Y ou download this file from web-site: http://www.pcports.ru

Serial Port
Complete

Programming and Circuits for
RS-232 and RS-485
Links and Networks

Cables,
Connectors, &
Terminations

Network
Programming
Tips & Ticks —,

/’\

Sample Applications for
mVisual Basic
mBasic Stamp

m8052-Basic
wvewwpes Jan Axelson
DIsSK! author of the best-selling

Parallel Port Complete

Serial Port
Complete

Programming and Circuits for
RS-232 and RS-485
Links and Networks

Jan Axelson

Lakeview Research
Madison, WI 53704

copyright 1998, 1999, 2000 by Jan Axelson. All rights reserved.
Published by Lakeview Research

Lakeview Research

5310 Chinook Ln.
Madison, WI 53704

USA

Phone: 608-241-5824

Fax: 608-241-5848

Email: jan@lvr.com
WWW: http://www.lvr.com

14 13 1211 1098 765 4

Products and services named in this book are trademarks or registered trademarks of their
respective companies. The author uses these names in editorial fashion only and for the
benefit of the trademark owners. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with the book.

No part of this book, except the programs and program listings, may be reproduced in any
form, or stored in a database or retrieval system, or transmitted or distributed in any form,
by any means, electronic, mechanical photocopying, recording, or otherwise, without the
prior written permission of Lakeview Research or the author, except as permitted by the
Copyright Act of 1976. The programs and program listings, or any portion of these, may
be stored and executed in a computer system and may be incorporated into computer pro-
grams developed by the reader.

The information, computer programs, schematic diagrams, documentation, and other
without warranty of any kind, expressed or
implied, including without limitation any warranty concerning the accuracy, adequacy, or
completeness of the material or the results obtained from using the material. Neither the
publisher nor the author shall be responsible for any claims attributable to errors, omis-

]

material in this book are provided “as is,’

sions, or other inaccuracies in the material in this book. In no event shall the publisher or
author be liable for direct, indirect, special, incidental, or consequential damages in con-
nection with, or arising out of, the construction, performance, or other use of the materi-
als contained herein.

ISBN 0-9650819-7-4

Table of Contents

Introduction ix

Options and Choices 1

The Computers 1

The Programming 3
Languages and Operating Systems
Message Properties

The Link 5

Applications 7

Formats and Protocols 11

Sending Serial Data 11
Synchronous Format
Asynchronous Format
System Support

Transmitting a Byte 15
The Bit Format
Autodetecting the Bit Rate

Data Formats 18
Binary Data

Serial Port Complete

Text Data
Preventing Missed Data 20

Handshaking

Buffers

Polling and Interrupts

Acknowledgments

Error-checking

The PC’s Serial Port from the Connector In

Port Architecture 25

The UART

Enhancements
Port Resources 28

Finding Ports

Port Information in the Registry
Configuring 31

New Systems

Adding a Port

Using Older Hardware

Internal vs. External Devices

IRQ Conflicts

Solutions for Multiple Ports
Inside the UART 40

Interrupt Sources

Control Registers

New Functions

PC Programming 45

Using MSComm 45
Properties
Text and Binary Transfers
Polled Communications
Using OnComm
Handshaking Options

A Template Application 55
The Main Form
General Routines
Selecting a Port
Saving Data

Other Ways to Access Serial Ports 80
API Functions
Direct Port Access

Serial Port Complete

25

Using Older Basics 87
Visual Basic Versions
Accessing Ports under DOS

5 Microcontroller Serial Ports 91

The 8051 Family 91
The Serial Port
Interfacing Options
The 8052-Basic 93
Communications Abilities
Processing Received Data
Custom Communications
The Basic Stamp 102
A Firmware UART
Signal Levels
Stamp-to-Stamp Links
Adding a Hardware Serial Port 113
Options
An SPI/Microwire UART

6 Linking Two Devices with RS-232 117
About RS-232 118

Features

Signals

Voltages

Timing Limits
Converting between 5V Logic and RS-232 125

The MAX232

Other Interface Chips

Short-range Circuits
Port-powered Circuits 133
Alternate Interfaces 135

Direct Connection

Other Unbalanced Interfaces

7 Connectors and Cables for RS-232 139

Connectors 139
25-pin Shells
9-pin Shells
The Alt A Connector
Modular Connectors
Adapters

Serial Port Complete

Cables 146

Length Limits

How Many Wires?
Isolated Links 148

Ways to Achieve Isolation

About Grounds

Power Supply Grounds

Optoisolating

Surge Protection
Troubleshooting Tools 155

RS-232 Applications 157
Linking Two Computers 157
A 2-PC Link
Selecting a Remote CPU
PC-to-Basic Stamp Link 173
Exchanging Data
Ensuring that the Stamp Sees Incoming Data
PC-to 8052-Basic Link 177
Ensuring that the 8052-Basic Sees Incoming Data
Exchanging Data
Simple 1/0 179
Accessing the Signals
Connecting to a Stand-alone UART
Controlling Synchronous Interfaces
Operating System Tools 181
Direct Cable Connection
DOS Interlnk and Intersvr

Links and Networks with RS-485 185
About RS-485 185

Balanced and Unbalanced Lines
Voltage Requirements
Current Requirements
Speed
Adding an RS-485 Port 194
PC Expansion Cards
Converter Chips
Converting TTL
Converting RS-232
Short Links between Different Interfaces

Serial Port Complete

10

11

12

RS-485 Cables & Interfacing 205

Long and Short Lines 205
When Is a Line Long?
Calculating Line Length

Line Terminations 210
Characteristic Impedance
Adding a Termination
Effects of Terminations
Reflections
Terminations for Short Lines

Choosing a Driver Chip 222

Network Topologies 223

Open and Short-circuit Biasing 225
Open-circuit Protection
Short-circuit Protection

Cable Types 230
How a Wire Picks Up Noise
Twisted-pair Cable
Selecting Cable

Grounds in a Differential Link 233
Ensuring a Common Ground
Isolated Links

Extending a Link with Repeaters 239

Network Programming 241

Managing Traffic 241
Steps in Exchanging a Message
Protocols
Addressing 245
Assigning
Detecting
Other Information in Messages
Using Existing Protocols
Transmitter Enable Timing 249

Two Networks 253

An RS-485 Network 253
The Protocol
The Link
The Master’s Programming
Selecting Nodes
Slave Programming

Serial Port Complete vii

Q=

viii

A Simple Stamp Network 259
Debugging Tips 275

Appendices

Resources 287
RS-232 Signals 291
Number Systems 293

Index 297

Serial Port Complete

Introduction

Introduction

This book is a guide to designing, programming, installing, and troubleshooting
computer links, including networks of multiple computers. Most of the links
described use one of two serial interfaces popularly known as RS-232 and
RS-485. The computers may be personal computers, embedded controllers, or any
devices that share a common interface. Common uses for these links include data
acquisition and control systems.

What’s Inside

Putting together a serial link of this type requires expertise both in circuit design,
to choose the components that make up the link, and in programming, to write the
code that controls the link. This book covers each of these.

PCs

For links that use PCs (personal computers), I describe the architecture shared by
the ports in all PCs, and show how to use a port’s features, with program code in
Visual Basic.

A template project gives a quick start for applications you write. The template
includes routines for finding ports in a system, enabling users to select and config-

Serial Port Complete iX

Introduction

ure a port, and other general-purpose functions commonly used in applications
that access serial ports.

Embedded Controllers

The examples for embedded controllers use one of two popular microcontroller
chips: Parallax’s Basic Stamp and the 80(C)52-Basic from Intel, Micromint, and
other sources. Both are based on popular microcontroller hardware: the PIC and
8051 families. Both can be programmed in dialects of Basic.

Applications

The example applications include circuit designs and code for serial links between
two or more PCs and microcontrollers, using RS-232, RS-485, and simple direct
links. I also show how to use an RS-232 serial port as the power source for
low-power external circuits.

Cables and Interfacing

In a serial link, the proper cable and terminating components can prevent errors
due to electrical noise or malfunctioning hardware. This book shows how to
choose an appropriate cable and how to select or design the circuits that interface
to the cable.

Who should read this book?

Readers from many backgrounds will find this book useful:

Programmers will find code examples that show how to use serial ports on PCs
and microcontrollers. Programming a network shared by multiple computers is
more involved than programming a link with just two computers. This book
explains the options and shows how to avoid the pitfalls.

For hardware designers, there are details about serial-port circuits and how to
interface to them, including the design of converters to translate between RS-232,
RS-485, and 5V TTL logic. Examples show how to implement an RS-485 port on
PCs and microcontrollers and how to design links with features like bullet-proof
failsafe circuits, high noise immunity, and low power consumption.

For system troubleshooters, there are hardware and software debugging tech-
niques, plus code for finding and testing ports and links.

Hobbyists and experimenters will find many ideas, along with explanations and
tips for modifying the examples for a unique application.

X Serial Port Complete

Introduction

Teachers and students have found serial ports to be a handy tool for experiments
with electronics and computer control and monitoring. Many of the examples in
this book are suitable as a starting point for school projects.

And last but not least, users, or anyone who uses a computer with serial ports, will
find useful information, including advice on configuring and adding ports.

How did you learn all this?

Readers who have found my books useful sometimes ask how I came to know the
information they contain. The short answer is that each of my books, including
this one, is the result of a continuous cycle of research and experiments.

Many companies do an excellent job of providing information to help customers
use their products. Manufacturers of the chips used in RS-232 and RS-485 inter-
faces have published dozens of application notes. The data sheets for the chips
themselves also hold many answers. All of this information is now easily avail-
able on the Internet. There are also many good books that cover related topics. See
the appendix of this book and Lakeview Research’s web site for pointers to many
good sources of information.

But in the end there’s no substitute for real-life experiments: putting together the
hardware, writing the program code, and watching what happens when the code
executes. Then when the result isn’t as expected—as it often isn’t—it means try-
ing something else or searching the documentation for clues. This book is result of
many, many hours of such research and experiments.

About the Program Code

All of the code presented in the book (and more) is available for free downloading
from Lakeview Research’s website (www.lvr.com). All of the code uses some
variant of the Basic programming language.

I chose Basic for three reasons. First, much of this book is about trying things out
and learning how they work, and Basic’s interactive nature makes it a good choice
for this. Second, Basic is popular, so many readers will already be familiar with it.
And third, Basic is what I know best. Throughout, I’ve tried to document the code
completely enough so that you can translate into another programming language if
you wish.

For each example, I assume you have a basic understanding of the language used,
whether it’s Visual Basic or a microcontroller Basic, and how to create and debug
programs. The book focuses on the details that relate specifically to serial commu-
nications.

Serial Port Complete Xi

Introduction

I developed the PC examples with Visual Basic 5. Because they’re intended as
design tools, and not as finished applications, I provide the complete source code
but not compiled, executable programs. To compile the programs, you must have
a copy of Visual Basic. I tested the code on a system running Windows 95. Visual
Basic code is generally compatible with Windows NT as well, but I didn’t test
under NT.

I also used Visual Basic to illustrate other short calculations. These use
Visual-Basic syntax, even when not presented explicitly as a code module. For
example, an asterisk (*) signifies multiplication.

For those programming for Windows 3.x, the example code won’t load directly
into the older, 16-bit versions of Visual Basic, but you can copy and use many of
the routines with few or no changes. In some cases, I've provided DOS QuickBa-
sic code for use in systems using older or embedded PCs running DOS.

In a similar way, the microcontroller code examples are written for two popular
chips, but the ideas behind the code are adaptable to other controllers and lan-
guages.

The Visual Basic code uses the line-continuation character (_) to enable a single
line of code to extend over multiple lines. The routines within each listing are
arranged alphabetically. The microcontroller code has no line-continuation char-
acter, and some program lines do carry over onto a second line in the listings in
the text. The listings you can download are formatted correctly and should load
and run without problems.

About the Example Circuits

Xii

I’ve included many schematic diagrams of circuits that you can use or adapt in
serial-port projects. In presenting the circuits, I assume you know the basics about
digital logic and electronic circuits. The circuit diagrams are complete, with these
exceptions:

Power-supply and ground pins are omitted when they are in standard locations
on the package (bottom left for ground, top right for power, assuming pin 1 is
top left).
Power-supply bypass capacitors are omitted.
Some chips may have additional, unused gates or other elements that aren’t
shown.
In the schematics and text, active-low signals use a leading hyphen (-RESET) or
an overbar (RESET).

For more information on the components, see the manufacturers’ data sheets.

Serial Port Complete

Introduction

Corrections and Updates

In putting together this book, I've done my best to ensure that the information is
complete and correct. Every schematic diagram with detail at the pinout level has
been built and tested by me, most of it multiple times. In a similar way, I’ve run
and tested every line of code. But I know from experience that on the way from
test to publication, errors and omissions do occur.

Any corrections or updates to this book will be available at Lakeview Research’s
World Wide Web site on the Internet at http://www.lvr.com. This is also the place
to come for links to other serial-port information on the Web, including software
tools, component data sheets, and web sites of vendors of related products.

Thanks!

Finally, I want to say thanks to everyone who helped make this book possible. As
with my previous Parallel Port Complete, 1 credit the readers of my articles in
The Microcomputer Journal, who first prompted me to write about these topics.
Some of the material in this book was first published in a different form in the
magazine. Others deserving thanks are the folks at companies large and small who
have generously provided information and answered questions about these topics
over the years.

