 8 Data Bit 2 (D2)
Signal Ground (D2) 26 26 Signal Ground (D2)

9 Data Bit 3 (D3) 9 9 Data Bit 3 (D3)

Signal Ground (D3) 27 27 Signal Ground (D3)

10 Data Bit 4 (D4) 10 10 Data Bit 4 (D4)

Signal Ground (D4) 28 28 Signal Ground (D4)

11 Data Bit 5 (D.~ 11 11 Data Bit 5 (DS)

Signal Ground (DS) 29 29 Signal Ground (DS)

12 Data Bit 6 (D6) 12 12 Data Bit 6 (D6)
Signal Ground (D6) 30 30 Signal Ground (D6)

13 Data Bit 7 (D7) 13 13 Data Bit 7 (D7)

Signal Ground (D7) 31 31 Signal Ground (D7)

14 C2 (nInit) 14 14 C2 (nInit)

Signal Ground (C2) 32 32 Signal Ground (C2)

15 (CO) nStrobe 15 15 (CO) nStrobe

Signal Ground (CO) 33 33 Signal Ground (CO)

l6 C3 (nSelectIn) 16 16 C3 (nSelectIn)

Signal Ground (C3) 34 34 Signal Ground (C3)

17 CI (nAutoFd) 17 17 CI (nAutoFd)

Signal Ground (CI) 35 35 Signal Ground (CI)

18 Host Logic High 18 18 Host Logic High
Peripheral Logic High 36 36 Peripheral Logic High

- Shield Shield

Table 6-4 : Wiring for a 36-wire, twisted-pair cable with one 25-pin D-sub
(IEEE 1284-A) and one Centronics (IEEE 1284-B) connector .

Interfacing

Parallel Port Complete

	

11 7

Cable Host (D-sub) Peripheral (Centronics)
Pair gignal Pin Pin Signal
i S7 (Busy) I1 11 S7 (Busy)

Signal Ground (S7, S3) 23 29 Signal Ground (S~

2 S4 (Select) 13 13 S4 (Select)
Signal Ground (S4, S5, S~ 24 28 Signal Ground (S4)

3 S6 (nAck) 10 10 S6 (nAck)
Signal Ground (S4, S5, S6) 24 28 Signal Ground (S6)

4 S3 (nError) 15 32 S3 (nError)

Signal Ground (S4, S5, S6) 23 29 Signal Ground (S3)

5 SS(PaperEnd) 12 12 SS(PaperEnd)
Signal Ground (S4, S5, S6) 24 28 Signal Ground (SS)

6 Data Bit 0 (DO) 2 2 Data Bit 0 (DO)
Signal Ground (D0, DI) 19 20 Signal Ground (DO)

7 Data Bit 1 (DI) 3 3 Data Bit 1 (DI)
Signal Ground (D0, DI) 19 21 Signal Ground (Dl)

8 Data Bit 2 (D2) 4 4 Data Bit 2 (D2)
Signal Ground (D2, D3) 20 22 Signal Ground (D2)

9 Data Bit 3 (D3) 5 5 Data Bit 3 (D3)

Signal Ground (D2, D3) 20 23 Signal Ground (D3)

10 Data Bit 4 (D4) 6 6 Data Bit 4 (D4)

Signal Ground (D4, DS) 21 24 Signal Ground (D4)

i l Data Bit 5 (DS) 7 7 Data Bit 5 (DS)
Signal Ground (D4, DS) 21 25 Signal Ground (DS)

12 Data Bit 6 (D~ 8 8 Data Bit 6 (D~
Signal Ground (D6, D7) 22 26 Signal Ground (D6)

13 Data Bit 7 (D~ 9 9 Data Bit 7 (D~
Signal Ground (D6, D~ 22 27 Signal Ground (D~

14 C2 (nInit) 16 31 C2 (nInit)

Signal Ground (CI, C2, C3) 25 30 Signal Ground (C2)

l5 (CO) nStrobe 1 1 (CO) nStrobe

Signal Ground (CO) 18 19 Signal Ground (CO)

16 C3 (nSelectIn) 17 36 C3 (nSelectIn)
Signal Ground (CI, C2, C3) 25 30 Signal Ground (C3)

17 Cl (nAutoFd) 14 14 CI (nAutoFd)
Signal Ground (CI, C2, C3) 25 30 Signal Ground (CI)

18 tied together, no 18 Host Logic High
connection at host 36 Peripheral Logic High

- Shield Shield

Chapter 6

Reducing Interference

Interference occurs in a cabled link when signals couple from one wire into
another, either within a cable or between a cable and a signal outside the cable.
The coupling may be capacitive, inductive, or electromagnetic . Capacitive cou-
pling occurs when an electric field, such as that generated by a voltage on a wire,
interacts with an adjacent electric field. Inductive, or magnetic, coupling occurs
when a magnetic field generated by a voltage on a wire interacts with an adjacent
magnetic field. Electromagnetic coupling occurs when a wire acts as a transmit-
ting or receiving antenna for signals that radiate through the air .
You can reduce interference by shielding, or blocking, signals from entering or
leaving a wire, or by reducing the amplitude of the interfering signals.

Shielding
Metal shielding is an effective way to block noise due to capacitive, electromag-
netic, and high-frequency magnetic coupling . A good parallel-port cable will have
a metal shield surrounding the conductors and extending to the metal connectors .
The cable should have no large gaps where the conductors are unshielded . In par-
ticular, instead of a single wire, or "pigtail" connecting the shield to the connector,
the full 360 degrees of the shield should contact the connector shell . The connec-
tors in turn plug into the metal chassis of the PC or peripheral .
Solid shields provide the best protection, but they tend to be rigid and likely to
break. Many cables instead use a more flexible braided shield made by interleav-
ing bundles of thin metal strands into a shield that surrounds the wires. Although a
braided shield doesn't cover the wires completely, it's durable, flexible, and effec-
tive enough, especially at higher frequencies.
IEEE-1284-compliant cables have two shielding layers . A solid aluminum or
polyester foil surrounds the wires, and this is in turn surrounded by braided shield
with 85°Io optical covering . The shield has a 360-degree connection to the connec-
tor's shell, which connects to the grounded chassis of both devices . The standard
also recommends wire size of AWG 28 or lower. (Lower AWG numbers indicate
larger wire diameters.)

Twisted Pairs
Using twisted pairs is another way to reduce interference in a cabled link. A
twisted pair has two insulated wires that spiral around each other with a twist
every inch or so . IEEE 1284 specifies a minimumof 36 twists per meter. The sim-
ple act of twisting results in benefits .

Interfacing

Twisting reduces magnetically coupled interference, especially from low-fre-
quency signals such as 60-Hz power-line noise. Changing voltages on a wire
cause the wire to emanate a magnetic field. The magnetic field in turn induces
voltages on wires within the field.
The fields that emanate from a signal wire and its ground return have opposite
polarities . Each twist causes the wires to physically swap positions, causing the
pair's magnetic field to reverse polarity . The result is that the fields emanating
from the wires tend to cancel each other out. In a similar way, the twisting reduces
electro-magnetic radiation emitted by the pair.

Cable-buying Tips
Buying a cable labeled IEEE-1284 compliant is a simple way to guarantee good
cable design . Other than this, there often is no easy way to tell how many wires
are in a cable, or what type of shielding it has, if any, or whether the wires are in
twisted pairs . The connectors are normally molded to the cable, so there's no way
to peek inside without cutting the cable apart. Some catalogs do include specifica-
tions for the cables they offer. Whatever you do, don't mistakenly buy a 3-wire or
9-wire serial cable for parallel-port use. These cables may have 25-pin D-subs, but
because serial links rarely use a11251ines, they often have just three or nine wires.

Line Terminations

Another factor that affects signal quality in a link is the circuits that terminate the
wires at the connector. To understand cable termination, you have to think of the
cable as more than a simple series of connections between logic inputs and out-
puts .

Transmission Lines
When a long wire carries high-frequency signals, it has characteristics of a trans-
mission line, defined as a circuit that transfers energy from a source to a load .
Because the fast transitions of digital signals contain high-frequency components,
most digital circuits are considered high frequency, even if the transmission rate
(bits per second) is slow . To ensure reliable performance, transmission lines use
line terminations, which are circuits at one or both ends that help ensure that the
signals arrive in good shape at the receiver .
In many cases, especially when the cable is short and transmission speed is slow,
an interface will work without any special attention to terminations . However,
there are basic facts about transmission lines that are helpful when you're dealing
with a cabled interface, especially if you need to stretch the limits .

Chapter 6

At low speeds and over short distances, you can consider a short wire or PC-board
trace to be a perfect connection : a logic high or low at one end of the wire or trace
instantly results in a matching high or low at the opposite end. Most of the time,
you don't have to concern yourself with delays, signal loss, noise, or other prob-
lems in getting a signal from an output to an input.
But when the connection is over a 10-foot or longer cable, and the signals are
short pulses with fast rise and fall times, these factors can become important . Spe-
cifically, when a cable is physically long in relation to the highest wavelength it
carries, it's considered to be a transmission line, which behaves differently than a
cable that carries only low frequencies relative to its physical length . Transmis-
sion-line effects are significant when the wire length is greater than 1/10 to 1/20 of
the wavelength of the highest frequency signal transmitted on the wire .
A 5-Megahertz sine wave has a wavelength of 60 meters, and 1/20 of that is 3
meters, or about 10 feet, which is the length of a typical parallel cable. From this,
you might think that a parallel cable isn't a transmission line because the parallel
port's maximum rate of transmitting is much less than 5 Mhz. But what's impor-
tant isn't how often the voltages switch, but rather how quickly they switch .
This is because the frequencies that make up a digital waveform are much higher
than the bits-per-second rate of the signal . Mathematically, a square wave (a
waveform with equal, alternating high and low times) is the sum of a series of sine
waves, including a fundamental frequency plus odd harmonics of that frequency .
A 1000-Hz square wave actually consists of sine waves of 1000 Hz, 3000 Hz,
5000 Hz, and so on up .
A perfect square wave has an infinite number of harmonics and instant rise and
fall times . Real-life components can pass limited frequencies, and their outputs
require time to switch. A signal with fast rise and fall times will contain higher
harmonics than a similar signal with slower rise and fall times. Parallel-port sig-
nals usually aren't square waves, but the principles apply generally to digital
waveforms .
LSTTL and HCMOS logic are fast enough that transmission-line effects can be a
factor on a parallel cable. Whether or not the effects will cause errors in an appli-
cation depends in part on the bits-per-second rate of the transmitted signal and
also on the hardware and software that detects and reads the signals. In a slow,
short link that allows time between when an output switches and when the corre-
sponding input is read, the software probably won't see any transmission-line
effects, which occur mainly as the outputs switch . If you're pushing a link to its
limit with either a long cable or high transmitting frequencies, you may have to
consider the effects of the cable.