Serial Port Complete Xiii

Introduction

Xiv

Serial Port Complete

Options and Choices

Options and Choices

This book explores one corner of the computer universe: computers that are linked
together to monitor and control the world outside themselves. Each computer can
exchange information with the others, and each can also calculate, decide, and
take action on its own. This type of link requires three things: computers to do the
work, programming that tells the computers what to do, and a link to connect
them. This chapter introduces options for each of these.

The Computers

Some projects need only a simple link between two computers, while others
require three or more computers that connect along a common path. In this book, I
use the term /ink broadly, to refer to a connection between two or more computers,
while a network is a link of at least three computers. Each computer in a link is a
node, or junction. Usually, each node can both send and receive, though in a sim-
ple link some nodes may communicate one-way only.

In the types of link described in this book, the computers may read sensors,
switches, or other inputs. They may control motors, relays, displays, or other out-
puts. Because the computers can communicate with each other, the result is an
integrated, intelligent system that enables one computer to react to or control
events at another.

Serial Port Complete 1

Chapter 1

The computers may be of any type, and they may be all the same, or a combina-
tion. This book focuses on two categories: personal computers and embedded
controllers.

A personal computer (PC) may be a desktop machine or a laptop, notebook, or
subnotebook. The examples in this book use the family of computers that has
evolved from the IBM PC, including the models XT, AT, 386, 486, Pentium,
and their many clones and compatibles. But you can use any personal computer
that has an appropriate serial interface.

An embedded controller is a computer that’s dedicated to performing a single task
or a set of related tasks. Embedded controllers tend to be smaller and less complex
than PCs. Many are built into, or embedded in, the devices they control. An
embedded controller may have no keyboard or display and may be invisible to its
users. For example, PC peripherals such as printers and modems contain embed-
ded controllers that enable the peripherals to handle much of the work of printing
or communicating over the phone lines on their own.

Many embedded controllers have nothing at all to do with PCs. Cars, video-cas-
sette recorders, and microwave ovens are a few everyday items that contain
embedded controllers. Embedded controllers are also popular for one-of-a-kind or
small-scale, custom projects that involve simple control or monitoring tasks.

The CPU, or computer chip, in an embedded controller may be the same micro-
processor found in PCs, or it may be a microcontroller, which is a computer chip
designed specifically for use in control tasks.

Microcontroller chips come in many varieties: 8-bit chips have an 8-bit data path
and are popular for use in monitoring and control links, but 4-, 16-, and 32-bit
chips are also available. Different chips have different features and abilities,
including serial ports of various types, varying amounts of memory for storing
programs and data, and low-power modes for battery-powered circuits. A moni-
toring and control link can use any microcontroller that can connect to the desired
interface.

The examples in this book use two microcontrollers: Parallax's Basic Stamp and
Intel/Micromint’s 8052-Basic. Both are inexpensive and have on-chip Basic inter-
preters for easy programming and debugging.

One category of embedded controllers straddles both worlds. The embedded PC
has the architecture of a PC, but in a stripped-down form that may lack a
full-screen display, keyboard, or disk drives. Embedded PCs are popular because
they can use many of the PC’s familiar programming tools.

2 Serial Port Complete

Options and Choices

The Programming

Each computer in a link must do each of the following:

* Detect communications intended for it.

* Send communications at appropriate times.

¢ Ignore communications intended for other nodes (if any).

« Carry out any other tasks the computer is responsible for on its own.

The computer’s programming is responsible for each of these, with some assis-
tance from the hardware.

Languages and Operating Systems

The program code may vary from one node to another, because the computer type
and programming language may vary, and also because different nodes may have
different functions.

On a PC, the program is software stored on disk. To run the program, the operat-
ing system loads it into the system's memory (RAM). In all but some embedded
PCs, the user interface includes a keyboard and display.

On a microcontroller, the program is in firmware, which is program code stored in
an EPROM or other nonvolatile memory chip. The microcontroller may run the
program directly from where it is stored, without requiring an operating system to
load the program into RAM or manage other operations.

The computers may use any programming language. The only requirement for
communications is that all must agree on a format for data on the link.

Message Properties

Although there are many types of monitoring and control links, the communica-
tions in a link tend to have the following in common:

Messages are short, ranging from a byte or two in a very simple system to hun-
dreds of bytes in others. A computer in this type of link isn’t likely to send Mega-
bytes of data at once.

Messages may require a quick response. In some links, a message may carry
emergency information (The motor is stuck! The door is open!) and the receiving
computer will need to respond quickly, either by taking direct action or by
instructing another computer to handle the problem.

Serial Port Complete 3

Chapter 1

The frequency of messages may vary. In some links, a computer may send or
receive many messages within a second. In others, a computer may go a day or a
week without sending or receiving anything.

The communications protocol and message format are two ways that the program-
ming ensures that each node recognizes and understands the messages directed to
it.

Protocols

A protocol is a set of rules that defines how the computers will manage their com-
munications. The protocol may specify how data is formatted for transmitting and
when and how each node may transmit.

PCs and many microcontrollers have built-in components (UARTS) that handle
many of the details automatically, or with limited program assistance.

When there are just two devices, the rules need to specify whether both ends can
transmit at once, or whether they need to take turns. With three or more devices,
things become more complicated. Because all nodes usually share the same path,
each device has to know when it may transmit, as well as whether a received com-
munication is meant for itself or another node.

Besides the data path, a link may use additional lines to indicate when a transmit-
ter has data to send, when a receiver is able to accept new data, or other control or
status information. The process of exchanging status information about a trans-
mission is called handshaking. The control and status signals are handshaking sig-
nals. Hardware handshaking uses dedicated lines for the signals. Some links use
software handshaking, which accomplishes the same thing by sending special
codes in the data path.

Message Format

A message is a block of data intended for one or more receivers. The message for-
mat defines what type of data the message contains and how the data is arranged
within the message. All nodes have to agree on a format.

When there is more than one receiver, the receivers need a way to detect which
node is the intended receiver. For this reason, network messages usually include
the receiver’s address. In a very simple network, a message may consist of just
two bytes: one to identify the receiver and another containing data.

Messages may include other information as well. To enable receiving nodes to
detect the start and end of a message, the message may include codes to indicate
these, or bytes specifying the length of the message. A message may also include
one or more bytes that the receiving node uses in error-checking.

4 Serial Port Complete

Options and Choices

The Link

The physical link between computers consists of the wires or other medium that
carries information from one computer to another, and the interface that connects
the medium to the computers.

The requirements of a link help to determine which interface to use and what
medium to use to connect the nodes. In the types of systems described in this
book, the distance between computers may range from a few feet to a few thou-
sand feet. The time between communications may be shorter than a second, or
longer than a week. The number of nodes may range from two to over two hun-
dred.

Most links use copper wire to connect computers, often inexpensive twisted-pair
cable. The path may be a single data wire and a ground return, or a pair of wires
that carry differential signals. Other options include fiber-optic cable, which
encodes data as the presence or absence of light, and wireless links, which send
data as electromagnetic (radio) or infrared signals in the air.

For most projects, there is a standard interface that can do the job. Most of the
links described in this book use one of two popular interfaces: RS-232 for shorter,
slower links between two computers, or RS-485 for longer or faster links with two
or more computers.

An interface may use existing ports on the computers, or it may require added
ports or adapters. Most PCs have at least one RS-232 interface, and an RS-232 or
RS-485 interface is easily added to a PC or microcontroller.

Table 1-1 compares RS-232 and RS-485 to other interfaces that a monitoring or
control system might use.

RS-232 is popular because it’s widely available, inexpensive, and can use longer
cables than many other options. RS-485 is also inexpensive, easy to add to a sys-

tem, and supports even longer distances, higher speeds, and more nodes than
RS-232.

The IrDA (Infrared Data Association) interface can use the same UARTSs and data
formats as RS-232 (with added encoding), but the data transmits as infrared
energy over a wireless link. IrDA is useful for short, line-of-sight links between
two devices where cabling is inconvenient.

MIDI (Musical Instrument Digital Interface) is used for transferring signals used
by musical instruments, theatrical control equipment, and other machine control-
lers. It uses an optically isolated 5-milliampere current loop at 31.5 kbps.
Microwire, SPI, and I>C are synchronous serial interfaces that are useful for short
links. Many microcontrollers have one or more of these interfaces built-in.

Serial Port Complete 5

Chapter 1

Table 1-1: Comparison of popular computer interfaces. Where a standard
doesn’t specify a maximum, typical maximums are listed.

Interface Format Number of Length Speed
Devices (maximum, (maximum,
(maximum) feet) bits/sec.)
RS-232 asynchronous |2 50-100 20k
(EIA/TIA-232) [serial (115k with
some drivers)
RS-485 asynchronous |32 unit loads |4000 10M
(TIA/EIA-485) [serial
IrDA asynchronous |2 6 115k
serial infrared
Microwire synchronous |8 10 2M
serial
SPI synchronous |8 10 2.1M
serial
I°C synchronous |40 18 400k
serial
USB asynchronous |127 16 12M
serial
Firewire serial 64 15 400M
IEEE-488 parallel 15 60 IM
(GPIB)
Ethernet serial 1024 1600 10M
MIDI serial current |2 15 31.5k
loop
Parallel parallel 2, or 8 with 10-30 IM
Printer Port daisy-chain
support

USB (Universal Serial Bus) and Firewire (IEEE-1384) are new, high-speed, intel-
ligent interfaces for connecting PCs and other computers to various peripherals.
USB is intended to replace the standard RS-232 and Centronics printer ports as
the interface of choice for modems and other standard peripherals. Firewire is
faster and designed for quick transferring of video, audio, and other large blocks
of data.

Ethernet is the familiar network interface used in many PC networks. It’s fast and
capable, but the hardware and software required are complex and expensive com-
pared to other interfaces.

The alternative to serial interfaces is parallel interfaces, which have multiple data
lines. Because parallel interfaces transfer multiple bits at once, they can be fast.
Usually there is just one set of data lines, so data travels in one direction at a time.

6 Serial Port Complete

Options and Choices

Over long distances or with more than two computers in a link, the cabling for
parallel interfaces becomes too expensive to be practical.

The Centronics parallel printer interface predates the PC and just about every PC
has included a Centronics-compatible interface. The IEEE-1284 standard defines
new connectors, cables, and high-speed protocols for the port’s 17 lines. Because
the interface has been standard on all PCs, it’s been pressed into service as an
interface for scanners, external disk drives, data-acquisition devices, and many
other special-purpose peripherals.

IEEE-488, which began life as Hewlett-Packard’s GPIB (General-purpose Inter-
face Bus) is another parallel interface popular in instrumentation and control
applications.

Applications

This book focuses on what you need to design and program serial links. It doesn’t
get into application-specific details such as how to interface and access sensors,
motors, and other devices that connect may to a computer in a monitoring or con-
trol link; these are topics for another time, and another book. But to give an idea of
the possibilities, this section is an overview of the kinds of things you can do with
these links.

One way to categorize links is by direction of data flow. In some systems all com-
puters send and receive more or less equally. In others, most of the data flows to
or from a central computer. For example, most of the activity in a link may relate
a computer’s collecting data from remote locations.

An everyday example of a system that collects data is a weather-watching net-
work. A desktop PC may serve as a master that controls the activities of a variety
of remote computers, which may simple microcontrollers. The master sends com-
mands to the remote computers to tell them how often to collect data, what data to
send to the master, and when to do it. The data collected may include temperature,
air pressure, rainfall, and other variables. At intervals, each site sends its collected
data to a master computer, which stores the data and makes it available for further
viewing and processing.

This basic setup is adaptable to many other types of data-gathering systems. You
can find a sensor to measure just about any property. Table 1-2 lists a variety of
sensor types.

Other systems are mainly concerned with controlling external devices, rather than
gathering data from them. A store-window display may include a set of
mini-robots, each with switches and signals that control motors, lights, and other

Serial Port Complete 7

Chapter 1

Table 1-2: Types of Sensors

Acceleration Flow Moisture Temperature
Chemical content Force Position Thickness
Color Level Pressure Velocity
Density Light Radiation Vibration
Distance Magnetic properties Sound Weight
Electrical properties Mass Strain Wind

mechanical or electrical devices. Again, each device may have its own computer,
with a master computer controlling the show by sending commands to each of the
robot's computers. The robots may also return information about their current
state to the master computer, but the main job of this type of system is to control
the devices, rather than to collect information from them. This arrangement is typ-
ical of many other control systems.

An example of a system involved equally with monitoring and controlling is a
home-control system, which may watch temperature, humidity, motion, switch
states, and other conditions throughout a house. Control circuits hook into the
house’s heating, cooling, lighting, and alarm systems. When the master computer
detects that a room has strayed from the set temperature, it causes more heated or
cooled air to be pumped into the room. When alarm circuits are enabled and
motion is detected, the system generates an alarm. The system may also control
audio and video systems and outdoor lighting and watering.

In each of the examples above, one computer may act as a master that controls a
series of slave computers whose actions are controlled by the master. A slave
transmits only after the master contacts it and gives it permission.

It's also possible to have a system with no master. Instead, each computer has
equal status with the others, and each can request actions from the others. For
example, each computer may take turns transmitting to the others. Or one com-
puter may send a message to another, which in turn can pass the same message, or
a different message, to another computer. In some links, any computer may try to
transmit at any time, and a protocol determines what happens if two try to transmit
at once.

A simple link may use just two computers. One may gather data from or send
commands to another. Or two computers may each be responsible for various
monitoring and control functions, sharing information as equals.

These are just a few examples. By choosing components and writing programs to
control them, you can put together a system to serve whatever purpose you have

Serial Port Complete

Options and Choices

in mind. The rest of this book is devoted to presenting what you need to make this
happen.

Serial Port Complete 9

Chapter 1

10

Serial Port Complete

Formats and Protocols

Formats and Protocols

The computers in a serial link may be of different types, but all must agree on con-
ventions and rules for the data they exchange. This agreement helps to ensure that
every transmission reaches its destination and that each computer can understand
the messages sent to it.

This chapter introduces data formats and protocols used in serial links. The focus
is on the asynchronous format used by most RS-232 and RS-485 links.

Sending Serial Data

In a serial link, the transmitter, or driver, sends bits one at a time, in sequence. A
link with just two devices may have a dedicated path for each direction or it may
have a single path shared by both, with the transmitters taking turns. When there
are three or more devices, all usually share a path, and a network protocol deter-
mines when each can transmit.

One signal required by all serial links is a clock, or timing reference, to control the
flow of data. The transmitter and receiver use a clock to decide when to send and
read each bit. Two types of serial-data formats are synchronous and asynchro-
nous, and each uses clocks in different ways.

Serial Port Complete 11

Chapter 2

(A)

(B)

DATA
(61H)

SYNCHRONQUS TRANSMISSION

TRANSMITTER SENDS BITS ON CLOCK'S FALLING EDGE
RECEIVER READS BITS ON CLOCK'S RISING EDGE
\[\V

CLOCK | | | | | | l]
DATA I ' l ' ' ' '
(61H) : ; ' , : : : , j
CBIT 7. ' ' ' ' . «BIT @
' ® i 1 H 1 i) i %) i @ ' @ i 1 d

MANY SYNCHRONOUS PROTOCOLS SEND MSB FIRST

ASYNCHRONOUS TRANSMISSION

TRANSMITTER USES AN INTERNAL CLOCK
TO DETERMINE WHEN TO SEND EACH BIT.

THEN USES ITS INTERNAL CLOCK TO READ THE

RECEIVER DETECTS THE FALLING EDGE OF START,
\[-FOLLOWING BITS NEAR THEIR CENTERS.

'START:BIT 0: : : : 'BIT 7 STOP
g BIT " 0 " 0 " 0 . ' g BIT
f , 1, ¢ ¢ @ e 11 e

ASYNCHRONOUS PROTOCOLS SEND LSB FIRST

Figure 2-1: Typical synchronous and asynchronous transmissions.

Synchronous Format

12

In a synchronous transmission, all devices use a common clock generated by one
of the devices or an external source. Figure 2-1A illustrates. The clock may have a
fixed frequency or it may toggle at irregular intervals. All transmitted bits are syn-
chronized to the clock. In other words, each transmitted bit is valid at a defined
time after a clock transition (rising or falling edge). The receiver uses the clock
transitions to decide when to read each incoming bit. The exact details of the pro-
tocol can vary. For example, a receiver may latch incoming data on the rising or
falling clock edge, or on detecting a logic high or low level. Synchronous formats

Serial Port Complete

Formats and Protocols

use a variety of ways to signal the start and end of a transmission, including Start
and Stop bits and dedicated chip-select signals.

Synchronous interfaces are useful for short links, with cables of 15 feet or less or
even between components on a single circuit board. For longer links, synchronous
formats are less practical because of the need to transmit the clock signal, which
requires an extra line and is subject to noise.

Asynchronous Format

In asynchronous (also called unsynchronous and non-synchronous) transmissions,
the link doesn’t include a clock line, because each end of the link provides its own
clock. Each end must agree on the clock’s frequency, and all of the clocks must
match within a few percent. Each transmitted byte includes a Start bit to synchro-
nize the clocks, and one or more Stop bits to signal the end of a transmitted word.

The RS-232 ports on PCs use asynchronous formats to communicate with
modems and other devices. Although an RS-232 interface can also transfer syn-
chronous data, asynchronous links are much more common. Most RS-485 links
also use asynchronous communications.

An asynchronous transmission may use any of several common formats. Probably
the most popular is 8-N-1, where the transmitter sends each data byte as 1 Start
bit, followed by 8 data bits, beginning with bit O (the LSB, or least significant bit),
and ending with 1 Stop bit. Figure 2-1B illustrates.

The N in 8-N-1 indicates that the transmissions don’t use a parity bit. Other for-
mats include a parity bit as a simple form of error checking. Parity can be Even,
Odd, Mark, or Space. Table 2-1 illustrates Even and Odd parity. With Even parity,
the parity bit is set or cleared so that the data bits plus the parity bit contain an
even number of 1s. With Odd parity, the bit is set or cleared so that these bits con-
tain an odd number of 1s. An example format using parity is 7-E-1. The transmit-
ter sends | Start bit, 7 data bits, 1 parity bit, and 1 Stop bit. Here again, both ends
of the link must agree on the format. The receiver examines the received data and
informs the transmitter of an error if a result isn’t the expected value.

Mark and Space parity are forms of Stick parity: with Mark parity, the parity bit is
always 1, and with Space parity, it’s always 0. These are less useful as error indi-
cators, but one use for them is in the 9-bit networks described in Chapter 11.
These networks use a parity bit to indicate whether a byte contains an address or
data.

Other, less common formats use different numbers of data bits. Many serial ports
support anywhere from 5 to 8 data bits, plus a parity bit.

Serial Port Complete 13

Chapter 2

14

Table 2-1: With Even parity, the data bits plus the parity bit contain an
even number of 1s. With Odd parity, the data bits plus the parity bit
contain an odd number of 1s.

Data Bits Even Parity Bit Odd Parity Bit
0000000 0 1
0000001 1 0
0000010 1 0
0000011 0 1
0000100 1 0
1111110 0 1
1111111 1 0

A link’s bit rate is the number of bits per second transmitted or received per unit
of time, usually expressed as bits per second (bps). Baud rate is the number of
possible events, or data transitions, per second. The two values are often identical
because in many links, including those described in this book, each transition
period represents a new bit. Over phone lines, high-speed modems use phase
shifts and other tricks to encode multiple bits in each data period, so the baud rate
is actually much lower than the bit rate.

All of the bits required to transmit a value from Start to Stop bit form a word. The
data bits in a word form a character. In some links, the characters actually do rep-
resent text characters (letters or numbers), while in others the characters are
binary values that have nothing to do with text. The number of characters trans-
mitted per second equals the bit rate times the number of bits in a word. Adding
one Start and one Stop bit to a byte increases the transmission time of each byte by
25 percent (because there are 10 bits per byte instead of just 8). With 8-N-1 for-
mat, a byte transmits at 1/10 the bit rate: a 9600 bits-per-second link transmits 960
bytes per second.

If the receiver requires a little extra time to accept received data, the transmitter
may stretch the Stop bit to the width of 1.5 or 2 bits. The original purpose of the
longer Stop bit was to allow time for mechanical teletype machines to settle to an
idle state.

There are other ways to generate Start and Stop bits without using a full bit width.
The USB interface uses varying voltages to indicate start and stop. Of course, this
requires hardware that supports these definitions.

Serial Port Complete

Formats and Protocols

System Support

Fortunately, the programming required to send and receive data in asynchronous
formats is simpler than you might expect. PCs and many microcontrollers have a
component called a UART (universal asynchronous receiver/transmitter) that han-
dles most of the details of sending and receiving serial data.

In PCs, the operating system and programming languages include support for pro-
gramming serial links without having to understand every detail of the UART’s
architecture. To open a link, the application selects a data rate and other settings
and enables communications at the desired port. To send a byte, the application
writes the byte to the transmit buffer of the selected port, and the UART sends the
data, bit by bit, in the requested format, adding the Stop, Start, and parity bits as
needed. In a similar way, received bytes are automatically stored in a buffer. The
UART can trigger an interrupt to notify the CPU, and thus the application, of
incoming data and other events.

Some microcontrollers don’t include a UART, and sometimes you need more
UARTS than the microcontroller has. In this case, there are two options: add an
external UART, or simulate a UART in program code. Parallax’s Basic Stamp is
an example of a chip with a UART implemented in code.

A USART (Universal Synchronous/Asynchronous Receiver/Transmitter) is a

similar device that supports both synchronous as well as asynchronous transmis-
sions.

Transmitting a Byte

Understanding the details of how a byte transmits isn’t strictly necessary in order
to design, program, and use a serial link, but the knowledge can be useful in trou-
bleshooting and selecting a protocol and interface for a project.

The Bit Format

Figure 2-1B showed how a byte transmits in 8-N-1 format. When idle, the trans-
mitter’s output is a logic 1. To signal the beginning of a transmission, the output
sends a logic O for the length of one bit. This is the Start bit. At 300 bps, a bit is
3.3 milliseconds, while at 9600 bps, it’s 0.1 millisecond.

After the Start bit, the transmitter sends the 8 data bits in sequence, beginning with
bit 0, the least-significant bit (LSB). The transmitter then sends a logic 1, which
functions as the Stop bit. The output remains at logic 1 for at least the width of one

Serial Port Complete 15

Chapter 2

TRANSMITTER CLOCK =
BIT RATE X 16

DATA QUT

RECEIVER CLOCK =
BIT RATE X 16

DETECT WAIT 24 CLOCK WAIT 16 CLOCK
START BIT CYCLES TO READ CYCLES TO

FIRST DATA BIT READ EACH
FOLLOWING BIT

DATA IN 1]

Figure 2-2: Each end of the link uses a clock of 16 times the bit rate to determine
when to send and read each bit.

bit. Immediately following this, or at any time after, the transmitter may send a
new Start bit to announce the beginning of a new byte.

At the receiving end, the transition from logic 1 to the Start bit’s logic 0 signals
that a byte is arriving and determines the timing for detecting the following bits.
The receiver measures the logic state of each bit near the middle of the bit. This
helps ensure that the receiver reads the bits correctly even if the transmitting and
receiving clocks don’t match exactly.

Some interfaces, such as RS-232, use inverted voltages from those shown: the
Stop bit is a negative voltage and the Start bit is positive.

The UART typically uses a receive clock that is 16 times the bit frequency: if the
data rate is 300 bits per second, the receive clock must be 4800 bits per second. As
Figure 2-2 shows, after detecting the transition that signals a start bit, the UART
waits 16 clock cycles for the Start bit to end, then waits 8 more cycles to read bit 0
in the middle of the bit. It then reads each of the following bits 16 clock cycles
after the previous one.

If the transmitting and receiving clocks don’t match exactly, the receiver will read
each successive bit closer and closer to an edge of the bit. To read all of the bits in
a 10-bit word correctly, the transmit and receive clocks should vary no more than
about three percent. Any more than this, and by the time the receiver tries to read
the final bits, the timing may be off by so much that it will read the bits either
before they’ve begun or after they’ve finished. However, the clocks only need to
stay in sync for the length of a word, because each word begins with a new Start
bit that resynchronizes the clocks.

16 Serial Port Complete

Formats and Protocols

Because of the need for accurate timing, asynchronous interfaces require a stable
timing reference. Most are controlled by a crystal or ceramic resonator. For best
results, the frequency of the reference should allow even division by the frequen-
cies the receive clocks use for standard bit rates. In PCs, the standard UART clock
frequency is 1.8432 Mhz. Division by 16 gives 115,200, which is the top bit rate
the UART supports.

In a microcontroller, the chip’s main timing crystal usually serves as a reference
for hardware timers that control the UART’s clock. In the 8051 family, the hard-
ware timers run at 1/12 the crystal frequency. With a crystal of 11.0592 Mhz, the
fastest UART time is 921,600 Hz, which allows a bit rate of 57,600 bps.

As a way of eliminating errors due to noise, some UARTS, like the 8051 micro-
controller’s, take three samples in the middle of each bit, and use the logic level
that matches two or more of the samples.

Autodetecting the Bit Rate

The ultimate in user convenience is a link with autobaud ability, where the two
ends automatically configure themselves to the same bit rate. There are two ways
to do this. In each, one node (I'll call it the adjustable node) detects the bit rate of
the other (the fixed node) and adjusts its bit rate to match.

The first method requires no special hardware or hardware-level programming.
When the node wants to establish communications, it repeatedly sends a charac-
ter, with a pause between each. The character may be a null (Chr (0)), or any
ASCII character (through Chr (127), as long as the most significant data bit,
which is the last one to transmit, is 0.

The adjustable node begins at its highest bit rate. When it detects that a byte has
arrived, it waits long enough for a byte to transmit at the lowest expected bit rate
(33 milliseconds at 300 bps), then reads the received byte or bytes.

If the receiver detects more than one character, its bit rate doesn’t match the trans-
mitter’s, so it tries again, using the next lower bit rate. When it detects one and
only one character, it has the correct bit rate. As an extra check, it can verify that
the received character matches an expected value. The adjustable node then sends
an acknowledgment to the fixed node, which stops sending the characters, and
communications can begin.

Why does this routine work? When the receiver’s bit rate is faster than the trans-
mitter’s, the receiver finishes reading the character while the final bits are still
arriving. (The character will cause a framing error if the receiver doesn’t see a
logic 1 where it expects to find the Stop bit, but this is unimportant here.) After the
receiver thinks the character has finished transmitting, any received 0 looks like a

Serial Port Complete 17

Chapter 2

Start bit. This causes the receiver to try to read another character. If the last trans-
mitted bit is 0, the receiver will always detect more than one character if its bit
rate is too high.