Interfacing

Characteristic Impedance
One way that a transmission line differs from other connections is that the trans-
mission line has a characteristic impedance. Measuring the characteristic imped-
ance of a wire involves more than a simple measurement with an ohmmeter . The
characteristic impedance is a function of the wire's diameter, insulation type, and
the distance between the wire and other wires in the cable.
It doesn't, however, change with the length of the wire. This seems to violate a
fundamental rule of electronics, which says that a longer wire has greater resis-
tance from end-to-end than a shorter one. But in most transmission lines, wire
length isn't a major factor .
For the most efficient energy transfer from the source (output) to the load (input),
the load's input impedance should match the characteristic impedance of the wire .
When the impedances match, all of the energy is transferred from the source to the
load and the logic level at the receiver matches the logic level at the driver .
If the impedances don't match, some of the energy reflects back to the source,
which sees the reflection as a voltage spike. The reflections may bounce back and
forth between the source and load several times before dying out. If the receiver
reads the input before the reflections die out, it may not read the correct logic
level, and in extreme cases, high-voltage reflections can damage the components .
If you're designing an interface from the ground up, you can specify terminations
to match your design . But with the parallel port, things aren't as straightforward,
because the driver and receiver components can vary . The wrong termination can
cause reflected signals and errors in reading the inputs, or it mayjust slow the sig-
nal transitions and reduce the port's maximum speed.
Cable manufacturers often specify the characteristic impedance of their products .
Typical values for twisted-pair and ribbon cable are around 100 to 120 ohms .

Example Terminations
A line termination may be located at the output, or source, or at the input, or
receiver . In a bidirectional link, each end may have both a source and receiver ter-
mination.
Figure 6-3A shows a termination used on some ports. A series resistor at the
driver and a high-impedance receiver cause an impedance mismatch that, amaz-
ingly, results in a received voltage that equals the transmitted voltage. The series
resistor should equal the cable's characteristic impedance, minus the output
impedance of the driver. Many parallel ports use series resistors of 22 to 33 ohms .
You can add similar resistors in series with outputs that you use to drive the Status
or Control inputs on a PC's port .

Chapter 6

DRIVER

DRIVER

	

RECEIVER

(A1 SOURCE TERMINATION

(B) END TERMINATION

+5V

	

+5V

1 .2K (OPTIONAL) 1 .2K (OPTIONAL)
302 I

	

I 3af2

(C) TERMINATIONS FOR A BIDIRECTIONAL LINK
Figure 6-3: Line terminations for parallel-port cables .

RECEIVER
lae~

~ 100PF

When the driver switches, half of the output voltage drops across the combination
of the series resistor and the driver's output impedance, and the other half reaches
the receiver's input. Losing half of the output voltage doesn't sound like a good
situation, but in fact, the mismatch has a desirable effect .
On a transmission line, when a signal arrives at a high-impedance input, a voltage
equal to the received signal reflects back onto the cable. The reflection plus the
original received voltage result in a signal equal to the original voltage, and this
combined voltage is what the receiver sees. The reflected voltage travels back to
the source and drops across the source impedance, which absorbs the entire
reflected signal and prevents further reflections .
The impedance match doesn't have to be perfect, which is a good thing because
it's unlikely that it will be . The driver's output impedance varies depending on the
output voltage and temperature, so an exact match is impossible. If the impedance

122

	

Parallel Port Complete

Interfacing

at the source doesn't exactly match the cable's impedance, the signal at the
receiver won't exactly match the original, and small reflections may continue
before dying out. In general, an output impedance slightly smaller than the cable
impedance is better than one that is slightly larger .
Figure 6-3B shows another option, an end termination at the receiver, consisting
of a resistor and capacitor in series between the signal wire andground . The resis-
tor equals the characteristic impedance of the wire, and the capacitor presents a
low impedance as the output switches . Unlike some other input terminations, this
one is usable in both TTL and CMOS circuits . However, this type of termination
doesn't work well with a series termination at the driver, because the series termi-
nation is designed to work with a high-impedance input. Because many paral-
lel-port outputs have series terminations built-in, it's best not to use this end
termination unless you're designing for a specific port that you know can use it
effectively .
Figure Figure 6-3C shows IEEE 1284's recommended terminations for a Level-2
bidirectional interface . The standard specifies a characteristic cable impedance of
62 ohms, and assumes that each signal line will be in a twisted pair with its ground
return . The outputs have series resistor terminations . If the inputs have pull-ups,
they should be on the cable side of the source termination.

Transmitting over Long Distances

If the parallel port's 10 to 15-foot limit isn't long enough for what you want to do,
there are options for extending the cable length .
If the interface isn't a critical one, and especially at slower speeds, you can just try
a longer cable and see if it works . You may be able to stretch the interface without
problems . But this approach is only recommended for casual, personal use, where
you can take responsibility for dealing with any problems that occur.
A shielded, 36-wire, twisted-pair cable allows longer links than other cables . If
you know that both the port and the device that connects to it have Level 2 inter-
faces, this type of cable should go 30 feet without problems .
Parallel-port extenders are also available from many sources. One type adds a line
booster, or repeater, that regenerates the signals in the middle of the cable, allow-
ing double the cable length . Other extenders work over much longer distances by
converting the parallel signals into a serial format, usually RS-232, RS-422, or
RS-485 .
The serial links use large voltage swings, controlled slew rates, differential sig-
nals, and other techniques for reliable transmission over longer distances . You

Chapter 6

could do the same for each of the lines in a parallel link, but as the distance
increases, it makes sense to convert to serial and save money on cabling.
One drawback to the parallel-to-serial converters is that most are one way only,
and don't include the parallel port's Status and Control signals . You can use the
converters for simple PC-to-peripheral transfers, but not for bidirectional links .
Also, serial links can be slow . After adding a stop and start bit for each byte, a
9600-bits-per-second link transmits just 960 data bytes per second .
If you need a long cable, instead of using a serial converter, you might consider
designing your circuit to use a serial interface directly.

Port-powered Circuits
Most devices that connect to the parallel port will require their own power supply,
either battery cells or a supply that converts line voltage to logic voltages . But
some very low-power circuits can draw all the power they need from the port
itself.

When to Use Port Power

The parallel-port connector doesn't have a pin that connects to the PC's +SV sup-
ply, so you can't tap directly into the supply from the connector . But if your
device requires no more than a few milliamperes, and if one or more of the Data
outputs is otherwise unused, you may be able to use the port as a power source .
As a rule, CMOS is a good choice for low-power circuits . CMOS components
require virtually no powerwhen the outputs aren't switching, and they usually use
less power overall than TTL or NMOS.
Powering external circuits is especially easy if the circuits can run on +3V or less .
Some components aren't particular about supply voltage. HCMOS logic can use
any supply from +2V to +6V, with the logic high and low levels defined in pro-
portion to the supply voltage. (Minimum logic high input = 0.7(supply voltage);
maximum logic low input = 0.3(supply voltage).) National's LP324 quad op amp
draws under 250pa of supply current and can use a single power supply as low as
+3V. If you need +SV, there are new, efficient step-up regulator chips that can
convert a lower voltage to a regulated +SV.
The parallel port's inputs require TTL logic levels, so any logic-high outputs that
connect to the parallel-port inputs should be at least 2.4V. (Status-port inputs may
have pullups to +SV, but this isn't guaranteed .)

Interfacing

The source for port power is usually one or more of the Data pins . If you bring a
Data output high by writing 1 to it, you can use it as a power source for other cir-
cuits. The available current is small, and as the current increases, the voltage
drops, but it's enough for some designs.
Of course, if you're using a Data pin as a power supply, you can't use it as a data
output, so any design that requires all eight Data lines is out. One type of compo-
nent that's especially suited to using parallel-port power is anything that uses a
synchronous serial interface, such as the DS1620 digital thermometer described in
Chapter 9. These require as few as one signal line and aclock line, leaving plenty
of bits for other uses .

Abilities and Limits

One problem with using parallel-port power is that the outputs have no specifica-
tion that every port adheres to . If you're designing something to work on a partic-
ular computer, you can experiment to find out if the outputs are strong enough to
power your device . If you want the device to work on any (or almost all) comput-
ers, you need to make some assumptions. One approach is to assume that the cur-
rent-sourcing abilities of a port's outputs are equal to those of the original port .
Most ports do in fact meet this test, and many newer ports have the more powerful
Level 2 outputs. It's a good idea to also include the option to run on an external
supply, which may be as simple as a couple of AA cells, in case there is a port that
isn't capable of powering your device .
On the original port, the eight Data outputs were driven by the outputs of a
74LS374 octal flip-flop . If you design for the '374's typical or guaranteed source
current, your device should work on just about all ports. Typical output current for
a 74LS374 is 2 .6 milliamperes at 3 .1 V (2.4V guaranteed) . A logic-low output of a
'374 can sink much more than this, but a low output doesn't provide the voltage
that the external circuits need .
Level 2 outputs can source 12 milliamperes at 2.SV. If you know that your port
has Level 2 outputs, you have more options for using parallel-port power.
What about using the Control outputs as a power source? On the original port,
these were driven by 7405 inverters with 4.7K pullups . The pull-ups on the out-
puts make it easy to calculate how much current they can source, because the out-
put is just a4.7K resistor connected to +SV. These outputs can source a maximum
of 0.5 milliampere at 2.SV, so the Data outputs are a much better choice as current
sources. On some of the newer ports, in the advanced modes, the Control outputs
switch to push-pull type and can source as much current as the Data outputs.

Chapter 6

3

D
1N5817

-0VIN

Figure 6-4 : You can use spare Data outputs as a power source for very low-power
devices . If you use more than one output, add a Schottky diode in series with
each line .

Examples

Using Control bits as supplies is an option for these ports, but it isn't practical for
a general-purpose circuit intended for any port .
I ran some informal tests on a variety of parallel ports, and found widely varying
results, as Table 6-5 shows. The port with 74LS374 outputs actually sourced
much more current than the specification guarantees, about the same as the Level
2 outputs on an SMC Super I/O controller. A port on an older monochrome video
card had the strongest outputs by far, while a port on a multifunction board was
the weakest, though its performance still exceeded the '374's specification.