The other method requires code that can measure pulse widths as accurately as the
UART’s receive clock (16 times the highest expected bit rate). On receiving a
character, the adjustable node measures the width of the received pulses. Because
the node is expecting a particular character, it can calculate the bit rate from the
measured widths and adjust its bit rate to match.

The 8052-Basic microcontroller uses this method to adjust its bit rate to match the
rate of a terminal or other computer it connects to. On bootup, the 8052-Basic
waits to receive a character at its serial port. At the terminal, the user presses the
Space bar, which sends the character 20h. This method doesn’t even require a par-
ticular crystal frequency at the 8052-Basic. The firmware just adjusts its bit rate
relative to the received pulses.

Data Formats

The data bits in a serial transmission may represent anything at all, including com-
mands, sensor readings, status information, error codes, or text messages. The
information may be encoded as binary or text data.

Binary Data

18

With binary data, the receiver interprets a received byte as a binary number with a
value from 0 to 255. The bits are conventionally numbered 0 through 7, with each
bit representing the bit’s value (0 or 1) multiplied by a power of 2. For example, in
Visual-Basic syntax):

Bit0 = BitValue * (270)

Bitl= BitValue * (271)

Bit7= BitValue * (2°7)
Abyte of 1111 1111 translates to 255, or FFh, and 0001 0001 translates to 17, or
11h. In asynchronous links, bit 0, the least-significant bit (LSB), arrives first, so if
you're looking at the data on an oscilloscope or logic analyzer, remember to
reverse the order when translating to conventional notation of most-significant-bit
(MSB) first.

Serial Port Complete

Formats and Protocols

Text Data

Binary data works fine for many links. But some links need to send messages or
files containing text. And for various reasons, a link may also send binary data
encoded as text.

To send text, the program uses a code that assigns a numeric value to each text
character. There are several coding conventions. One of the most common is
ASCII (American Standard Code for Information Exchange), which consists of
128 codes and requires only seven data bits. An eighth bit, if used, may be 0 or a
parity bit. ANSI (American National Standards Institute) text uses 256 codes, with
the higher codes representing special and accented characters. In the IBM ASCII
text used on the original IBM PC, many of the higher codes represented line- and
box-drawing characters used by many DOS programs used to add simple graphics
to text screens and printouts.

Other formats use 16 bits per character, which allows 65,536 different characters.
The Unicode standard supports hundreds of additional alphabets, while DBCS
(double-byte character set) is an earlier standard that supports many Asian lan-
guages.

The examples in this book use ANSI/ASCII text, which is the format used by
Visual Basic’s MSComm control.

ASCII Hex

Text mode is the obvious choice for transferring string variables or files that con-
tain text. But you can also use text to transfer binary data, by expressing the data
in ASCII Hex format. Each byte is represented by a pair of ASCII codes that rep-
resent the byte’s two hexadecimal characters. (Appendix C has more on hexadeci-
mal and other number systems.) This format can represent any value using only
the ASCII codes 30h through 3%h (for O through 9) and 41h to 46h (for A through
F).
Instead of sending one byte to represent a value from 0 to 255, the sending device
sends two, one for each character in the hex number that represents the byte. The
receiving computer treats the values like ordinary text. After a computer receives
the values, it can process or use the data any way it wants, including converting it
back to binary data.
For example, consider the decimal number

163
Expressed as a binary number, it’s

1010 0011

Serial Port Complete 19

Chapter 2

In hexadecimal, it’s
A3h (or &hA3 in Visual-Basic syntax)

The ASCII codes for “A” and “3” are

41h, 33h
So the binary representation of this value in ASCII hex consists of these two
bytes:

01000001 00110011
A serial link using ASCII Hex format would send the value A3/ by transmitting
these two bytes.
A downside of using ASCII hex is that each data byte requires two characters, so
data takes twice as long to transfer. Also, in most cases the application at each end
will at some point have to convert between ASCII hex and binary
Still, ASCII Hex has its uses. One reason to use it is that it frees all of the other
codes for other uses, such as handshaking codes or an end-of-file indicator. It also
allows protocols that only support 7 data bits to transmit any numeric value.
Other options are to send values as ASCII decimal, using only the codes for 0
through 9, or ASCII binary, using just 0 and /. The Basic Stamp has built-in sup-
port for these as well as for ASCII Hex.

Preventing Missed Data

Most computers in serial links have other things to do besides waiting to receive
data. For example, a data-acquisition unit may periodically collect and store data
until another node requests it. Or a controller may be responsible for monitoring
and controlling conditions, occasionally sending information or receiving instruc-
tions on the link.

A computer may want to transmit at a time when the receiving computer is occu-
pied with something else. The design of a link should ensure that each receiver
sees all of the data intended for it and that all of the data arrives without error.

There are many ways to ensure this, including handshaking, buffering, use of poll-
ing or interrupts to detect received data, error checking, and acknowledging of
received data. A link may use one or more of these methods.

Handshaking

With handshaking signals, a transmitter can indicate when it has data to send, and
a receiver can indicate when it’s ready to receive data. The exact protocols, or

20 Serial Port Complete

Formats and Protocols

rules, that the signals follow may vary, though many RS-232 and RS-485 links
follow standard or conventional protocols.

In one common form of hardware handshaking, the receiver brings a line high
when it’s ready to receive data, and the transmitter waits for this signal before
sending data. The receiver may bring the line low any time, even in the middle of
receiving a block of data, and the transmitter must detect this, stop sending, and
wait for the line to return high before finishing the transmission. Other links
accomplish the same thing with software handshaking, by having the receiver
send one code to indicate that it’s ready to receive, and another to signal the trans-
mitter to stop sending.

Buffers

Buffers are another way that receivers can ensure that they don’t miss any data
sent to them. Buffers can also be useful on the transmit side, where they can
enable applications to work more efficiently by storing data to be sent as the link
is available.

The buffers may be in hardware, software, or both. The serial ports on all but the
oldest PCs have 16-byte hardware buffers built into the UARTS. In the receive
direction, this means that the UART can store up to 16 bytes before the software
needs to read them. In the transmit direction, the UART can store up to 16 bytes
and the UART will take care of the details of transmitting the bytes bit by bit,
according to the selected protocol.

When the hardware buffers aren’t large enough, a PC may also use software buff-
ers, which are programmable in size and may be as large as system memory per-
mits. The port’s software driver transfers data between the software and hardware
buffers.

In microcontrollers, the buffers tend to be much smaller, and some chips have no

hardware buffers at all. The smaller the buffers, the more important it is to use
other techniques to ensure that no data is missed.

Polling and Interrupts

Events that may occur at a serial port include sending and receiving of data,
changes in handshaking signals, and sending and receiving of error messages.
There are two ways for an application to cause and detect these events.

One way is to have the program automatically jump to a routine when an event
occurs. The application responds quickly and automatically to activity at the port,
without having to waste time checking, only to learn that no activity has occurred.

Serial Port Complete 21

Chapter 2

This type of programming is called event-driven because an external event can
break in at any time and cause the program’s execution to branch to a particular
routine.

In Visual Basic, MSComm’s OnComm event performs this function. The OnComm
routine executes in response to events such as a hardware interrupt at the serial
port or a software buffer’s count reaching a trigger value. Many microcontrollers
have hardware interrupts for this purpose as well.

The other approach is to poll the port by periodically reading properties and sig-
nals to find out if an event has occurred. This type of programming is called pro-
cedural programming, and doesn’t use the port’s hardware interrupts. The
application has to be sure to poll the port often enough so that it doesn’t miss any
data or events. The frequency of polling depends on buffer size and the amount of
data expected (as well as the need for a quick response). For example, if a device
has a 16-byte buffer and polls the port once per second, it can receive no more
than 16 bytes per second or the buffer will overflow and data will be lost.

Polling is often appropriate for transferring short bursts of data, or when a com-
puter sends data and expects an immediate reply. A polled interface doesn’t
require a hardware interrupt, so you can run this type of program on a port that has
no assigned interrupt line. Many polled interfaces use a system-timer interrupt to
schedule port reads at intervals.

Acknowledgments

22

Some links may have nodes that accept commands without responding, but usu-
ally it’s useful for the receiving node to let the transmitter know that a message
got through, even if the receiver has no other information to return. These
acknowledgments are especially useful in networks, where multiple nodes share a
communications path and a transmitter’s switching on at the wrong time can block
another transmitter’s message.

The acknowledgment may be a defined byte, such as a value that identifies the
receiver, or the transmitting node may assume that a node received its message
when it receives requested data in reply. If the transmitting node doesn’t receive
the expected response, it should assume there is a problem and retry or take other
action.

When transmitting to a node that has no input buffer, or a very small buffer, a
transmitter can use an Acknowledgment to ensure that it has the node’s attention
before sending a block of data. The transmitting node begins by sending a byte to
signal that it wants to send data. When the node sees the byte, it sends an acknowl-
edgment and then devotes its full attention to watching its serial input. When the

Serial Port Complete

Formats and Protocols

transmitting node sees the acknowledgment, it knows that it’s OK to send the rest
of the data.

Error-checking

A receiver can use error-checking to verify that all data arrived correctly. Ways to
check a message for errors include sending redundant data and error-checking
bytes.

A simple form of error-checking uses redundant, or duplicate, data. The transmit-
ter sends each message twice and the receiver verifies that it’s the same both
times. Of course, this means that each message takes twice as long to transmit.
Still, it can be useful when sending occasional, short bursts of data. Many infrared
controllers use this method.

Another error-checking method is to send an error-checking byte along with the
data. A checksum is calculated by performing an arithmetic or logical operation
on the bytes in a message. A typical calculation adds the values of all of the bytes
in the message and uses the lowest byte of the result as the checksum.

The receiving end repeats the calculation, and if it gets a different result, it knows
that it didn’t receive the same data that was sent. Since the checksum is typically
just one byte, it doesn’t add much to the message length, even when a message is
very long. The checksum isn’t foolproof; there is a small chance that the check-
sums will match even if the data doesn’t. Intel Hex and Motorola S-Record are
two data formats that include a checksum in each line of ASCII Hex data. Chapter
4 has routines that calculate and verify a checksum for a string.

Another type of error-checking byte is a CRC (cyclic redundancy code), which
uses more complex math and is more reliable than a checksum. Some common
error-checking protocols used in file transfers are Kermit, XModem, YModem,
and ZModem.

When a node detects an error or receives a message it doesn’t understand, it
should try to notify the node that sent it so it can try again or take other action to
remedy the situation. After a number of tries, if the transmitting node is unable to
correct a problem or if the receiving node doesn’t respond, the transmitting node
should know enough to skip the node for the time being, display an error message,
sound an alarm, or do something to notify the human operators of the problem,
and then continue on with its other duties as best as it can.

The receiving node should also know what to do if a message is shorter than
expected. Instead of waiting forever for a message to end, it should eventually
time out and let the master know that it had a problem. The master may then
resend or move on. Otherwise, the network may hang in an endless wait.

Serial Port Complete 23

Chapter 2

24

Serial Port Complete

The PC’s Serial Port from the Connector In

The PC’s Serial Port
from the Connector In

This chapter looks at serial ports inside the PC, between the connector and the
CPU. You don’t have to understand everything about the internal workings of a
port in order to use it, but some background is useful, especially for links that use
the port in unconventional ways.

Port Architecture

Serial ports have been a part of the PC from the beginning. Each COM, or Comm,
(communications) port in a PC is an asynchronous serial port controlled by a
UART. A COM port may have the conventional RS-232 interface, a related inter-
face such as RS-485, or the port may be dedicated for use by an internal modem or
other device. A PC may have other types of serial ports as well, such as USB,
Firewire, and I°C, but these use different protocols and require different compo-
nents.

Newer serial interfaces like USB and Firewire are fast and have other advantages.
In fact, although Microsoft’s PC 98 recommendations allow RS-232 ports, they
recommend using USB in place of legacy (RS-232) serial ports whenever possible

Serial Port Complete 25

Chapter 3

in new designs. And for many peripherals, the new interfaces are more appropri-
ate.

But RS-232 and similar interfaces will continue to be popular in applications such
as monitoring and control systems. These interfaces are inexpensive, easy to pro-
gram, allow very long cables, and are easily used with inexpensive microcontrol-
lers and older computers. As USB ports become more common, converters will
become available to convert USB to RS-232 or RS-485. The converter will con-
nect to the PC’s USB port and translate between USB and the other interfaces.
This setup will make it easy to add an RS-232 or RS-485 port to any system.

The UART

26

In the original IBM PC, the UART that controlled the serial port was the 8250,
with a maximum speed of 57,600 bits per second. The UARTS in every PC since
that time have continued to emulate this original chip, though the newer UARTS
add buffering, higher speeds, and other features. These days, the UART in a PC is
often part of a multifunction chip that contains one more UARTSs along with sup-
port for a parallel port, disk drives, and other system components.

The UART translates between serial and parallel data. In one direction, the UART
converts parallel data on the PC’s system bus into serial data for transmitting. In
the other direction, the UART converts received serial data to parallel data that the
CPU reads on the system bus.

The PC’s UART supports both full- and half-duplex communications. In a
full-duplex link, the UART can send and receive at the same time. In half-duplex,
only one device can transmit at a time, with control signals or codes determining
when each can transmit. Half duplex is required if both directions share a path, or
if there are two paths but one or both computers can communicate in just one
direction at a time. And of course, the UART also supports one-way-only, or sim-
plex, communications.

Another use of the terms full and half duplex is to describe which end of a link is
responsible for echoing characters to a display. In this sense, full duplex means
that the receiver echoes each character it receives back to the transmitter. Half
duplex means that the receiver doesn’t echo, so the transmitting software must
cause the characters to display at the transmit end, if desired.

In addition to the data lines, the UART supports standard RS-232 handshaking
and control signals such as RTS, CTS, DTR, DCR, RI, and CD.

Serial Port Complete

The PC’s Serial Port from the Connector In

Enhancements

An early improvement to the 8250 UART was the 16450, which supported speeds
of up to 115,200 bps and added a scratch-pad register. The scratch pad is a byte of
storage in the UART with no assigned function. The 16550 added transmit and
receive buffers. New PCs have the equivalent of a 16550 or better.

Each of the 16550’s buffers can store 16 bytes. The buffers are FIFOs (first-in,
first-out), which means that data is read from the FIFO in the same order as it was
received—the first byte in, or received, is the first one out, or read. (In contrast, a
CPU’s stack is often a LIFO (last in, first out): the last byte in is the first byte out.)

The buffers enable more efficient data transfers. On the receive side, the CPU
doesn’t have to worry about reading each byte before the next one arrives. If the
CPU is busy, the buffer stores the received bytes and the CPU can read them at its
convenience. The CPU’s data bus is faster than the serial port’s bit rate, so the
CPU can read all 16 bytes in one operation, in a fraction of the time it took for
them to arrive. On the transmit side, the CPU can write up to 16 bytes to the
UART, and the UART will take care of the details of sending them out in the
appropriate sequence.

New UARTS continue to build on the features of the 16550. Texas Instruments’
TL16C750 has 64-byte FIFOs, can be powered at +5V or +3V, and has a
low-power sleep mode. The chip supports bit rates of up to 1 Mbps when clocked
by a 16-Mhz crystal. It also has built-in support for automatic RTS/CTS hand-
shaking. In Auto-CTS mode, the UART transmits only when CTS is asserted,
freeing the software from having to check its status. In Auto-RTS mode, the
UART automatically asserts RTS when the receive FIFO has fewer than the
defined threshold number of bytes. This signals the far end to send more data and
helps to keep the FIFO from being empty.

Exar’s STI6C50A is another example of a newer UART. It has 32-byte FIFOs,
supports bit rates up to 1.5 Mbps, and includes an IrDA encoder/decoder for infra-
red links. It supports Auto-CTS/RTS handshaking as well as automatic software
handshaking, and has the ability to detect a user-defined character.

However, the higher bit rates in the new UARTS are unavailable when the UART
uses the PC’s conventional 1.8432-Mhz clock, and the other advanced features go
unused unless the software knows how to enable and use them.

Serial Port Complete 27

Chapter 3

Port Resources

Each serial port in a PC reserves a set of port addresses, and most also have an
assigned interrupt-request (IRQ) line, or level. The ports are designated COM1,
COM2, and so on up.

Finding Ports

28

To find out how many serial ports a computer has, you have to do more than count
the RS-232 connectors on the back panel. Some serial devices use a COM port,
but don’t have an RS-232 interface. For example, the only external connector for
an internal modem is the phone jack.

There are several ways to find information about the ports in a system.

Under Windows 95, you can view the ports’ resources in the Control Panel: under
System, Ports, select a COM port and click Properties. The Port Settings tab (Fig-
ure 3-1) shows the default bit rate and other settings, though these are easily
changed by applications. If you want to disable the FIFOs for testing or some
other reason, you can do so in the Advanced Port Settings window.

The Resources tab (Figure 3-2) shows the port’s base address and assigned IRQ
line. If the Use Automatic Settings box is checked, Windows has detected the port
address and IRQ line. If the values shown don’t match the hardware settings, you
may be able to change them by unchecking Use Automatic Settings and selecting
an alternate configuration from the list, or by typing new values. For some ports,
Windows doesn’t permit you to change the values at all from the Control Panel.

The configuration requires an IRQ (interrupt-request) line for each port. The win-
dow will display a message if Windows detects any conflicts with the settings you
select.

Table 3-1 shows the four conventional base addresses for the ports and the IRQ
lines usually assigned to them. Ports don’t have to conform to this convention,
however, and may use any addresses and IRQ lines supported by the hardware.
Each port reserves eight sequential addresses beginning at the base address. So for
example, a port at 3F8h reserves addresses from 3F8h through 3FFh.

The Window 3.x Control Panel also displays serial-port information. Under Ports,
select a port, then Settings. Click Advanced to view or change the port’s assigned
address and IRQ line.

Because Windows stores the address and IRQ line for each port, applications
don’t have to keep track of them. An application can access ports using functions
built into a programming language or the Windows API. The function call speci-

Serial Port Complete

The PC’s Serial Port from the Connector In

Communications Port (COM1) Properties ﬂm
General PortSettings IDrivar | Resources |

Bits per second: |96|Jl] Ll
Data bits: |8 ﬂ
Parity: |None LI
Stop bits: |1 ~]
Flow contral: |Hardware ﬂ

Advanced... | Bestore Defaults |

Advanced Port Settings [x|

¥ Use FIFO buffers (requires 16550 compatible UART):

Select lower settings to correct connection problems.

P

Select higher settings for faster performance. Cancel
Beceive Buffer. Low (1) J High (14) e
Transmit Buffer. Low (1) J High (16)

Figure 3-1: In Windows 95’s Device Manager, the Port Settings tab for a serial
port stores the default settings for the port and its buffers.

fies the port by name (COM1, COM2, etc.) and Windows knows where to find the
port and how to use it.

Under DOS, you can find the COM port addresses in an area of memory called the
BIOS data area. On boot-up, a routine in the PC’s BIOS tests for the presence of
serial ports at the following addresses, in order: 3F8h, 2F8h, 3E8h, 2E8h. It stores
up to four 16-bit addresses beginning at address 40:00 in the BIOS data area.
Some early BIOS’s detected only the first two ports.

Chapter 4 shows how to find available ports in software.

Serial Port Complete 29

Chapter 3

Communications Port (COM1) Properties Hm

Geneml] Port Seuings] Driver Resources |

\> Communications Port (COM1)

Fesource settings:
Pesourcetype | Setiing
Input/Output =1 03F8 - 03FF
Interrupt Request 04

Sefting based on: IBasil: configuration 1 _vJ

! Change Setting... | " Use automatic setings

Communications Port (COM1) Properties ﬂm
Conflicting dewvice list:
Mo conflicts.

General | Port Settings Driver |Resources]

\> Communications Port

Driver files:

— File details

Provider: Microsoft Corporation
File version: 4.00,950

Copyright Copyright© Microsoft Corp. 1992-1995

[Change Driver... |

i [

Figure 3-2: The Device Manager’'s Resources tab for a port show its reserved
addresses and IRQ line. The Driver tab shows the port’s software drivers.

30 Serial Port Complete

The PC’s Serial Port from the Connector In

Table 3-1: Conventional COM port addresses and IRQ lines.

Port Address IRQ
COM1 3F8h 4
COM2 2F8h 3
COM3 3E8h 4orll
COM4 2E8h 3or 10

Port Information in the Registry

Windows’ system registry stores the address and assigned IRQ line of each COM
port. Listing 3-1 shows two serial ports listed under this registry key:

HKEY LOCAL_MACHINE\Enum\Root\
If the configuration differs from the default entry under Bootconfig, the changes
are stored under a ForcedConfig subkey.

Older, legacy serial ports are stored under this registry key:

HKEY LOCAL_ MACHINE\Enum\BIOS\
Windows 95 has an additional registry section that stores temporary configura-
tions that are valid for a single session. Listing 3-2 shows the listings for the same
two ports under these keys.

Windows’ Regedit program enables you to examine the system registry and
search for entries.

Configuring

Many serial ports have jumpers, switches, or configuration utilities that enable
you to select a port address and IRQ line. The setup screens that you can access on
bootup enable you to configure ports that reside on the main system board.

The amount of choice in the configuration varies. Some ports allow addresses and
IRQ lines other than the conventional ones. Under Windows 95, the use of uncon-
ventional port addresses isn’t a problem. When an expansion card with a port is
installed, if Windows doesn’t detect the port, you can add it manually. To do so,
from the Control Panel, select Add New Hardware. When asked if you’d like it to
search for the new hardware, select No. Select Ports, then Communications Port.
Accept the address and IRQ line that Windows assigns—even if they’re wrong—
and click Next to complete the installation. Then if you need to change the address
or IRQ line to match your hardware, do so from the Control Panel’s Device Man-

Serial Port Complete 31

Chapter 3

[HKEY LOCAL_MACHINE\Enum\Root*PNP0500\0000]

“InfName”="MSPORTS . INF”

“DeviceDesc”="Communications Port (COM1)”

“Class”="Ports”

“HardwarelD”="*PNP0500"

"DetFunc”="*:DETECTCOM"

“"NoSetupUI”="1"

“DetFlags”=hex:00,00,00,00

“BootConfig”=hex:00,04,00,00,00,00,00,00,14,00,00,00,02,00,00,00,
00,00, 0c,00,f8,03,££,03,00,00,00,03,10,00,00,00,04,00,00,00,01,0
0,04,00,00,00,00,00,00,00,00,00

“VerifyKey”=hex:£8,03,00,00

“"PortName” ="COM1"”

“Driver”="Ports\\0000"

“Mfg”=" (Standard port types)”

“ConfigFlags”=hex:00,00,00,00

"FRIENDLYNAME” =" Communications Port (COM1)"

“Settings”=hex:02,10,00,80

[HKEY LOCAL MACHINE\Enum\Root*PNP0500\0001]

“"InfName”="MSPORTS.INF”

“DeviceDesc”="Communications Port (COM2)"”

“Class”="Ports”

“HardwarelID”="*PNP0500"

“DetFunc”="*:DETECTCOM”

“NoSetupUI”="1"

“DetFlags”=hex:00,00,00,00

“BootConfig”=hex:00,04,00,00,00,00,00,00,14,00,00,00,02,00,00,00,
0o0,00,0¢c,00,£f8,02,f£,02,00,00,00,03,10,00,00,00,04,00,00,00,01,0
0,03,00,00,00,00,00,00,\
00,00,00

“VerifyKey”=hex:£8,02,00,00

“PortName” =" COM2"

“Driver”="Ports\\0001"

“Mfg”=" (Standard port types)”

“ConfigFlags”=hex:00,00,00,00

“"FRIENDLYNAME” =" Communications Port (COM2)”

“Settings”=hex:02,10,00,80

Listing 3-1: Registry keys that store port addresses and IRQ lines for COM ports.
Under BootConfig, 8,03 indicates a port address of 03F8h, and 8,02 indicates a
port address of 02F8h. The bold 04 and 03 are the assigned IRQ lines.

32 Serial Port Complete

The PC’s Serial Port from the Connector In

[HKEY DYN DATA\Config Manager\Enum\C119C24C]

“HardWareKey” ="ROOT*PNP0500\\0000"

“Problem”=hex:00,00,00, 00

“Status”=hex:cf,6a,00,00

“Allocation”=hex:00,04,00,00,00,00,00,00,14,00,00,00,02,00,00,00,
0o0,00,0c,00,£f8,03,££,03,00,00,00,03,10,00,00,00,04,00,00,00,01,0
0,04,00,00,00,00,00,00,00,00,00

[HKEY DYN DATA\Config Manager\Enum\C119C750]

“HardWareKey” ="ROOT*PNP0500\\0001"

“Problem”=hex:00,00,00,00

“Status”=hex:cf,6a,00,00

“Allocation”=hex:00,04,00,00,00,00,00,00,14,00,00,00,02,00,00,00,
oo,00,0c¢,00,£f8,02,££,02,00,00,00,03,10,00,00,00,04,00,00,00,01,0
0,03,00,00,00,00,00,00,00,00,00

Listing 3-2: COM port listings in Windows 95’s registry branch for storing dynamic
data.

ager, as described earlier. Once a port is installed, Windows remembers the con-
figuration and programs should have no problem accessing it.

Under DOS, applications that depend on the BIOS for finding port addresses
won’t be able to access a port at an unconventional address, because the BIOS
won’t detect it. For example, I have an older serial card that assigns address 2E8h
to COM3 and 2EOh to COM4 (assuming that the user already has two serial ports
installed). When the BIOS doesn’t find a port at COM3’s normal address of 3E8h,
it continues looking and assigns the next port it finds, 2E8h, as COM3. The port at
3EOh is never detected.

Under DOS, there are two ways to make use of a port at an unconventional
address. One is to run a utility on bootup to store the address in the BIOS data
area. This way, any application that reads port addresses in the BIOS data area
will find it. Also, any application that enables users to enter a port address can use
the port, assuming that the user knows the address to enter.

The BIOS data area doesn’t store the IRQ lines assigned to a port, so DOS appli-
cations and serial-port drivers that use interrupts must either assume the default
IRQ line, ask the user to select one, or try to detect which line is assigned. DOS
and the BIOS also include some support for serial-port communications, but for
better performance, most DOS programs use their own communications routines.

Serial Port Complete 33

Chapter 3

Other ways to view serial-port resources are to run the program msd.exe included
with Windows 3.x and DOS, or similar diagnostic programs. The setup screens
that you can access on bootup also contain information about the system’s ports.

New Systems

Although Microsoft’s recommendations for the PC 98 discourage the use of leg-
acy COM ports, they do allow them, with the following requirements:

* The port must be equal to a 16550A UART or better, and must support bit rates
of up to 115,200 bps.