If the exact supply voltage isn't critical, you can use one or more Data outputs
directly as power supplies . If you use two or more outputs, add a Schottky diode
in each line to protect the outputs, as Figure 6-4 shows . The diodes prevent current
from flowing back into an output if one output is at a higher voltage. Schottky
diodes drop just 0.3V, compared to 0.7V for ordinary silicon signal diodes .
How much output current is a safe amount? Again, because the components used
in ports vary, there is no single specification. Also, because a power supply isn't
the conventional use for a logic output, data sheets often don't include specifica-
tions like maximum power dissipation.
The safest approach is to draw no more than 2 .6 milliamperes from each output,
unless you know the chip is capable of safely sourcing higher amounts . At higher
currents, the amount of power that the driver chips have to dissipate increases, and
you run the risk of damaging the drivers.
If you need a regulated supply or a higher voltage than the port can provide
directly, a switching regulator is a very efficient way to convert a low voltage to a
steady, regulated higher (or lower) value. For loads of a few milliamperes,

126

	

Parallel Port Complete

Table 6-5 : Results of informal tests of current-sourcing ability of the Data outputs
on assorted parallel ports.

0 . l~,F

	

MgX756
STEP-UP DC-DC CONVERTER

Interfacing

VOUT
(+5V OR +3 .3V)

Figure 6-5 : Maxim's Max756 can convert a Data output to a regulated +5V or
+3.3V supply .

Maxim's MAX756 step-up converter can convert +2.SV to +SV with over 80°Io

efficiency . Figure 6-5 shows a supply based on this chip .

As an example, assume that you want to power a circuit that requires 2 milliam-

peres at +SV, and assume that the parallel port's Data outputs can provide 2 .6 mil-

liamperes at 2.1V (2.4V minus a 0.3V drop for the diodes). This formula

calculates how much current each Data pin can provide:

(load supply (V)) * (output current (A)) _

converter efficiency * (source voltage (V)) * (source current (A))

which translates to :

5 * (output current) = 0.8 * 2.1 * (0.0026)

and this shows that each Data pin can provide just under 0.9 milliampere at +SV.

Three Data outputs could provide the required total of 2 milliamperes, with some

Parallel Port Complete

	

127

Card No Load
Voltage

Source Current at Data output
(milliamperes)
4V 3V 2V

Original-type, LS374 outputs 3.5 - 11 25

Monochrome video card, single-chip
design

4.9 18 35 35

Older multifunction card, with IDE
and floppy controller

4.9 2.7 5 7

SMC Super UO controller 4.9 0.6 7.5 27

Chapter 6

to spare. In fact there is a good margin of error in the calculations, and you could
probably get by with two or even one output . If the port has Leve12 outputs, each
pin can source 4 milliamperes, so all you need is one pin. You can do similar cal-
culations for other loads.
The '756 has two output options: SV and 3 .3V. The '757 has an adjustable output,
from 2.7V to S.SV.
The selection of the switching capacitor and inductor is critical for the MAX756
and similar devices. The inductor should have low DC resistance, and the capaci-
tor should be a type with low ESR (effective series resistance) . Maxim's data
sheet lists sources for suitable components, and Digi-Key offers similar compo-
nents. Because of the '756's high switching speed, Maxim recommends using a
PC board with a ground plane and traces as short as possible .
If you just need one supply, Maxim sells an evaluation kit that's a simple, no-has-
sle way of getting one up and running. The kit consists of data sheets and a
printed-circuit board with all of the components installed.

Output Applications

Output Applications

7

One category of use for the parallel port is control applications, where the com-
puter acts as a smart controller that decides when to switch power to external cir-
cuits, or decides when and how to switch the paths of low-level analog or digital
signals. This chapter shows examples of these, plus a port-expansion circuit that
increases the number of outputs that the port controls.

Output Expansion

The parallel port has twelve outputs, including the eight Data bits and four Con-
trol bits . If these aren't enough, you can add more by dividing the outputs into
groups and using one or more bits to select a group to write to .
Figure 7-1 shows how to control up to 64 TTL- or CMOS-compatible outputs, a
byte at a time .
U1 and U4 buffer DO-D7 and CO-C3 from the parallel port . Four bits on U4 are
unused .
US is a 74HCT138 3-to-8-line decoder that selects the byte to control. When US is
enabled by bringing GI high and G2A and G2B low, one of its Y outputs is low.
Inputs A, B, and C determine which output this is . When CBA = 000, YO is low;
when CBA = 001, YI is low ; and so on, with each value at CBA corresponding to

Parallel Port Complete

	

129

w
O

O

m

PC PARALLEL PORT
25-P1N UI

D-CONNECTOR 74LS244
BUFFER

BD6 17
BD 7

	

18

14 4
16 6
17 8

l6 2
14 3

14
13
12
11
10
9

7D
8D
OC

70
80

CLK
f 11

DATA
D0
DI
D2
D3
D4
D5
D6
D7

CONTROL
C0
CI
C2
C3

D
D

_2
_3
4
5
6
7
8

2
_4
6
8

II
_13
IS
17

A1

GND~
18-25

(D

	

~

	

*5tiL119

O OCTAL BUFFER

5
3

l2
9
7
_S
3

BD6
BD7

6 14 IS

7D 70
8D 80
OC CLK

I6
19

BD6 I7
`\

	

BD7

	

1 8

CLOCKS FOR
ADDITIONAL 74LS374~S

16
19 _

Figure 7-1 : The eight data lines on the parallel port can control 64 latched outputs. The four control lines select a byte tl

write to .

l8 BD0

BUFFERED DATA BUS (BD0-BD7)

74LS374
FLIP-FLOP

BD0 3 ID 10 \ BD0

74LS374
FLIP-FLOP

3 ID 10~
_l6 _BD I BDl 4 2D 20 BD I 4 2D 20 5
_l4 BD2 BD2 7 3D 30 8 TTL \ BD2 7 3D 30 6 8 TTL \
12 BD3 BD3 8 4D 40 COMPAT- \ BD3 8 4D 40 9 COMPAT- \
9 BD4 BD4 13 SD SO _12

[BLE
\ BD4 13 5D SO _12 [BLE

7 BD5 BDS 14 6D 60 IS
OUTPUTS \ BDS 14 6D 60 IS

OUTPUTS

BD0
BDI
BD2
BD3 FOR ADDITIONAL
BD4 OUTPUTS, USE
BDS UP TO 8
BD6 74LS374'S

BD7

OC

To write a byte, do the following:

~ " Parallel Port Resource

Figure 7-2: User screen for Listing 7-1 `s program code.

Output Applications

a low Y output. At the parallel port, bits CO-C2 determine the values at A, B, and
C. If GI is low or either G2A or G2B is high, all of the Y outputs are high .
U2 is a 74HCT374 octal flip-flop that latches DO-D7 to its outputs . The Output
Control input (OC, pin 1) is tied low, so the outputs are always enabled. A rising
edge at Clk (pin 11) writes the eight D inputs to the Q outputs.
U3 is a second octal flip-flop, wired like U2, but with a different clock input. You
may have up to eight 74HCT374s, each controlled by a different Youtput of U5.

1 . Write t_he data to DO-D7.
2. Bring C3 high and write the address of the desired ' 374 to CO, Cl, and C2 to
bring a C_lk input low .
3 . Bring C3 low, which brings all Clk inputs high and latches the data to the
selected outputs. You can write just one byte at a time, but the values previously
written to other ' 374's will remain until you reselect the chip and clock new data
to it .

Listing 7-1 contains program routines for writing to the outputs. Figure 7-2 shows
the form for a test program for the circuit . These demonstrate the circuit's opera-
tion by enabling you to select a latch, specify the data to write, and write the data.
You can use HCT-family or LSTTL chips in the circuit. If you can get by with 56
or fewer outputs, you can free up C3 for another use, and bring YO-Y6 high by
selecting Y7. One possible use for C3 would be to enable and disable the '374's
outputs by tying it to pin 1 of each chip .

Parallel Port Complete

	

131

Byte # Byte Written

CD Olh Write Byte
r~ Bcn
C' 2 55h
t 3 ~AAh

Byte to Write
C4 Dh (D-FF)
C' 5 FFh

FD~
r6 FEh
r.~ Fdh

Chapter 7

Sub cmdWriteByte Click ()
`Write the value in the "Byte to Write" text box
`to the selected output (1-8) .
DataPortWrite BaseAddress, CInt("&h" & txtByteToWrite
`Select an output by writing its number to

ControlPortWrite BaseAddress, ByteNumber +
ControlPortWrite BaseAddress, 0
`Display the result .
1blByte(ByteNumber) .Caption = ""
1blByte(ByteNumber) .Caption = txtByteToWrite .Text &
End Sub
PortType = Left$(ReturnBuffer, NumberOfCharacters)

Sub optByte Click (Index As Integer)
ByteNumber = Index
End Sub

Switching Power to a Load

Choosing a Switch

132

8

� h~~

Text)

Listing 7-1 : To write to Figure 7-1 `s bytes, you write a value to the data port, then
latch the value to the selected output byte .

The parallel port's Data and Control outputs can control switches that in turn con-
trol power to many types of circuits . The circuits may be powered by a +SV or
+12V supply, another DC voltage or voltages, or AC line voltage (115V) . In a
simple power-control switch, bringing an output high or low switches the power
on or off. To decide when to switch a circuit on or off, a program might use sensor
readings, time or calendar information, user input, or other information .
Power-switching circuits require an interface between the parallel port's outputs
and the switch that you want to control. In an electromagnetic, or mechanical,
relay, applying a voltage to a coil causes a pair of contacts to physically separate
or touch. Other switches have no moving parts, and operate by opening and clos-
ing a current path in a semiconductor.

All switches contain one or more pairs of switch terminals, which may be
mechanical contacts or leads on a semiconductor or integrated circuit . In addition,

Parallel Port Complete

`Control Port, bits 0-2, with bit 3 = 1 .
`This brings the output's CLK input low .
`Then set Control bit 3 = 0 to bring all CLK inputs high .
`This latches the value at the data port to the selected output .

Output Applications

electronically controlled switches have a pair of control terminals that enable
opening and closing of the switch, usually by applying and removing a voltage
across the terminals .
An ideal switch has three characteristics . When the switch is open, the switch ter-
minals are completely disconnected from each other, with infinite impedance
between them . When the switch is closed, the terminals connect perfectly, with
zero impedance between them . And in response to a control signal, the switch
opens or closes instantly and perfectly, with no delay or contact bounce .
As you might suspect, although there are many types of switches, none meets the
ideal, so you need to find a match between the requirements of your circuit and
what's available . Switch specifications include these :
Control voltage and current. The switch's control terminals have defined volt-
ages and currents at which the switch opens and closes . Your circuit's control sig-
nal must meet the switch's specification .
Load current. The switch should be able to safely carry currents greater than the
maximum current your load will require.
Switching voltage. The voltage to be switched must be less than the maximum
safe voltage across the switch terminals .
Switching speed. For simple power switches, speed is often not critical, but there
are applications where speed matters . Forexample, a switching power supply may
switch current to an inductor at rates of 20 kilohertz or more . You can calculate
the maximum switching speed from the switch's turn-on and turn-off times .
(Maximum switching speed = 1/(max. turn-on time + max. turn-off time .)
Other factors to consider are cost, physical size, and availability .
Figure 7-3 shows some common configurations available in mechanical switches .
Electronic switches can emulate these same configurations . You can also build the
more complex configurations from combinations of simpler switches .
As the name suggests, a normally open switch is open when there is no control
voltage, and closes on applying a control voltage. A normally closed switch is the
reverse-it's closed with no control voltage, and opens on applying a voltage.
A single-throw (S7~ switch connects a switch terminal either to a second terminal
or to nothing, while a double-throw (D7~ switch connects a switch terminal to
either of two terminals . In a single-pole (SP) switch, the control voltage controls

Chapter 7

Figure 7-3: Five types of switches .

Logic Outputs

DPD T- ~

one set of terminals, while in a double-pole (DP) switch, one voltage controls two
sets of terminals . A double-pole, double-throw (DPDT) switch has two terminals,
with each switching between another pair of terminals (so there are six terminals
in all) .

For a low-current, low-voltage load, you may be able to use a logic-gate output or
an output port bit as a switch . For higher currents or voltages, you can use a logic
output to drive a transistor that will in turn control current to the load . In either
case, you need to know the characteristics of the logic output, so you can judge
whether it's capable of the job at hand .
Table 7-I shows maximum output voltages and currents for popular logic gates,
drivers, and microcontrollers, any of which might be controlled, directly or indi-
rectly, by a PC's parallel port . The table shows minimum guaranteed output cur-
rents at specific voltages, usually the minimum logic-high and the maximum
logic-low outputs for the logic family .
To use a logic output to drive a load other than a logic input, you need to know the
output's maximum source and sink current and the power-dissipation limits of the
chip . Many logic outputs can drive low-voltage loads of 10 to 20 milliamperes.
For example, an LED requires just 1 .4V. Because you're not driving a logic input,
you don't have to worry about valid logic levels . All that matters is being able to
provide the voltage and current required by the LED.
Figure 7-4 illustrates source and sink current. You might naturally think of a logic
output as something that "outputs," or sends out, current, but in fact, the direction
of current flow depends on whether the output is a logic-high or logic-low .
You can think of source current as flowing from a logic-high output, through a
load to ground, while sink current flows from the power supply, through a load,
into a logic-low output . Data sheets often use negative numbers to indicate source

134

	

Parallel Port Complete

SPST~ SPST~
NORMALLY NORMALLY TOPEN CLOSED

-.~.-;-
~.~.r

~SPDT DPST

ON

OFF-

current . In most logic circuits, an output's load is a logic input, but the load can be
any circuit that connects to the output .
CMOS logic outputs are symmetrical, with equal current-sourcing and sinking
abilities . In contrast, TTL and NMOS outputs can sink much more than they can
source . If you want to use a TTL or NMOS output to power a load, design your
circuit so that a logic-low output turns on the load .
All circuits should be sure to stay well below the chip's absolute maximum rat-
ings . For example, an ordinary 74HC gate has an absolute maximum output of 25
milliamperes per pin, so you could use an output to drive an LED at 15 milliam-
peres. (Use a current-limiting resistor of 220 ohms .) If you want 20 milliamperes,
a better choice would be a buffer like the 74HC244, with an absolute maximum
output of 35 milliamperes per pin. In Figure 7-5, A and B show examples .
Don't try to drive a high-current load directly from a parallel-port output . Use
buffers between the cable and your circuits . Because the original parallel port had
no published specification, it's hard to make assumptions about the characteristics
of a parallel-port output, except that it should be equivalent to the components in
the original PC's port . Using a buffer at the far end of the cable gives you known
output characteristics . The buffer also provides some isolation from the load-con-
trol circuits, so if something goes wrong, you'll destroy a low-cost buffer rather
than your parallel port components . A buffer with a Schmitt-trigger input will
help to ensure a clean control signal at the switch .

+5V

	

+5V
O

SOURCE
CURRENT

	

OFF

OUTPUT

(Al LOGIC HIGH OUTPUT

ON

Output Applications

OUT PUT

SINK
CURRENT

(B) LOGIC LOW OUTPUT

Figure 7-4 : A logic-high output sources current ; a logic-low output sinks current .

Parallel Port Complete

	

135

Chapter 7

74HCT244
OR

	

+SV
74LS244

	

74HCT244

__

	

I ____

LED

	

_
0=0N

	

2'

	

' 18

	

I ~'°

	

~°~

	

O=OFF

	

2'

	

' 1 8

	

1 50

I-OFF

	

' ' '

	

I°ON

IAI LOGIC-LOW DRIVER

	

(B) LOGIC-HIGH DRIVER

74HCT244 L~

	

74HCT2_4,4C

	

I ___

0-OFF -1'. I

	

' I~Bw~~yr 2N2222

	

0 " OFF

+5V

ICI NPN TRANSISTOR

	

(D) NPN DARLINGTON TRANSISTOR

+5V TO +20V+5V TO +20V

	

+5V

	

75g51
DUAL PERIPHERAL DRIVER

"5V
174LS26 IOK E

	

___________________X__

I
O=OFF

	

2

	

3 470 6 2N2907

	

TRUTH

1=0N

	

_

	

TABLE
HIGH-VOLTAGE

	

~ 1C

	

A B X
OPEN-COLLECTOR

	

LOAD

	

0 0 ON
NAND

	

0 1 ON
I 0 ON
I I OFF _______________________

IEI PNP TRANSISTOR

	

(F) PERIPHERAL DRIVER IC

+10V TO +20V

	

+SV

LOAD

10K n I

	

74HC244
74LS26

	

~ i~

	

~~

	

I

	

I ZETEX
IRF510

0 "OFF2I

	

3 IK
G

	

0 " OFF

	

2~

	

19 IK

I "ON

	

_HIGH-VOLTAGE

	

--
OPEN-COLLECTOR

	

BUFFER
NAND

Bipolar Transistors

lGl 10V MOSFET

	

(H) 5V MOSFET

Figure 7-5 : Interfaces to high-current and high-voltage circuits .

If your load needs more current or voltage than a logic output can provide, you
can use an output to drive a simple transistor switch .
A bipolar transistor is an inexpensive, easy-to-use current amplifier . Although the
variety of transistors can be bewildering, for many applications you can use any

136

	

Parallel Port Complete

Table 7-1 : Maximum output current for selected chips .

Output Applications

general-purpose or saturated-switch transistor that meets your voltage and current
requirements .
Figure 7-SC uses a 2N2222, a widely available NPN transistor. A logic-high at the
control output biases the transistor on andcauses a small current to flow from base
to emitter. This results in a low collector-to-emitter resistance that allows current
to flow from the power supply, through the load and switch, to ground . When the
transistor is switched on, there is a small voltage drop, about 0.3V, from collector
to emitter, so the entire power-supply voltage isn't applied across the load .
The exact value of the transistor's base resistor isn't critical . Values from a few
hundred to 1000 ohms are typical . The resistor needs to be small enough so that
the transistor can provide the current to power the load, yet large enough to limit
the current to safe levels .

Parallel Port Complete

	

137

Chip Output high volt- Output low volt- Supply Absolute maximums
age (VOH min) age (VOL max) Voltage

74LS374 flip-flop, 2.4V@-2.6mA O.SV@24mA 4.5 to 5.5 -
74LS244 buffer

74HC(T)374 Vcc-0.1@-20ftA O.1V@20pA 4.5 35mA/pin,
flip-flop, 3.84V@-6mA 0.33V@6mA SOOmW/package
74HC(T)244 buffer
74LS14 inverter 2.7V@-0.4mA O.SV@8mA 4.5 to 5.5 -

74HC(T)14 inverter 4.4V@-20~tA 0.1V@20pA 4.5 25mA/pin,
4.2V@-4mA 0.33V@4mA SOOmW/package

8255 NMOS PPI 2.4V@-200ItA 0.45V@ 1 .7mA 4.5 to 5.5 4mA/pin
(programmable (on any 8 Port B
peripheral interface) or C pins)

8X55 CMOS PPI 3V@-2.SmA 0.4V@2.SmA 4.5 to 5 .5 4.OmA/pin
(programmable
peripheral interface)
8051 NMOS 2.4V@-80ItA 0.45V @l .6gA 4.5 to 5.5 -
microcontroller

80051 CMOS Vcc-0.3@-lOuA 0.3@100pA 4 to 5 IOmA/pin,
microcontroller Vcc-0.7@-30uA 0.45@1.SmA 15mA/port,

Vcc-1 .5@-60pA 1 .0@3.SmA 71mA/all ports

68HC11 CMOS Vdd-0.8@-0.8mA 0 .4@ 1 .6mA 4.5 to 5.5 25mA/pin;
microcontroller also observe power

dissipation limit for
the chip

PIC16CSx CMOS Vdd-0.7@-5.4mA 0.6@8.7mA 4.5 +25/-20mA/pin,
microcontroller +50/-40mA/port,

800mW/package

Chapter 7

MOSFETs

The load current must be less than the transistor's maximumcollector current (Ic) .
Look for a current gain (hFE) of at least 50 . Many parts catalogs include these
specifications .
The load's power supply can be greater than +SV, but if it's more than +12V,
check the transistor's collector-emitter breakdown voltage (VcEp), to be sure it's
greater than the voltage that will be across these terminals when the switch is off.
For large load currents, you can use a Darlington pair, as Figure 7-SD shows. One
transistor provides the base current to drive a second transistor . Because the total
current gain equals the gain of the first times the gain of the second, gains of 1000
are typical . The TIP112 is an example of a Darlington pair in a single TO-220
package. It's rated for collector current of 2 amperes and collector-to-emitter volt-
age of 100V. A drawback is that the collector-to-emitter voltage of a Darlington is
about a volt, much higher than for a single transistor .
The above circuits all use NPN transistors and require current from a logic-high
output to switch on . If you want to turn on a load with a logic-low output, you can
use a PNP transistor, as Figure 7-SE shows. In this circuit, a logic-low output
biases the transistor on, and a voltage equal to the power supply switches it off. If
the load's power supply is greater than +SV, use a high-voltage open-collector or
open-drain output for the control signal, so that the pullup resistor can safely pull
logic-high outputs to the supply voltage.
Another handy way to control a load with logic is to use a peripheral-driver chip
like those in the 7545X series (Figure 7-SF) . Each chip in the series contains two
independent logic gates, with the output of each gate controlling a transistor
switch .
There are four members of the series :
75451 dual AND drivers
75452 dual NAND drivers
75453 dual OR drivers
75454 dual NOR drivers

Each output can sink a minimum of 300 milliamperes at 0.7V (collector-to-emit-
ter voltage) .