* The port must be capable of being reconfigured and completely disabled in
software.

* The port must support the conventional port addresses and IRQ lines.

* Each port must allow a choice of at least two IRQ lines. When there are two
ports, the recommendation is to allow the choice of IRQ4 and IRQI11 for one
port, and IRQ3 and IRQ10 for the other.

* An infrared adapter port may take the place of one serial port.

These are good, general recommendations for a flexible configuration on any sys-

tem. Of course, users are free to install any serial port that their hardware sup-

ports. Older expansion cards should work fine in any computer with ISA slots,
whether or not they meet the above requirements.

Adding a Port

34

A new PC typically has one or two RS-232 ports, though these are gradually being
replaced in new systems by USB ports. Expansion cards are available with addi-
tional RS-232 ports, or you add a card with an RS-485 or other interface type.

For years, most expansion cards have plugged into the PC’s ISA bus, which is the
system bus of the original IBM PC. However, the ISA bus is gradually being
phased out in favor of the much faster and more capable buses such as PCI. PCI
expansion cards with serial ports are available. Before buying a card, be sure your
PC has a free slot, and that you know what type it is. An 8-bit ISA slot has parallel
rows of 31 contacts each. A 16-bit ISA slot adds an adjacent slot with rows of 18
contacts. A 32-bit PCI slot has parallel rows of 62 contacts each. Also be sure the
card supports the IRQ line you want to assign to the port(s) on the card.

For an RS-485 port, you can add an expansion card, or use an existing RS-232
port and an external converter. Chapter 9 has more on this.

Serial Port Complete

The PC’s Serial Port from the Connector In

e Dsw2

Figure 3-3: An older serial port expansion card. The two large 40-pin chips on the
left are UARTSs. The bottom UART is socketed for easy upgrading.

Using Older Hardware

In older systems and expansion cards that use 40-pin DIP sockets (Figure 3-3),
you can upgrade an 8250 by replacing it with a 16450 or 16550. The pinouts of
the 8250 and 16450 are identical. The 16550 adds two outputs, TXRDY and
RXRDY, used in buffered DMA transfers, and eliminates one output, CSOUT,
which indicates when the chip is selected. These aren’t required for normal opera-
tion, however.

On reset, a 16550 acts like a 16450. Software has to enable the buffers. Windows
detects the UART type and configures the UART to use the FIFOs. Under DOS,
the application or serial-port driver must do these.

The part numbers of the early UARTSs can be deceptive. For example, the 8250A
has a scratch register like the 16450’s, and the buffers on some early 16550s were
unusable due to a product flaw.

Serial Port Complete 35

Chapter 3

One way to detect a 16450-type UART is to write to the scratch register and read
back what you’ve written. If it matches, you have a 16450 or better. To detect a
16550-type UART, enable the buffers and try to use them.

Internal vs. External Devices

With modems and some other COM-port devices, you often have a choice
between an internal and external device. Each has advantages.

Internal devices are usually a little cheaper and save desk space, or luggage room
with portables. A PC may include an internal modem whether or not you want it.

If a PC has no free expansion slots and it does have a free RS-232 port, an external
device may be the only option. If you use a device on more than one computer, it’s
easier to unplug and move an external device than to open up two enclosures to
remove and install an internal card. When you upgrade, an external device is easy
to recycle by moving it to another system. Because computers other than PCs also
have RS-232 interfaces, you may be able to use an external device on other com-
puter types as well.

External devices also make it easy to use multiple peripherals, one at a time, by
using a switch box or just swapping the cable, without having to open up the
enclosure or worry about finding a unique address or IRQ line for each.

IRQ Conflicts

36

One problem with using multiple serial ports is that there are only two IRQ lines
reserved for use by all four ports. COM1 and COM3 conventionally use IRQ4,
while COM2 and COM4 use IRQ3. However, assigning the same IRQ line to two
ports can lead to problems. In some cases, even if you have four serial ports, you
can use only two at a time.

Using Interrupts

Most serial-port applications use hardware interrupts because they enable faster
data transfers by automatically detecting events at the port. The interrupt is a sig-
nal that tells the CPU that a task needs immediate servicing. The original IBM PC
supported 8 interrupt lines. The PC model AT increased the number to 16, and this
is where it has remained, even though the number of devices using interrupts con-
tinues to increase. Each IRQ line corresponds to a signal that connects the inter-
rupt’s source to the PC’s interrupt controller.

Serial Port Complete

The PC’s Serial Port from the Connector In

PC
EXPANSTON
UART BUS

OUT2T\
INTR | . —IRQJS

74Ls125 Lo+ g
BUFFER RO HRO4

SELECT

Figure 3-4: The UART’s -Out2 pin enables the serial-port interrupt on the PC.

A program that uses a hardware interrupt must provide an interrupt-service rou-
tine (ISR) that performs the desired actions when the interrupt occurs. For exam-
ple, a serial-port ISR might read data from the port’s receive buffer.

When a device sends an interrupt request by pulsing an IRQ line, the system’s
interrupt controller detects the request and informs the CPU that the request is
pending. The CPU breaks away from whatever it was doing and executes the ISR.
On exiting the ISR, the CPU returns to what it was doing when the interrupt
occurred.

In Visual Basic, the MSComm control takes care of the details of installing and
enabling the ISR. The application’s OnComm routine contains the program code to
execute on an interrupt. (Chapter 4 has more on this.)

Interrupt Circuits

The circuits associated with the interrupt lines explain why two ports can’t share
an interrupt. On the PC’s ISA bus, interrupts are triggered by a rising edge.

Figure 3-4 shows the interrupt circuitry from an older serial-port expansion card.
More recent serial ports use different components, but any ISA card should emu-
late the operation of these circuits. The chip that drives the IRQ line is a 74LS125
buffer. The user selects an IRQ line by closing a switch on the expansion card.
This routes the buffer’s output to one of two IRQ lines on the expansion bus.

The input to the buffer is the INTR output of the port’s UART, which goes high to
request an interrupt. The buffer also has an enable input, which is controlled by
the UART’s -OUT2 output. This is a general-purpose output that the PC’s archi-
tecture reserves for this function.

Serial Port Complete 37

Chapter 3

Before a program can use serial interrupts, the software must bring -OUT2 low to
cause the output of the buffer to follow its input. To make things confusing, the
-OUT2 pin on the UART is the complement of the -OUT2 bit in the UART’s
modem control register (MCR). Writing 1 to -OUT2 in the MCR brings the
-OUT2 pin low.

When the -OUT?2 pin is high, the buffer’s output is off, or in a high-impedance
state, and interrupt requests from the UART don’t affect the IRQ line. This means
that another device can use the IRQ line without conflicts from this serial port.

The problems begin when two 74LS125’s are enabled and both connect to the
same IRQ line. The outputs are totem-pole TTL type, where a high output has a
low resistance to +5V, and a low output has a low resistance to signal ground. If
two serial ports share the same interrupt line, if one output tries to go high and the
other tries to go low, the result is unpredictable. Chances are good that the IRQ
line won’t go high enough to generate an interrupt request, and the resulting cur-
rent may even damage the components involved.

Solutions for Multiple Ports

38

There are solutions to the shortage of IRQ lines. None is ideal, but you should be
able to find something that works for a particular situation.

Limit the number of devices that use COM ports. If you never need to use
more than two serial devices, use only COM1 and COM2, with IRQ4 assigned to
COMI1 and IRQ3 assigned to COM2. Don’t assign these IRQ lines to any other
devices.

Sometimes you can free up a serial port by using an alternate interface. A USB
port can handle communications with multiple peripherals. Instead of requiring an
IRQ line for each device, the USB driver polls the USB devices periodically to
find out if any have a pending request.

Mice have used a variety of interfaces, including COM ports. These days, a mouse
is more likely to be a PS/2-type, which uses a built-in mouse port that doesn’t
need a COM-port address, and typically uses IRQ 12. A bus mouse, which con-
nects to a special mouse-interface expansion card, also doesn’t normally use a
COM-port address, though it may use IRQ3 or IRQ4. USB is the new recom-
mended interface for mice.

Use a switch box. A switch box enables you to use multiple devices, one at a
time. For example, you can have one internal device on COM1, with a switch box
connected to multiple devices on COM2.

Use alternate IRQ lines. If you must use two even or two odd-numbered ports at
once, see if you can assign a different IRQ line to one of the ports.

Serial Port Complete

The PC’s Serial Port from the Connector In

Possible available interrupts are IRQ7 and IRQS5, which are reserved for the paral-
lel ports, but are sometimes unused. If your parallel port and the printer it connects
to both support ECP mode, an assigned IRQ line will enable faster printer com-
munications. The drivers for other parallel-port devices may be capable of using
interrupts as well, though almost all parallel-port devices can operate without
interrupts if necessary. Interrupts 10 through 12 may also be available, though not
all serial ports allow these choices. Sound cards and other devices may be using
any of these, however.

With a shared IRQ line, use one device at a time. If two ports must share an
IRQ line, don’t use both at the same time. This assumes that interrupts are dis-
abled on the unused port. On exiting, a well-behaved application will disable any
IRQ line it had enabled.

Use polling instead of interrupts. If you’re writing your own software, you may
be able to disable interrupts on the port and instead use a polled interface, where
the software checks periodically for data or errors instead of relying on interrupts
to signal them. Most commercial software uses interrupts because they are conve-
nient and efficient. But if an application doesn’t require fast response, doing with-
out interrupts can be a solution.

Unfortunately, sometimes you have no choice except to enable the interrupt. In
Visual Basic, opening a COM port with the MSComm control automatically
enables the assigned IRQ line at -OUT2. The line remains enabled until the port is
closed. So even if the program doesn’t use interrupts, MSComm enables the
buffer that drives the IRQ line, preventing other devices from using it.

However, if the IRQ line can be disabled at the port (by removing a jumper that
enables an IRQ line, for example), -OUT2 will have no effect on the interrupt
lines and the port can be used without interrupts.

Use a bus that allows interrupt sharing. The PCI bus found on most new PCs
has four level-triggered, active-low, shareable interrupt lines. In a typical system
configuration, a programmable interrupt router connects each PCI interrupt to one
of the system’s sixteen IRQ lines.

Two other earlier buses are the Micro Channel and EISA buses. On the Micro
Channel bus introduced in IBM’s model PS/2, the IRQ lines are active-low and
shareable. On the EISA bus, the IRQ lines can have either configuration, with ris-
ing-edge interrupts for compatibility with ISA cards, and level-sensitive interrupts
for EISA cards.

However, shareable IRQ lines require software that can identify which device
requested an interrupt and jump to the appropriate ISR. The hardware for share-
able lines usually uses open-collector or open-drain outputs (described in Chapter
5).

Serial Port Complete 39

Chapter 3

Use a multi-port card that allows IRQ sharing. Some cards with multiple ports
allow interrupt sharing. This type of card should come with software drivers that
read the UARTS’ registers to detect which port was the source of an interrupt
request and branches to the appropriate interrupt-service routine.

Use an RS-485 network. Another way to connect multiple serial devices to a PC
is to use an RS-485 interface, which allows multiple devices to connect to one
port. This is a solution for some monitoring and control systems. RS-485 expan-
sion cards are available for PCs. Of course, all of the serial devices must also sup-
port RS-485, or use RS-485 adapters, and a multi-node RS-485 link requires
programming to manage communications among the devices.

Inside the UART

40

The 16550 and similar UARTSs contain twelve 8-bit registers. The registers hold
the next byte to transmit, the last byte received, the bit rate and other port settings,
and control and status information for handshaking, FIFO use, and interrupts.

Most of the time, there’s no need to access the registers directly because the pro-
gramming language or system API includes functions for configuring and using
the port. But knowing how it all works can come in handy if you’re tracking down
problems or if you need to do something unusual with the port.

Although the UART has twelve internal registers and two FIFOs, it requires just
eight port addresses. In some cases multiple registers share an address, and the
register accessed depends on the value of a bit in another register or whether the
operation is a read or write. The FIFOs are internal to the UART and require no
port addresses.

Table 3-2 shows the functions and addresses of the internal registers of the three
original UART types. Complete data sheets are available from National Semicon-
ductor and other manufacturers.

The UART’s addresses are relative to its base address. Address 0 is at the port’s
base address, with the others following in sequence. For example, on COMI1,
address 0 is usually at 3F8h, and address 7 is at 3FFh.

The base address has three registers. A write-only register holds the next byte to
transmit and a read-only register holds the last byte received.

On reset, the DLAB bit (bit 7 of base address + 3) is 0. Reading the base address
(Receive Buffer) tells you the most recent data received at the UART’s SIN pin.
Writing a byte to the base address (Transmit Buffer) causes the byte to transmit in
serial format at the SOUT pin.

Serial Port Complete

The PC’s Serial Port from the Connector In

Table 3-2: Register summary for 8250, 16450, and 16550 UARTSs.