An alternative to the bipolar transistor is the MOSFET. The most popular type is
an enhancement-mode, N-channel type, where applying a positive voltage to the
gate switches the MOSFET on, creating a low-resistance channel from drain to
source .

138

	

Parallel Port Complete

P-channel MOSFETs are the complement of N-channel MOSFETs, much as PNP
transistors complement NPNs. An enhancement-mode, P-channel MOSFET
switches on when the gate is more negative than the source . In depletion-mode
MOSFETs (which may be N-channel or P-channel), applying a gate voltage opens
the switch, rather than closing it .
Unlike a bipolar-transistor switch, which can draw several milliamperes of base
current, a MOSFET gate has very high input resistance and draws virtually no
current . But unlike a bipolar transistor, which needs just 0.7V from base to emit-
ter, a MOSFET may require as much as l0V from gate to source to switch on
fully.
One way to provide the gate voltage from SV logic is to use a device with an
open-collector or open-drain output and a pull-up resistor to at least l0V, as Fig-
ure 7-SG shows. Some newer MOSFETs have lower minimum on voltages .
Zetex's ZVN4603A can switch 1 .5 amperes with just +SV applied to the gate
(Figure 7-SH).
MOSFETs do have a small on resistance, so there is a voltage drop from drain to
source when the device is switched on . The on resistance of the ZVN4603A is
0.45 ohms at 1 .5 amperes, which would result in a voltage drop of about 0.7V. At
lower currents, the resistance and voltage drop are less .
Include a gate resistor of around 1K (as shown) to protect the driver's output if
you're switching a relay, motor, or other inductive load .

Output Applications

Another way of controlling a load with a logic voltage is to use a high-side switch
like the LTC1156, a quad high-side MOSFET driver chip from Linear Technol-
ogy, shown in Figure 7-6. The chip allows you to use the cheaper, more widely
available N-channel MOSFETs in your designs and adds other useful features .
Single and dual versions are also available, and other manufacturers have similar
chips.
Most of the previous circuits have used a low-side switch, where one switch ter-
minal connects to ground and the other connects to the load's ground terminal . In
a high-side switch, the load's ground terminal connects directly to ground and the
switch is between the power supply and load's power-supply terminal .
A high-side switch has a couple of advantages . For safety reasons, some circuits
are designed to be off if the switch terminals happen to short to ground . With a
low-side switch, shorting the switch to ground would apply power to the load .
With a high-side switch, although shorting the switch to ground may destroy the

Parallel Port Complete

	

139

P-channel MOSFETs are the complement of N-channel MOSFETs, much as PNP
transistors complement NPNs. An enhancement-mode, P-channel MOSFET
switches on when the gate is more negative than the source . In depletion-mode
MOSFETs (which may be N-channel or P-channel), applying a gate voltage opens
the switch, rather than closing it .
Unlike a bipolar-transistor switch, which can draw several milliamperes of base
current, a MOSFET gate has very high input resistance and draws virtually no
current . But unlike a bipolar transistor, which needs just 0.7V from base to emit-
ter, a MOSFET may require as much as l0V from gate to source to switch on
fully.
One way to provide the gate voltage from SV logic is to use a device with an
open-collector or open-drain output and a pull-up resistor to at least l0V, as Fig-
ure 7-SG shows. Some newer MOSFETs have lower minimum on voltages .
Zetex's ZVN4603A can switch 1 .5 amperes with just +SV applied to the gate
(Figure 7-SH).
MOSFETs do have a small on resistance, so there is a voltage drop from drain to
source when the device is switched on . The on resistance of the ZVN4603A is
0.45 ohms at 1 .5 amperes, which would result in a voltage drop of about 0.7V. At
lower currents, the resistance and voltage drop are less .
Include a gate resistor of around 1K (as shown) to protect the driver's output if
you're switching a relay, motor, or other inductive load .

Output Applications

Another way of controlling a load with a logic voltage is to use a high-side switch
like the LTC1156, a quad high-side MOSFET driver chip from Linear Technol-
ogy, shown in Figure 7-6. The chip allows you to use the cheaper, more widely
available N-channel MOSFETs in your designs and adds other useful features .
Single and dual versions are also available, and other manufacturers have similar
chips.
Most of the previous circuits have used a low-side switch, where one switch ter-
minal connects to ground and the other connects to the load's ground terminal . In
a high-side switch, the load's ground terminal connects directly to ground and the
switch is between the power supply and load's power-supply terminal .
A high-side switch has a couple of advantages . For safety reasons, some circuits
are designed to be off if the switch terminals happen to short to ground . With a
low-side switch, shorting the switch to ground would apply power to the load .
With a high-side switch, although shorting the switch to ground may destroy the

Parallel Port Complete

	

139

Chapter 7

CONTROL LOG[C
1=0N

O=OFF

nently .)

+4 .5V TO +18V
O

10~,F

8
VS
VS

DSI
DS2
DS3
DS4

0 .030

IRF510
N-CHANNEL
MOSFETS

LOAD

Figure 7-6 : A high-side switch connects between the load and the power supply .
Linear Technology's LTC1156 control high-side MOSFET switches with logic
signals .

switch, it removes power from the load . (Most switches fail by opening perma-

Connecting the load directly to ground can also help to reduce electrical noise in
the circuit. With a low-side switch, the load always floats a few tenths of a volt
above ground .
The LTC1156 can control up to four MOSFETs. You can use any SV TTL or
CMOS outputs as control signals, because the switches turn on at just 2V.
Providing a high-enough gate voltage can be a problem when using an N-channel
MOSFET in a high-side switch . When the MOSFET switches on, its low
drain-to-source resistance causes the source to rise nearly to the supply voltage.
For the MOSFET to remain on, the gate must be more positive than the source .

140

	

Parallel Port Complete

IN1

IN2 2

[N3 3

IN4 4

GND
GND

Output Applications

The LTC1156 takes care of this with charge-pump circuits that bring the gate volt-
ages as much as 20V above the supply voltage.
By adding a small current-sensing resistor, you can cause the outputs to switch off
if the MOSFETs' drain current rises above a selected value (3 .3A with 30 millio-
hms in the circuit shown) . The outputs switch off when the voltage drop across the
current-sensing resistor is 100 millivolts .

Solid-state Relays

Another way to switch power to a load is to use a solid-state relay, which offers an
easy-to-use, optoisolated switch in a single package. Figure 7-7A shows an exam-
ple.
In a typical solid-state DC relay, applying a voltage across the control inputs
causes current to flow in an LED enclosed in the package. The LED switches on a
photodiode, which applies a control voltage to a MOSFET's gate, switching the
MOSFET on. The result is a low resistance across the switch terminals, which
effectively closes the switch and allows current to flow . Removing the control
voltage turns off the LED and opens the switch .
Solid-state relays are rated for use with a variety of load voltages and currents .
Because the switch is optoisolated, there need be no electrical connection at all
between the control signal and the circuits being switched.
Solid-state relays have an on resistance of anywhere from a few ohms to several
hundred ohms . Types rated for higher voltages tend to have higher on resistances.
Solid-state relays also have small leakage currents, typically a microampere or so,
that flow through the switch even when off. This leakage current isn't a problem
in most applications .
There are solid-state relays for switching AC loads as well . These provide a sim-
ple and safe way to use a logic signal to switch line voltage to a load. Inside the
relay, the switch itself is usually an SCR or TRIAC. Zero-voltage switches mini-
mize noise by switching only when the AC voltage is near zero .

Electromagnetic Relays

Electromagnetic relays have been around longer than transistors and still have
their uses . An electromagnetic relay contains a coil and one or more sets of con-
tacts attached to an armature (Figure 7-7B) . Applying a voltage to the coil causes
current to flow in it . The current generates magnetic fields that move the armature,
opening or closing the relay contacts . Removing the coil voltage collapses the
magnetic fields and returns the armature and contacts to their original positions .

Chapter 7

74HC244
INVERTING

BUFFER/DRIVER

74HC244
BUFFER/DRIVER

(A) SOLID-STATE RELAY

+5V

	

V+
(RELAY (LOAD
VOLTAGE) VOLTAGE)

O

(B) MECHANICAL RELAY
Figure 7-7 : Solid-state and electromagnetic, or mechanical, relays are another
option for switching power to a circuit . An advantage to relays is that the load is
electrically isolated from the switch's control signal .

A diode across the relay coil protects the components from damaging voltages
that might otherwise occur when the contacts open and the current in the coil has
nowhere to go . In fact, you should place a diode in this way across any switched
inductive DC load, including DC motor windings . For AC loads, use a varistor in
place of the diode. The varistor behaves much like two Zener diodes connected
anode-to-cathode on both ends .

142

	

Parallel Port Complete

Output Applications

Two attractions of electromagnetic relays are very low on resistance and complete
physical isolation from the control signal . Because the contacts physically touch,
the on resistance is typically just a few tenths of an ohm. And because the contacts
open or close in response to magnetic fields, there need be no electrical connec-
tion between the coil and the contacts .
Drawbacks include large size, large current requirements (50-200 milliamperes is
typical for coil current), slow switching speed, and the need for maintenance or
replacement as the contacts wear . One solution to the need for high current is to
use a latching relay, which requires a current pulse to switch, but then remains
switched with greatly reduced power consumption.

Controlling the Bits

For simple switches, a single output bit can control power to a load . The bit rou-
tines introduced in Chapter 4 make it easy to read and change individual bits in a
byte . If you store the last value written to the port in a variable, there's no need to
read the port before each write.

X-10 Switches

A different way to control power to devices powered at 115V AC is to use the
X-10 protocol, which can send on, off; and dim commands to a device, using a
low-voltage signal carried on 115V, 60-Hz power lines . An X-10 interface is a
simple way to control lights and plug-in appliances using only the existing wiring
in the building .
Besides the popular manually programmed X-10 controllers and appliance mod-
ules, there are devices that enable you to program an X-10 controller from a PC,
usually using a serial or parallel link to communicate with the controller .

Signal Switches

One more type of switch worth mentioning is the CMOS switch for low-power
analog or digital signals. A logic signal controls the switch's operation .