Add- |Ac- Name |Abb-|Bit Number
ress |cess rev. 7 |6 |5 |4 |3 |2 |1 |0
0 DLAB= (receive |RBR |received data
0, read |buffer
only
DLAB= [transmit |THR |transmit data
0, write |holding
only register
DLAB= |[divisor |DLL |baud rate divisor low byte
1, read/ |latch,
write low byte
1 DLAB= [interrupt [IER |0 0 0 0 modem [receiver |transmit |received
0, read/ |enable status line sta- [holding |data
write tus register |available
empty
DLAB= [divisor |DLM |baud rate divisor high byte
1, read/ |latch,
write high byte
2 read interrupt |1IR FIFOs enabled**: [0 0 Interrupt ID: -Inter-
only identify 11 if FCR bit 0=1, 01 I=receive line status rupt
00 if FCR bit 0=0 010=received data avail. Pending
1 10=character timeout
001=TR hold. reg empty
000=modem status
write FIFO FCR |receive FIFO reserved [reserved |DMA transmit [receive |FIFO
only** | control®* | ## trigger level:** ok ok mode FIFO FIFO enable®*
00=1 byte select® [reset** |reset**
01=4 bytes
10=8 bytes
11=14 bytes
3 read/ line LCR |divisor |break set |stick even parity stop bits: [word length:
write control latch parity parity enable |0=1bit |00=5 bits
access set set 1= 01=6 bits
bit 2 bits 10=7 bits
(DLAB) 11=8 bits
4 read/ modem [MCR |0 0 0 loop- -OUT2 [-Outl request [data
write control back (-IRQ to send |terminal
mode enable (RTS) ready
on PCs) (DTR)
5 read line sta- |LSR |errorin [transmit |transmit |break framing |[parity overrun |data
only tus receive | buffer holding [interrupt |error error error ready
FIFO empty reg.
6 read modem |MSR |data car- |ring indi- |dataset |clearto |change |[RS-232 |change [change
only status rier cator ready send in CD falling |in DSR |in CTS
detect (RI) (DSR) [(CTS) edge at
(CD) RI
7 read/ scratch® |SCR | scratch register, no designated function
write

#16450 and 16550 only, *#16550 only

Serial Port Complete

41

Chapter 3

Setting DLAB to 1 enables you to use the divisor latches at the base address and
(base address + 1) to set a bit rate for the port. The divisor latches hold a 16-bit
value that divides the UART’s crystal frequency to the desired bit rate. Table 3-3
shows divisor-latch values for different bit rates, assuming the UART’s standard
1.8432-Mhz crystal. Listing 3-3 is a Visual-Basic routine that calculates values for
any bit rate.

On some older 8250’s, the maximum bit rate is 57,600, with the divisor latch set
to 2. Other UARTS can transmit and receive at up to 115,200 baud. With a faster
crystal, new UARTS can handle higher speeds.

Setting or reading the bit rate is the only time you need to set DLAB to 1. After
doing so, you should set DLAB to 0. On reset, the bit rate is 2400.

Interrupt Sources

When DLAB is 0, the Interrupt Enable register (IER, at base address + 1) can
enable up to four interrupt sources. The interrupt sources provide a convenient
way to detect errors or other situations that need attention. When an interrupt
occurs, bits 1, 2, and 3 of the Interrupt Identify register (1IR, at base address + 2)
reveal the source. Many of the interrupt sources correspond directly to the events
detected by MSComm.

Many applications don’t use all of the interrupt sources. The most commonly used
source is bit 0, Received Data Available. With this bit set to 1, the UART will
generate an interrupt when there is new data to be read. Reading the receive buffer
clears the interrupt until the next byte arrives.

When bit 1 of IER is set, an interrupt occurs when the transmit buffer is empty, to
signal the CPU that it should write more data to the buffer.

When bit 2 is set, an interrupt occurs when there is a transmission error, signaled
by a change in bits 1-4 in register 5. These are the four errors detected:

Overrun: new data arrived at the receive buffer before the previous data was
read.

Parity: with parity enabled, the parity bit of the byte at the top of the receive
FIFO was incorrect.

Framing: a received character did not have a Stop bit. This error may also occur
when the transmitter’s and receiver’s bit rates don’t match.

Break interrupt: received data has been logic O for longer than the transmission
time for one character.

When bit 3 of IER is set, an interrupt occurs when there is a change at one of the
control inputs on the serial connector.

42 Serial Port Complete

The PC’s Serial Port from the Connector In

Table 3-3: Divisor-latch values for different bit rates on the

PC’s UART.

Bit Rate (bps) [High Byte (hex) [Low Byte (hex)
300 01 80

1200 00 60

2400 00 30

9600 00 0cC

19,200 00 06

38,400 00 03

115,200 00 01

Bits 4-7 of the Modem Status register (MSR, at base address + 6) hold the status
of the control inputs, and bits 0-3 signal which inputs have changed since the last
time the register was read.

Bits 4-7 are inverted twice between the register and an RS-232 connector. The
RS-232 interface inverts the signals once, and the inputs at the UART are the
complements of the corresponding values in the register. So when bit 4 is 0, the
CTS pin on the UART is a logic high, and the CT'S pin on the RS-232 connector is
negative, which is defined as Off, or False.

Control Registers

The Line Control register (LCR, at base address + 3) stores configuration infor-
mation such as the number of stop, data, and parity bits used in each transmission.
For example, for the popular settings of N,8,1, bits 5-0 would be 00111.

The Modem Control register (MCR, at base address + 4) has several important
functions. Bit 3 (-OUT2) is a general-purpose output on the UART, but as
explained earlier, in PCs, this bit enables the IRQ line at the port. Setting -OUT?2
to O turns off the output that generates interrupt requests for the port. Even if the
UART detects an interrupt, the interrupt controller and CPU will never see it.

Bits 0 and 1 of MCR set and clear DTR and RTS on the serial connector, for appli-
cations that use these control signals. Bit 2 is another general-purpose output. This
one has no defined function in PCs.

Setting bit 4 of MCR puts the UART in a loopback mode, which enables reading
transmitted data at the receive buffer. Loopback allows you to test a port, or test
for the presence of a port, by writing to it and reading back the result.

Serial Port Complete 43

Chapter 3

Public Sub FindDivisorLatchValues (BitRate As Long)
Dim LowByte As Long

Dim HighByte As Long

Dim Crystal As Long

Crystal = 1843200

HighByte = Crystal \ (&H1000 * BitRate)

LowByte = _

(Crystal \ (BitRate * &H10)) - (HighByte * &H100)
Debug.Print "high byte: ", Hex$ (HighByte)
Debug.Pinrt "low byte: ", Hex$ (LowByte)

End Sub

Listing 3-3: This Visual-Basic routine calculates UART divisor-latch values for a bit
rate.

New Functions

Some of the registers and bits aren’t in all versions of the UART. The 16450 and
16550 have a scratch register (base address + 7), which has no defined function.
In your own programs, you can use this register any way you want.

Other bits control the 16550°s FIFOs. Setting bit 0 of the FIFO Control register
(base address +2) enables the FIFOs and also sets the register’s bits 6 and 7. Set-
ting bit 0 and then reading bits 6 and 7 is a quick way to test for the presence of
the FIFOs. (A few early FIFOs fail this test.) On UARTSs without FIFOs, bits 6
and 7 will always read 0.

44 Serial Port Complete

PC Programming

PC Programming

Many programming languages for PCs support serial communications by includ-
ing functions for configuring and reading and writing to serial ports. Serial-port
controls are also available from other sources. Windows also has serial-communi-
cations functions in its API (Applications Programmer’s Interface), and any pro-
gramming language that can call API functions can use these.

This chapter focuses on Visual-Basic programming. A template application
includes functions for detecting, opening, and transferring data with Visual
Basic’s MSComm control. The sample applications in the following chapters are
based on this template.

Also included are descriptions of other ways to access ports, when MSComm is
unavailable or doesn’t have the needed abilities. These include using Windows
API functions, direct port reads and writes, and access under DOS.

Although the syntax and other details vary, much of the information in this chap-

ter also applies to serial-port programming in other dialects of Basic and other
programming languages.

Using MSComm

MSComm is Visual Basic’s custom control for serial communications. The con-
trol is included in Visual Basic’s Professional and Enterprise editions, but not in

Serial Port Complete 45

Chapter 4

the (lowest-cost) Learning edition. A custom control offers much easier program-
ming and better performance than other methods of port access. If you’re going to
be doing much serial-port programming, it makes sense to invest in a version that
includes MSComm or buy a serial-port control from another source.

Properties

46

Like other controls, MSComm has associated properties. The properties relate to
configuring ports, transferring data, use of handshaking signals, and identifying
the control. Visual Basic’s documentation includes the syntax and other details
required to use the properties, so I won’t repeat them here. The following is quick
reference, arranged by function.

Configuring

CommlID. Returns a handle that identifies the device.

CommPort. Sets and returns the port number.

InBufferSize. Sets and returns the receive buffer’s size, in bytes.
InputLen. Sets and returns the number of characters Input will read.

InputMode. Sets and returns the type of data (text or binary) returned by Input
and accepted by Output.

NullDiscard. Determines whether null characters (Chr (0)) are transferred from
the port to the receive buffer or dropped (ignored).

OutBufferSize. Sets and returns the transmit buffer’s size, in bytes.

ParityReplace. Sets and returns the character that replaces an invalid character on
parity error.

PortOpen. Sets and returns the state of the port. (True if open, False if closed.)

RThreshold. Sets and returns the number of characters to receive before trigger-
ing comEvReceive.

Settings. Sets and returns the bit rate, parity, and number of data and stop bits.

SThreshold. Sets and returns the minimum number of characters in the transmit
buffer before triggering comEvSend.

Transferring Data

CommEvent. Returns the most recent event or error.

EOFEnable. Determines whether input will stop on receiving an Eof character.
InBufferCount. Returns the number of characters in the receive buffer.

Input. Returns and removes data from the receive buffer.

Serial Port Complete

PC Programming

OutBufferCount. Returns the number of characters in the transmit buffer.

Qutput. Writes data to the transmit buffer.

Handshaking

Break. Sets or clears a break signal.

CDHolding. Returns the state of CD.

CTSHolding. Returns the state of CTS.

DSRHolding. Returns the state of DSR.

DTREnable. Sets or clears DTR.

Handshaking. Sets and returns the handshaking protocol.
RTSEnable. Sets or clears RTS.

Identification

Index. Sets and returns a number that identifies the control in a collection.
Name. Identifies the control. Example: MSComm1.

Object. Returns the control and/or a setting of a control’s method or property.
Parent. Returns the form, object, or collection that contains the control.

Tag. Sets and returns an expression. User defined.

Text and Binary Transfers

Visual Basic 5 allows transferring of data in either text or binary format. The
InputMode property determines which format MSComm uses.

Text Mode

With the InputMode property set to comInputModeText, MSComm sends
and receives ANSI strings. To write a string to the port, set MSComm’s Output
property equal to the string:

Dim SampleText as String

‘The text to send:

SampleText="ABC"

‘Write the string to the port:

MSComml .Output = SampleText
MSComm transmits an 8-bit ANSI code for each character in the string.
To read a string from the port, set a string equal to MSComm’s Input property:

Dim SampleText as String
‘Read the input into a string:
SampleText = MSComml. Input

Serial Port Complete 47

Chapter 4

MSComm stores each received 8-bit ANSI code as a text character.

The Output property will also accept a variant containing a string, and
MSComm will also read an input string into a variant.

Internally, Visual Basic stores strings as 16-bit Unicodes, but the conversion
between Unicode and MSComm’s 8-bit ANSI strings is automatic.

ASCII Hex Conversions

For applications that use ASCII Hex format, Visual Basic has functions that con-
vert between ASCII Hex strings and the values they represent. The Hex$ operator
converts a number to an ASCII Hex string:

debug.print Hex$(165)
A5

The Val operator converts from ASCII Hex to the string’s value:

debug.print Vval("&h" & "A5")

165
Don’t forget to add the &h, which tells Visual Basic to treat the value as hexadec-
imal.

Binary Mode

To transfer binary data, set MSComm’s InputMode to comInputModeBi-
nary.

Visual Basic 5 supports the Byte variable type for storing binary data. Bytes writ-
ten to and read from the serial port are stored in variants that contain byte arrays.
Even if there is just one byte, it must be in a byte array, not a simple byte variable.

Writing a byte array to the serial port is a two-step process. First assign the byte
array to a variant, then send the data by setting the variant equal to the port’s out-
put property:

Dim BytesToSend (0 To 1) As Byte

Dim Buffer As Variant

'Store the data in a byte array:

BytesToSend (0) &H4A

BytesToSend (1) = &H23

'Set a variant equal to the array:

Buffer = BytesToSend()

'"'Write the wvariant to the port:

MSComml.Output = Buffer

To read bytes at the serial port, you do the same thing in reverse: read a variant at
the port, then set a byte array equal to the variant:

Dim BytesReceived() As Byte
Dim Buffer As Variant

48 Serial Port Complete

PC Programming

'Read the data from the port.

Buffer = MSComml. Input

'Store the data in a byte array.

BytesReceived() = Buffer
There are two ways to convert between byte arrays and variants. You can set a
variable equal to a variable of the desired type, and Visual Basic will do the con-
version automatically:

Dim DimensionedByteArray(15) As Byte
Dim DynamicBytelArray () As Byte

Dim Buffer As Variant

Dim Count As Integer

‘Store a byte array in a wvariant:
‘The array must be dimensioned.
Buffer = DimensionedByteArray ()

"Copy the contents of a variant into a byte array:
‘The array must be dynamic (undimensioned) .
DynamicByteArray () = Buffer

Or you can use Visual Basic’s type-conversion functions:

'Store a byte array in a variant:
Buffer = CVar (DynamicByteArray())

'Store the contents of a variant in a byte array:
For Count = 0 To (LenB(Buffer) - 1)

DimensionedBytelArray (Count) = CByte (Buffer (Count))
Next Count

Polled Communications

A polled data transfer just reads and writes to the port as needed with MSComm’s
Input and Output properties.