Simple CMOS Switch

The 4066B quad bilateral switch is a simple and inexpensive way to switch
low-power, low-frequency signals . As Figure 7-8 shows, the chip has four control

Chapter 7

Controlling a Switch Matrix

40b6B
QUAD B[LATERAL SWITCH

5
4
6
8
12

IN/OUT A
CONTROL B
IN/OUT B
CONTROL C
IN/OUT C
CONTROL D
IN/OUT D

SWA

ISWB

SWC

SWD

OUT/IN B

OUT/IN C

OUT/IN D

3

9

13ICONTROL A
OUT/IN A 2

0

Figure 7-8 : The 40668 contains four CMOS switches, each controlled by a logic
signal .

inputs, each of which controls two I/O pins . A logic-high at a control input closes
a switch and results in a low resistance between the corresponding I/O pins . A
logic-low opens the switch, and opens the connection between the I/O pins .
The 4066B's power supply can range from 3 to 15V. With a SV power supply, the
on resistance of each switch is about 270 ohms, with the resistance dropping at
higher supply voltages . The on resistance has no significant effect on standard
LSTTL or CMOS logic or other signals that terminate at high-impedance inputs .
An HCMOS version, the 74HC4066, has lower on resistance and, unlike other
HCMOS chips, can use a supply voltage of up to 12V.

A more elaborate switching device is the Crosspoint switch, which allows com-
plete control over the routing of two sets of lines. Examples are Harris'
74HCT22106 Crosspoint Switch with Memory Control and Maxim's MAX456 8
x 8 Video Crosspoint Switch .

Figure 7-9 shows how you can use the parallel port to control an 8 x 8 array of sig-
nals with the '22106 . You can connect any of eight X pins to any of eight Y pins,
in any combination . Possible applications include switching audio signals to dif-
ferent monitors or recording instruments, selecting inputs for test equipment, or
any situation that requires flexible, changeable routing of analog or digital signals .
The '22106 simplifies circuit design and programming. It contains an array of
switches, a decoder that translates a 6-bit address into a switch selection, and
latches that control the opening and closing of the switches .
To connect an X pin to a Y pin, setMR=1 and CE=O . Then do the following :

1 . Write the address of the desired X pin to AO-A2 and write the address of the
desired Y pin to A3-A5. Set Strobe=l . Set Data=1 .

144

	

Parallel Port Complete

PC PARALLEL PORT
25-P1N

D-CONNECTOR 74LS244
BUFFER

GND
18-25

Parallel Port Complete

Output Applications

CD74HC22106 +5V
CROSS POI NT

	

SWITCH

	

p

Figure 7-10: Clicking on a grid cell opens or closes the matching switch .

TEST C[RCU IT

Figure 7-9 : The parallel port's data lines can control an 8 x 8 crosspoint switch .

3 . Set Strobe=0 to close the requested switch, connecting the selected X and Y
pins .
3 . Set Strobe=l .

To break a connection, do the same thing, except bring the Data input low to open
the switch .

Figure 7-10 shows the screen for Listing 7-2's program, which demonstrates the
operation of the switch matrix . The program uses Visual Basic's Grid control to

145

Parallel Port Resource

~~~~
8 x 8 Grosspoint Switch

YO `C

,

Y7 X



Chapter 7

Const OPENSWITCH$ = 0
Const CLOSESWITCH$ = 1

Sub ActivateSwitch (OpenOrClose~)
Dim Strobe
Dim XY$
`Data port bit 7 = OpenOrClose (0=open, 1=close)
OpenOrClose = OpenOrClose * &H80
`Data port bit 6 = Strobe .
Strobe = &H40
`Data port bits 0-2 hold the X value, bits 3-5 hold the Y value .
XY = grdXY .Col - 1 + (grdXY .Row - 1) * 8
`Write the address, select open or close, Strobe = 1
DataPortWrite BaseAddress, XY + Strobe + OpenOrClose
`Pulse the Strobe input .
DataPortWrite BaseAddress, XY + OpenOrClose
DataPortWrite BaseAddress, XY + Strobe + OpenOrClose
End Sub

Sub DisplayResults ()
Select Case SwitchState

Case "Closed"
grdXY .Text = "X"

Case "Open"
grdXY .Text = ""

End Select
End Sub

Sub Form Load ()
Startup
LabelTheGrid
End Sub

Sub grdXY Click ()
Select Case grdXY .Text

Case "X"
ActivateSwitch OPENSWITCH
SwitchState = "Open"
DisplayResults

Case Else
ActivateSwitch CLOSESWITCH
SwitchState = "Closed"
DisplayResults

End Select
End Sub

Listing 7-2 : Controlling an 8 x 8 crosspoint switch (Sheet 1 of 2)

146

	

Parallel Port Complete



Sub LabelTheGrid ()
Dim Rows
Dim Column
grdXY .Col = 0
For Row = 1 To 8

grdXY .Row = Row
grdXY .Text = "Y" &

Next Row
grdXY .Row = 0
For Column = 1 To 8

grdXY .Col = Column
grdXY .Text = "X" &

Next Column
1b1XY .Caption = "8 x 8
End Sub

Parallel Port Complete

Row - 1

Column - 1

Crosspoint Switch"

Listing 7-2 : Controlling an 8 x 8 crosspoint switch (Sheet 2 of 2)

Output Applications

display the switch matrix. When you click on a cell, the associated switch opens
or closes . An Xindicates a closed switch, an empty cell indicates an open switch .
You can make and break as many connections as you want by writing appropriate
values to the chip . All previous switch settings remain until you change them by
writing to the specific switch . The switches can connect in any combination. For
example, you can connect each X pin to a different Y pin to create eight distinct
signal paths. Or, you can connect all eight Y pins to a single X pin, to route one
signal to eight different paths. The X and Ypins may connect to external inputs or
outputs in any combination .
Figure 7-9 shows the '22106 powered at +SV, but the supply voltage may range
from 2 to I0V, and Vss (and Vdd) may be negative. (The HCT version
(74HCT22106) requires a +SV supply .) The chip can switch any voltages within
the supply range . However, the maximum and minimum values for the address
and control signals vary with the supply voltage. For example, if Vdd is +SV and
Vss is -SV, the address and control signals can no longer use SV CMOS logic lev-
els, because the logic levels are in proportion to the supply voltage. The maximum
logic low for these signals drops from +1 .SV to -2V (Vss + 0.3(IVdd-Vssl)), and
the minimum logic high drops from +3.SV to +2V (Vss +0.7(IVdd-Vssl)) .
At SV, the switches' typical on resistance is 64 ohms, dropping to 45 ohms at 9V.
The chip can pass frequencies up to 6 Megahertz with t4.5V supplies .
In Figure 7-9, the parallel port's DO-D7 control the switch array. The 74HCT244
buffer has TTL-compatible inputs and CMOS-compatible outputs. If you use a
74LS244, add a l0K pull-up resistor from each output to +SV, to ensure that logic

147



Chapter 7

highs meet the '22106's 3.3V minimum. If you use a 74HC244, addpullups at the
inputs to bring the parallel port's high outputs to valid CMOS logic levels .

For a simple test of the switches, you can connect a series of equal resistors as
shown to theX inputs . Each X input will then be at a different voltage. To verify a
switch closure, measure the voltages at the selected X and Y inputs ; they should
match.
Pin 3 (CE) is tied low. To control multiple switches from a single parallel port,
connect each switch's CE to one of the Control outputs, and wire DO-D7 to all of
the switches . You then can use the Control lines to select a switch to write to . The
Reset input(MR) is tied high . Ifyou want the ability to reset all of the switches, tie
this pin to one of the Control outputs.
Maxim's '456 is similar, but can pass frequencies up to 25 Megahertz, separate
analog and digital ground pins, and V+ and V- inputs . The address and control sig-
nals use SV logic levels even if the chip uses another supply voltage.

Displays
Because the parallel port resides on a personal computer that has its own
full-screen display, there's usually little need to use the port's outputs to control
LEDs, LCDs (liquid crystal displays), or other display types. You might want to
use LEDs as simple indicators to show troubleshooting or status information . And
of course, you can use the port's Data and Control outputs to control other types
of displays if the need arises .

14g

	

Parallel Port Complete



Input Applications
Because the parallel port's most common use is to send data to a printer, you
might think that the port is useful only for sending information from a PC to a
peripheral . But you can also use the parallel port as an input port that reads infor-
mation from external devices . SPPs have five Status inputs and four bidirectional
Control lines, and on many newer ports, you can use the eight Data lines as inputs
as well .
This chapter shows a variety of ways to use the parallel port for input. The exam-
ples include latched digital inputs, an expanded input port of 40 bits, and an inter-
face to an analog-to-digital converter .

Reading a Byte

Input Applications

8

On the original parallel port, there is no way to read eight bits from a single port
register. But there are several ways to use the available input bits to put together a
byte of information.
Chapter2 showed how to perform simple reads of the Status, Control, and bidirec-
tional Data bits, and later chapters show how to use IEEE 1284's Nibble, Byte,
EPP, and ECP modes to read bytes and handshake with the peripheral sending the
information. The following examples show other options, including a simple way



Chapter 8

PC PARALLEL PORT
25-PIN

CONTROL

~ C0

GND

data to be read .

74LS14

4

L/4 74LS244
BUFFER

IG

Latching the Status Inputs

18
16

Figure 8-1 : A `374 flip-flop latches a byte of data, and a Control bit selects each of
two nibbles to be read at the Status port.

to read a byte in two nibbles at the Status port and how to add a latch to store the

Figure 8-1 and Listing 8-1 show a way to read bytes at the Status port . The circuit
stores two nibbles (1 nibble = 4 bits), which the program reads in sequence at the
Status port . One Control bit latches the data, and another selects the nibble to read .
The latch is a 74LS374 octal flip-flop. The rising edge of the Clk input latches the
eight D inputs to the corresponding Q outputs. Even if the inputs change, the out-
puts will remain at their latched values until CI goes low, then high again. This
ensures that the PC's software will read the state of all of the bits at one moment
in time . Otherwise, the PC may read invalid data . For example, if the byte is an
output from an analog-to-digital converter, the output's value may change by one
bit, from 1Fh when the PC reads the lower four bits, to 20h when the PC reads the
upper four bits . If the data isn't latched, the PC will read 2Fh, which is very differ-
ent from the actual values of 1Fh and20h .

A 74LS244 buffer presents the bits to the Status port, four at a time . When 1G is
low, outputs IQ-4Q are enabled, and the PC can read inputs ID-4D. When 2G is
low, outputs SQ-8Q are enabled and the PC can read inputs SD-8D. A second '244
buffers the two Control signals . You can substitute HCT versions of the chips .

150

	

Parallel Port Complete

D-CONNECTOR 74LS244
BUFFER

74LS374
FLIP-FLOP

- S4 _13 _18 2 10 1D _3

STATUS SS _12 _16 4 5 20 2D _4

S6 _10 _14 6 6 30 3D _7

S7 11 _12 8 9 4Q 4D _8 8 TTL-_
_9 II 12 _13 COMPATIBLE

50 5D INPUTS_7 13 15 60 6D _14
_5 15 16 70 7D _17
3 17 19 BO 8D IS

2G IG OC CLK
19 I I f~l I



Option Explicit
Const SelectHighNibble~ = 1
Const Clocks = 2

Sub cmdReadByte Click ()
Dim LowNibble
Dim HighNibble~
Dim ByteIn$
`Latch the data
ControlPortWrite BaseAddress, Clock
ControlPortWrite BaseAddress, 0
`Read the nibbles at bits 4-7 .
LowNibble = StatusPortRead(BaseAddress) \ &H10
ControlPortWrite BaseAddress, SelectHighNibble
HighNibble = StatusPortRead(BaseAddress) And &HFO
ByteIn = LowNibble + HighNibble
1blByteIn .Caption = Hex$(ByteIn) + "h"
End Sub

Input Applications

Listing 8-1 : Reading a byte in two nibbles at the Status port .

Listing 8-1 latches a byte of data, then reads it in two nibbles, recombines the nib-
bles into a byte, and displays the result . The data bits are the upper four Status
bits, which makes it easy to recombine the nibbles into a byte . In the upper nibble,
the bits are in the same positions as in the original byte, so there's no need to
divide or multiply to shift the bits . For the lower nibble, just divide the value read
by &h10.

Latched Input Using Status and Control Bits

Figure 8-2 is similar to the previous example, but it uses both Status and Control
bits for data . Control bits 0-2 are the lower three bits, and Status bits 3-7 are the
upper five bits, so each bit has the same position as in the original byte . Control bit
3 latches the data .
For this circuit, multi-mode ports must be in SPP mode to ensure that the Control
bits can be used for input. Some multi-mode ports can't use the Control bits as
inputs at all.
The three Control lines are driven by 7407 open-collector buffers . The remaining
Control input uses another buffer in the package.
You must write 1 to Control bits 0-2's corresponding outputs in order to use them
as inputs . (Because bits 0, 1, and 3 are inverted between the port register and the
connector, you actually write 4 to bits 0-3 to bring all outputs high .)

Parallel Port Complete



Chapter 8

5 Bytes of Input

C

Listing 8-2 latches 8 bits, reads the Status and Control ports, recreates the original
byte, and displays the result .

If you have a lot of inputs to monitor, Figure 8-3 shows how to read up 5 bytes at
the Status port . Five outputs of a 74LS244 octal buffer drive the Status inputs, and
the other 3 bits buffer the bit-select signals from CO-C2 .
Outputs CO, Cl, and C2 select one of eight inputs at each of five 74LS151 data
selectors. At each ' 151, the selected input appears at output Y, and also in inverted
form at W. An output of each ' 151 connects through a buffer to one of the Status
inputs . To read a bit from each ' 151, you write to CO-C2 to select the bit, then read
S3-S7.
Listing 8-3 reads a1140 bits, 5 bits at a time, combines the bits into bytes, and dis-
plays the results. Figure 8-4 is the program screen . Since the ' 151 has both normal
and inverted outputs, you could use the Woutput at S7 to eliminate having to rein-
vert the bit in software . Listing 8-3 uses the StatusPortRead routine that automati-
cally reinverts bit 7, so Figure 8-3 uses the Youtput .

PC PARALLEL PORT
25-PIN

OPEN-COLLECTOR BUFFER

Figure 8-2 : Eight latched input bits, using the Status and Control ports.

152

	

Parallel Port Complete

D-CONNECTOR 74LS374
FLIP-FLOP

S3 15 2 10 1D
S4 13 5 20 2D

TATUS S5 1 2 6 30 3D 7

S6 10 9 40 4D 8 8 TTL-

S7 11 l2 50 5D 13 COMPATIBLE
l 5 _14 INPUTS

60 6D
_ _ _ , 16 70 7D _17

C0 l 2, '1 l9 80 8D 18

CI l4 OC CLK
NTROL

C2 16 f I1
l7_ C3

+5V
18-25

GND
4 .7K

9, 8,

4/6 7407



PC PARALLEL PORT
2S-PIN

D-CONNECTOR

	

74HCT244

	

74L5151
BUFFER

	

DATA SELECTOR
5~~4

STATUS

Y
W

A

D0
DI
D2
D3
D4
DS

Y
W

A
B
C
STB

D0
DI
D2
D3
D4
DS
D6
D7

19

_3
2

S3
S4
SS
S6
? ;7

C0
CONTROL CI

C2

GND
IB-25

Figure 8-3 : Forty input bits, read in groups of five .

Input Applications

IS
4

4

4
13
12

8
TTL-COMPATIBLE
INPUTS

8
TTL-COMPATIBLE
INPUTS

8
TTL-COMPATIBLE
INPUTS

B
TTL-COMPATIBLE
INPUTS

B
TTL-COMPATIBLE
INPUTS

Parallel Port Complete

	

153

"" B D6 13
"~"""~ c D7 Iz

SB

r

W

w

DI
D2
D3
D4 5

"" A
8

DS 4

D6 3

"-""

r

12

r "

Y D0 4
7W DI

D2
D3
D4 _15

"
A DS _14

_13
"-"

B
C

D6
D7 12

0
STH

~7 Y D0 4
j W DI 3

D2 _2

D3 I

D4uA DS 14

B D6 13

C D7
STB



Chapter 8

Figure 8-4: Screen for Listing 8-3`s program .

Using the Data Port for Input

If you have a bidirectional data port, you can use the eight data lines as inputs.
You can also use the port as an I/O port, both reading and writing to it, as long as
you're careful to configure the port as input whenever outputs are connected and
enabled at the data pins . In other words, when the data lines are configured as out-
puts, be sure to tristate, or disable, any external outputs they connect to . You can
use a '374 to latch input at the Data port, as in the previous examples .

Reading Analog Signals
The parallel port is a digital interface, but you can use it to read analog signals,
such as sensor outputs.

Sensor Basics

letup

Input Bytes
FOh
FCh
EEh
WEh
Eh

A sensor is a device that reacts to changes in a physical property or condition such
as light, temperature, or pressure . Many sensors react by changing in resistance . If
a voltage is applied across the sensor, the changing resistance will cause a change
in the voltage across the sensor . An analog-to-digital converter (ADC) can con-
vert the voltage to a digital value that a computer can store, display, and perform
calculations on .

Simple On/Off Measurements

Sometimes all you need to detect is the presence or absence of the sensed prop-
erty . Some simple sensors act like switches, with a low resistance in the presence

154

	

Parallel Port Complete



'Clock is Control bit 3 .
Const Clocks = 8
`Write 1 to bits CO-C2 to allow their
Const SetControlBitsAsInputs = 7

Sub cmdReadByte Click ()
Dim LowBits~
Dim HighBits
Dim ByteIn~
`Latch the data .
ControlPortWrite BaseAddress,
ControlPortWrite BaseAddress,
`Read the bits at CO-C2,
LowBits = ControlPortRead(BaseAddress)
HighBits = StatusPortRead(BaseAddress)
ByteIn = LowBits + HighBits
1blByteIn .Caption = Hex$(ByteIn) + "h"
End Sub

Sub Form Load ()
'(partial listing)
`Initialize the Control port .
ControlPortWrite BaseAddress,
End Sub

use as inputs .

SetControlBitsAsInputs
SetControlBitsAsInputs

S3-S7 .
And 7
And &HF8

SetControlBitsAsInputs

Listing 8-2 : Reading 8 bits using the Status and Control ports .

of the sensed property, and a high resistance in its absence. In this case, you can
connect the sensor much like a manual switch, and read its state at an input bit .
Sensors that you can use this way include magnetic proximity sensors, vibration
sensors, and tilt switches .

Level Detecting

Input Applications

+ Clock

Another common use for sensors is to detect a specific level, or intensity, of a
property . For this, you can use a comparator, a type of operational amplifier (op
amp) that brings its output high or low depending on which of two inputs is
greater.
Figure 8-5 shows how to use a comparator to detect a specific light level on a pho-
tocell . The circuit uses an LM339, a general-purpose quad comparator. The resis-
tance of a Cadmium-sulfide (CdS) photocell varies with the intensity of light on it .
Pin 4 is a reference voltage, and pin 5 is the input being sensed . When the sensed

Parallel Port Complete 155



Chapter 8

input is lower than the reference, the comparator's output is low. When the sensed
input is higher than the reference, the comparator's output is high .
As the light intensity on the photocell increases, the photocell's resistance
decreases and pin 5's voltage rises. To detect a specific light level, adjust R2 so
that Vout switches from low to high when the light reaches the desired intensity.
You can read the logic state of Vout at any input bit on the parallel port.
R4 is a pull-up resistor for the LM339's open-collector output . R3 adds a small
amount of hysteresis, which keeps the output from oscillating when the input is
near the switching voltage.
You can use the same basic circuit with other sensors that vary in resistance .
Replace the photocell with your sensor, and adjust R2 for the switching level you
want .

Reading an Analog-to-digital Converter

When you need to know the precise value of a sensor's output, an analog-to-digi-
tal converter (ADC) will do the job. Figure 8-6 is a circuit that enables you to read
eight analog voltages . The ADC0809 converter is inexpensive, widely available,
and easy to interface to the parallel port . The ADC0808 is the same chip with
higher accuracy, and you may use it instead.

+5V

CADM I UM- ~,~
SULFIDE
PHOTOCELL

R3
1M

ADJUST R2 SO VOUT SWITCHES AT DESIRED
LIGHT LEVEL .

Figure 8-5 : A comparator can detect a specific voltage .

VOUT
8-DARK
1=LIGHT

156

	

Parallel Port Complete



PARALLEL PORT
25-PIN

D-CONNECTOR
ADC0809

74LS244 ANALOG-TO-DIGITAL
BUFFER

	

CONVERTER

TEST CIRCUIT FOR ANALOG INPUTS
CONNECT INX TO ANY ANALOG

INPUT (1F AOCARt~9

d

CLOCK FREQUENCY

Input Applications

4

~ 74HCT14
0 .001kF

_ _0 .7
R " C

8
ANALOG
INPUTS

Figure 8-6 : The ADC0809 analog-to-digital converter provides a simple way to
read 8 analog channels at the parallel port .

The ADC0809 has eight analog inputs (INO-IN7), which may range from 0 to
+SV. To read the value of an analog input, you select a channel by writing a value
from 0 to 7 to inputs A-C, then bringing Start andAle high, then low, to begin the
conversion . When the conversion is complete, Eoc goes high and the digital out-
puts hold a value that represents the analog voltage read .
The chip requires a clock signal to control the conversion . A 74HCT14
Schmitt-trigger inverter offers a simple way to create the clock. The frequency
can range from 10 kilohertz to 1280 kilohertz . If you prefer, you can use a 555
timer for the clock, although the maximum frequency of the 555 is 500 kilohertz .
Conversion time for the ADC is 100 microseconds with a 640-kilohertz clock.

Parallel Port Complete

	

157



Chapter 8

Dim DataIn~(0 To 7)
Dim DataByte~(0 To 4)

Sub cmdReadBytes Click ()
Dim BitNumber~
`The Control port selects a bit number to read .
`The Status port holds the data to be read .
For BitNumber = 0 To 7

ControlPortWrite BaseAddress, BitNumber
DataIn(BitNumber) = StatusPortRead(BaseAddress)

Next BitNumber
GetBytesFromDataIn
DisplayResults
End Sub

Sub DisplayResults ()
Dim ByteNumber~
For ByteNumber = 0 To
1blByteIn(ByteNumber)
Next ByteNumber
End Sub

Listing 8-3: Reading 40 inputs . (Sheet 1 of 2)

158

4
Caption = Hex$(DataByte(ByteNumber)) & "h"

Parallel Port Complete



Dim
Dim
Dim
For

Parallel Port Complete

4
0

Sub GetBytesFromDataIn ()
`Bits 3-7 of the 8 bytes contain data .
`To make 5 data bytes from these bits,
`each data byte contains one bit from each
`For example, data byte 0 contains
`one from each byte read .

ByteNumber~
BitNumber
BitToAdd~
ByteNumber = 0 To
DataByte(ByteNumber)
`BitRead gets the selected bit value (BitNuumber
`from the selected byte read (DataIn(BitNumber))
`To get the bit value for the created data
`multiply times 2^BitNumber .
`Add each bit value to the created byte .
For BitNumber = 0 To 7

BitToAdd = (BitRead(DataIn(BitNumber),
* 2 ^ BitNumber

DataByte(ByteNumber) _
Next BitNumber

Next ByteNumber
End Sub

Listing 8-3: Reading 40 inputs . (Sheet 2 of 2)

byte
8 "bit 3s,"

byte,

Input Applications

read

3)

ByteNumber

DataByte(ByteNumber) + BitToAdd

Inputs Vref+ and Vref- are references for the analog inputs . When an analog input
equals Vref-, the digital output is zero . When the input equals Vref+, the digital
output is 255 . You can connect the reference inputs to the +SV supply and ground,
or if you need a more stable reference or a narrower range, you can connect other
voltage sources to the references .
Listing 8-4 reads all eight channels and displays the results . It reads the data in
two nibbles at S3-SS and S7. Outputs DO-D2 select the channel to convert, D3
starts the conversion, and D4 selects the nibble to read . Optional input S6 allows
you to monitor the state of the ADC's end-of-conversion (Eoc) output.
A 74LS244 drives the Status bits . When D4 is low, you can read the ADC's DBO-
DB3 outputs at the Status port . When D4 is high, you can read DB4-DB7.
A second 74LS244 interfaces the other signals to the ADC. Bringing D3 high
latches the channel address from DO-D2, and bringing D31ow starts a conversion .

Bit S6 goes high when the ADC has completed its conversion. You can monitor
S6 for a logic high that signals that the conversion is complete, or you can use the

159



Chapter 8

Const Starts = 8
Const HighNibbleSelect~
Dim DataIn~(0 To 7)
Dim ChannelNumber~
Dim LowNibble~
Dim HighNibble~

Sub
Dim
For

160

_ &H10

cmdReadPortsClick ()
EOC$
ChannelNumber = 0 To 7
`Select the channel .
DataPortWrite BaseAddress, ChannelNumber
`Pulse Start to begin a conversion .
DataPortWrite BaseAddress, ChannelNumber + Start
DataPortWrite BaseAddress, ChannelNumber
`Wait for EOC
Do

DoEvents
LowNibble = StatusPortRead(BaseAddress)
EOC = BitRead(LowNibble, 6)

Loop Until EOC = 1
`Read the byte in 2 nibbles .
DataPortWrite BaseAddress, ChannelNumber + HighNibbleSelect
HighNibble = StatusPortRead(BaseAddress)
DataIn(ChannelNumber) = MakeByteFromNibbles()

Next ChannelNumber
DisplayResult
End Sub

Sub DisplayResult ()
For ChannelNumber = 0 To 7

1blADC(ChannelNumber) .Caption
Hex$(DataIn(ChannelNumber)) &

Next ChannelNumber
End Sub

�h�

Listing 8-4: Reading 8 channels from an ADC. (Sheet 1 of 2)

Parallel Port Complete



Function MakeByteFromNibbles~ ()
Dim 50~, 51~, S2$, 53~, 54~,
SO = (LowNibble And 8) \ 8

MakeByteFromNibbles = SO + S1 +
End Function

s5~, 56~,

Listing 8-4 : Reading 8 channels from an ADC. (Sheet 2 of 2)

Sensor Interfaces

Parallel Port Complete

S7~

Input Applications

S2 + S3 + S4 + S5 + S6 + S7

rising edge at S6 to trigger an interrupt, or you can ignore S6 and just be sure to
wait long enough for the conversion to complete before reading the result.
The circuit uses S6 as end-of-convert because it's the parallel port's interrupt pin.
If you don't use interrupts, you can wire the ADC's data outputs to S4-S7 for an
easier (and faster) conversion from nibbles to byte .
At each analog input, you can connect any component whose outputs ranges from
0 to +SV.

If the output range of your sensor voltages is much less than SV, you can increase
the resolution of the conversions by adjusting the reference voltages to a range
that is slightly wider than the range you want to measure.
To illustrate, consider a sensor whose output ranges from 0 to 0.SV. The 8-bit out-
put of the converter represents a number from 0 to 255. If Vref+ is SV and Vref- is
0V, each count equals 5/255, or 19.6 millivolts . A 0.2V analog input results in a
count of 10, while a 0.SV input results in a count of 26 . If your input goes no
higher than 0.SV, your count will never go higher than 26, and the measured val-
ues will be accurate only to within 20 millivolts, or 1/255 of full-scale .
If you lower Vref+ to 0.SV, each countnow equals 0.5/255, or 0.002V. A 0.2-volt
input gives a count of 102, a 0.5-volt input gives a count of 255, and the measured
values can be accurate to within 2 millivolts .
If you decrease the range, you also increase the converter's sensitivity to noise.
With a SV range, a 20-millivolt noise spike will cause at most a 1-bit error in the

S1 = (LowNibble And &H10) \ 8
S2 = (LowNibble And &H20) \ 8
S3 = (LowNibble And &H80) \ &H10
S4 = (HighNibble And 8) * 2
S5 = (HighNibble And &H10) * 2
_S6 = (HighNibble And &H20) * 2
S7 = HighNibble And &H80



Chapter 8

VIN

Signal Conditioning

GA1N
ADJUST

VOUT

BUFFER

	

LEVEL SHIFTER

	

AMPLIFIER/ATTENUATOR
Figure 8-7 : With this circuit you can adjust the offset and amplitude of an analog
signal .

output. With a0.5V range, the same spike can cause an error of 10 bits, since each
bit now represents just 2 millivolts, rather than 20 .
The lower reference doesn't have to be 0V. For example, the output of an LM34
temperature sensor is 10 millivolts per degree Fahrenheit . If you want to measure
temperatures from 50 to 100 degrees, you can set Vref- to 0.SV and Vref+ to 1V,
for a 50-degree range, or 0.2 degree per bit.

Not every sensor has an output that can connect directly to the ADC0809's inputs .
A sensor's output may range from -2 to 0V, from -0.5 to +0.SV, or from -12 to
+12V. In all of these cases, you need to shift the signal levels and/or range to be
compatible with a converter that requires inputs between 0 and 5 volts .
Figure 8-7 shows a handy circuit that can amplify or reduce input levels, and can
also raise or lower the output by adding or subtracting a voltage. Separate, inde-
pendent adjustments control the gain and offset . The circuit is a series of three op
amps : a buffer, a level shifter, and an amplifier. The circuit uses three of the
devices in an LF347 quad JFET-input op amp, which has fast response and high
input impedance . You can use another op amp if you prefer .
The first op amp is a noninverting amplifier whose output at pin 1 equals Vin . The
op amp presents a high-impedance input to VIN. The second op amp is an invert-
ing summing amplifier that raises and lowers pin 1's voltage as RS is adjusted .
Varying RS changes the voltage at pin 7, but the signal's shape and peak-to-peak
amplitude remain constant . The third op amp is an inverting amplifier whose gain

162

	

Parallel Port Complete



Input Applications

is adjusted by R4. This amplifier increases or decreases the peak-to-peak ampli-
tude of its input.
As an example of how to use the circuit, if Vin will vary from +0.2V to -0.2V, set
Vin to +0.2V and adjust R4 until Vout is +2.SV. Then set Vin to -0.2V and adjust
RS until Vout is 0V.
If the range of Vin is too large, use R4 to decrease the gain instead of increasing it.
If you need to shift the signal level down (to a lower range) instead of up, connect
RS to +15V instead of -15V . If you don't need level shifting, you can remove RS
and connect pin 6 only to Rl andR2 .

Minimizing Noise

Rapid switching of digital circuits can cause voltage spikes in the ground lines .
Even small voltage spikes can cause errors in analog measurements . Good routing
of ground wires or printed-circuit-board traces can minimize noise in circuits that
mix analog and digital circuits .
To reduce noise, provide separate ground paths for analog and digital signals .
Wire or route all ground connections related to the analog inputs or reference volt-
ages together, but keep them separate from the ground connections for the digital
circuits, including the clock and buffer/driver chips. Tie the two grounds together
at one place only, as near to the power supply as possible . Also be sure to include
decoupling capacitors, as described in Chapter 6.

Using a Sample and Hold

An additional component that you may need for rapidly changing analog inputs is
a sample-and-hold circuit. To ensure correct conversions, the analog input has to
remain stable while the conversion is taking place.
A sample-and-hold circuit ensures that the analog signal is stable by sampling the
signal at the desired measurement time and storing it, usually as a charge on a
capacitor. The converter uses this stored signal as the input to be converted .

When do you need a sample-and-hold? Clocked at 640 kHz, the ADC0809
requires 100 microseconds to convert, and you'll get good results with inputs that
vary less than 1 bit in this amount of time . For rapidly changing inputs, sam-
ple-and-hold chips like the LF398 are available, or you can use a converter with a
sample-and-hold on-chip .



Chapter 8

164

	

Parallel Port Complete



You download this file from web-site: http://www.pcports.ru