Sending
The Output property writes to the port:

Dim DataToWrite as Variant
MSComml.Qutput = DataToWrite

When sending small blocks of data, set the OutBufferSize property to at least
the largest number of bytes the program will transmit at once.

For very long transmissions, use OutBufferCount to ensure that the buffer
doesn’t overflow. Fill the buffer, then if you have more data to send, read Out -

Serial Port Complete 49

Chapter 4

50

BufferCount and subtract its value from OutBufferSize to find out how
much room remains in the buffer. Refill the buffer by writing that number of bytes
to the port. Or you can send the data in packets of a defined size, and send a packet
only when OutBuf ferCount shows that there is enough room for it. For exam-
ple, if OutBufferSize is 1024 and the packet size is 512, you can send a
packet when OutBufferCount <= 512.

Receiving

To read incoming data, the application reads the InBufferCount property
periodically. When the count shows that the desired number of characters are
present, the application reads the data with the Input property.

Dim BytesToRead as Integer
Dim DatalIn as Variant

‘*Set the number of bytes to read.
NumberOfBytesToRead = 512
MSComml. InputLen = NumberOfBytesToRead

‘Poll the input buffer.
Do
DoEvents
Loop Until MSComml.InBufferCount > NumberOfBytesToRead

‘When the desired amount of bytes have arrived,

‘read them.

DataIn = MSComml.Input
The InBufferSize property should be large enough to handle the largest
amount of data that may arrive before MSComm can read it. If the data will arrive
in blocks of a fixed size, set InBufferSize to a multiple of the block size.

If the amount of incoming data is unknown, the application should read the input
buffer even if it has just one byte. Waiting for multiple bytes can be futile because
there’s no way to know which byte is the last. If waiting for more than one byte,
the code should include a timeout that eventually quits and reads what’s there if
all of the bytes don’t arrive.

You can combine procedural and event-driven programming by using timers to
determine when to access a port. For example, use a Timexr event to trigger a port
read once per second.

Serial Port Complete

PC Programming

Using OnComm

MSComm has one associated Event: OnComm, which responds to various events
at a port. OnComm eliminates the need to check for incoming data or to find out if
the remote receiver is ready for new data. Instead, when any of 17 events occurs,
the application automatically sets a CommEvent property and jumps to the con-
trol’s OnComm subroutine. Inside the routine, a Select Case structure is a
convenient way to decide what action to take. In response to an event, the routine
may display a message, take other action, or just ignore the event entirely. Many
of OnComm’s events correspond directly to hardware events signaled by bits in the
UART, as described in Chapter 3. Other events are software-triggered.

Receiving

In the receive direction, OnComm provides a simple and efficient way to detect
when data has arrived at a port. MSComm’s RThreshold property sets the min-
imum number of received characters required to trigger an OnComm event:

MSComml.RThreshold = 1

When the receive buffer contains RThreshold or more characters, the applica-
tion jumps to the OnComm subroutine. The routine is responsible for determining
that the ComEvReceive event has occurred and reading the received characters:

Case ComEvReceive
Buffer = MSComml. Input

Again, if RThreshold is greater than one, the last byte or bytes in a transmis-
sion may remain unread.

Setting RThreshold to 0 disables ComEvReceive; it will never trigger.

Sending

In the transmit direction, the reason to use OnComm isn’t as obvious.

The CPU can write to the port faster than the port can send the serial data out. If
the amount of data to send is larger than OutBufferSize, the application can’t
write all of the data to the buffer at once, or it will overflow. You can use OnComm
to transfer large amounts of data efficiently, by ensuring that transmit buffer is
never empty, yet never overflows.

MSComm’s SThreshold property sets the number of characters in the Trans-
mit buffer that will trigger an OnComm event:

MSComml .SThreshold = 256
Use the Output property to fill the transmit buffer the first time:
MSComml.Output = DataToSend

Serial Port Complete 51

Chapter 4

52

When the buffer drops from SThreshold + 1 to SThreshold number of
characters, comEvSend causes a jump to the OnComm subroutine. The event sig-
nals that the transmit buffer has room for more data.

For example, if the transmit buffer is 1024 bytes and the port is transferring a 32k
file, the application might set SThreshold at 256 bytes. To send the file, the
application writes 1024 bytes to fill the transmit buffer, and the port begins trans-
ferring the data. When 256 bytes remain to be transmitted, the program’s com-
EvSend routine can write 768 more bytes to refill the buffer. The process
continues until the file has transferred.

If the amount of information to be transferred is less than OutBufferSize,
there’s no need to use OnComm in this way. The application can write the data
directly to the transmit buffer, as described above. This is the simplest approach,
if the system can spare the memory for the buffer. Setting SThreshold to 0 dis-
ables ComEvSend so that it will never trigger.

Even when comEvSend looks like it may be useful, it can be tricky to use. For
example, if for some reason the CPU fills the output buffer more slowly than the
bytes transmit, the buffer will never hold SThreshold number of bytes, and
comEvSend will never fire. In many cases a polled interface is simpler and more
reliable for sending data.

Handshaking Events

Another use for OnComm is to detect changes in the handshaking signals and other
handshaking events:

comEvCTS. Change at the CTS input.

comEvDSR. Change at the DSR input.

comEvCD. Change at the CD input.

comEventRing. A Ring signal detected at RI. Visual Basic’s Help warns that this
event may not fire, so it’s best to not rely on it and instead detect rings by scan-
ning received data for a Ring code from a modem.

comEvEof. An Eof character was received. Used when the sending computer uses
the Eof code to indicate end of file. The default Eof code is 1Ak (Control+Z).
comEventBreak. The receive input has been logic 0 for longer than the time
required to transmit one word. The break signal is a rarely used form of signaling
that holds the output in a Space (0) condition even if data is written to the transmit
buffer. When idle, the transmit output is normally a Mark (1), which is a negative

RS-232 voltage. The Break signal provides a way to hold the transmit output pos-
itive.

Serial Port Complete

PC Programming

Data Errors

OnComm also detects many data errors. In each of the following cases, the sending
computer should resend the data that was missed.

comEventFrame. The receiver didn’t detect a Stop bit. This error will occur if the
transmitting node quits before sending a complete word, or if the bit rates or num-
ber of bits in the settings don’t match.

comEventParity. The receiver’s Setup property includes parity, and a received
parity bit didn’t match the expected value.

comEventOverrun. A character arrived when the UART’s buffer was full.
comEventRxOver. A character arrived when the receive software buffer was full.

comEventTxOver. A character was written to the transmit software buffer when
it was full.

DCB Errors

There is one other OnComm event:

comEventDCB. Error retrieving the DCB. The Device Control Block (DCB) is a
structure used by Windows to store information about a COM port.

Disabling Events

Some of the OnComm events can be disabled, while others will fire whether or not
the application needs to know. To disable ComEvReceive and ComEvSend,
set their threshold properties to 0. To disable ComEventEof, set MSComm’s
EofEnable property to False. To disable ComEventParity, set parity to
None in the Settings property.

The other events trigger OnComm whether the application needs to take action or
not. If the event is of no importance, the OnComm routine should just end and
return control to the main program.

Handshaking Options

MSComm offers a few options for automatic handshaking.
With the Handshaking property set to comRTS, MSComm uses CTS to determine

when it’s OK to transmit, and RTS to let the remote computer know when it’s OK
to send.

MSComm brings RTS false (a negative RS-232 voltage) when InBuf ferCount
is nearly equal or equal to 80% of InBufferSize. (If the proportion doesn’t
fall exactly at 80%, RTS toggles early, when the next byte received will cause
InBufferCount to be over 80% full.) The remote computer should stop trans-

Serial Port Complete 53

Chapter 4

54

mitting when RTS is False. When enough bytes have been read from the input
buffer so that InBuf ferCount has dropped to 20% full, MSComm brings RTS
True (a positive RS-232 voltage) again.

In the other direction, MSComm transmits only when CTS is True. If CTS is
False, the transmission will wait for it to go True, up to the time specified in Set -
CommTimeouts, as described later in this chapter. If the wait times out, the
transmit buffer clears and the data doesn’t transmit.

Xon/Xoff provides software handshaking, which works in a similar way to hard-
ware handshaking, except that the indicators are software codes rather than hard-
ware signals. Software handshaking takes more time, and you can use it only on
links that can dedicate codes for this use. The advantage is that there’s no need for
hardware handshaking lines in the link.

When InBufferCount is 80% of InBufferSize, MSComm transmits an
Xoff character to tell the remote computer to stop sending. When InBuffer-
Count has dropped to 20% of InBufferSize, MSComm sends an Xon char-
acter to tell the remote computer to resume transmitting. In the other direction, a
received Xoff will cause MSComm to pause transmitting until receipt of an Xon
character. The default XOn character is 11h (Control+Q); the default XOff is 13h
(Control+S).

A third option, comRTSXOnXOf £, uses both RTS/CTS and XOn/XOff hand-
shaking.

Networks may use yet another type of handshaking. For example, a transmitting
node may set RTS True (or False, depending on the hardware configuration) to
enable a driver. When transmitting is complete, the node sets RTS to the opposite
state to disable the driver and allow another node to transmit.

MSComm doesn’t have the ability to do this type of handshake automatically,
though it can be done by setting the RTSEnable property to the desired state in
code, as the example network in Chapter 12 shows.

MSComm’s documentation says that if RTSEnable and DTREnable are True,
RTS and DTR will be set True on opening the port, and False on closing it. But in
my experiments, on closing the port, these signals toggled False for just one word
width, then returned True. So if you want to ensure that the signals are False when
the port closes, set their properties to False before closing.

Serial Port Complete

PC Programming

w. Serial Port Complete !Elm

Setup

< SerclPor Complows — MIBIEA|

rPClrl

‘ |COM2 vl

’7 Bit Rate

]

Cancel | OK |

| < SericlPor Complows —— UBIER|

(oS _. SelectFile
& Save Data in File!

+ Append

' Overwrite | oK

Figure 4-1: The template application has a blank main form and a Setup menu
that brings up forms for selecting and configuring ports and selecting a file for
storing data.

A Template Application

Figure 4-1 shows the windows included in a template application with various
routines and forms that serial-port programs might use. The main form is blank
except for a Sefup menu with items that display windows for selecting a port and
storing collected data in a file. You could also add button icons for these items.
The example applications in later chapters use this template as a base, with appli-
cation-specific command buttons, text boxes, and other elements added to the
main form.

The application includes four code modules, one for the main form, two for the
forms brought up by the Setup menu items, and a .bas module containing general
serial-port routines.

The Main Form
Listing 4-1 is the program code for the applications’s main window. The code

contains little except an OnComm routine for the form’s MSComm control and a
routine to intialize the COM port.

Serial Port Complete 55

Chapter 4

Option Explicit
‘General-purpose template for applications
‘that access serial ports.

Private Sub Form Load/()
Show

Call Startup

End Sub

Private Sub Form Unload (Cancel As Integer)
Call ShutDown

End

End Sub

Private Sub mnuDataFile Click(Index As Integer)
frmDataFile.Show
End Sub

Private Sub mnuPortSettings_Click(Index As Integer)
frmPortSettings.Show
End Sub

Listing 4-1: Code for the template application’s Main form. (Sheet 1 of 5)

56 Serial Port Complete

PC Programming

Public Function fncInitializeComPort _
(BitRate As Long,
PortNumber As Integer)
As Boolean
‘Initializes the selected COM Port.
‘All settings except BitRate are set explicitly in this routine.
‘Some properties show alternate settings commented out.
Dim ComSettings as String
If MSComml.PortOpen = True Then
MSComml.PortOpen = False
End If

MSComml . CommPort = PortNumber

‘Use BitRate, no parity, 8 data, and 1 stop bit:
ComSettings = CStr(BitRate) & “,N,8,1"
MSComml.Settings = ComSettings

‘Properties relating to receiving:
‘Read entire buffer on Input:
MSComml. InputLen = 0

‘Read one byte at a time on Input:
*MSComml. InputlLen = 1

MSComml . InBufferSize = 1024

‘Generate no OnComm event on received data:

MSComml .RThreshold = 0

‘Generate an OnComm event on each character received:
*MSComml .RThreshold = 1

‘The Input property stores binary data:
'‘MSComml . InputMode = comInputModeBinary
‘The Input property stores data as text:
MSComml . InputMode = comInputModeText

‘Disable parity replacement”
‘MSComml .ParityReplace = “"

Listing 4-1: Code for the template application’s Main form. (Sheet 2 of 5)

Serial Port Complete 57

Chapter 4

‘Properties related to transmitting:
MSComml .OutBufferSize = 1024

‘Generate no transmit OnComm event:

MSComml .SThreshold = 0

‘Generate an OnComm event when the transmit buffer
‘has SThreshold bytes or fewer:

*MSComml .SThreshold = 512

‘Handshaking options:

MSComml .Handshaking = comNone
‘MSComml .Handshaking = comXOnXoff
‘MSComml .Handshaking comRTS
‘MSComml .Handshaking comRTSXOnXOff

‘Open the port.

If MSComml.PortOpen = False then
MSComml . PortOpen = True

End If

‘Return success or failure

fncInitializeComPort = MSComml.PortOpen

End Function

Listing 4-1: Code for the template application’s Main form. (Sheet 3 of 5)

58 Serial Port Complete

PC Programming

Public Sub MSComml_OnComm ()
‘*Handles all Comm events
Dim ComEventMessage As String
Select Case MSComml.CommEvent
‘Handle each event or error by placing
‘code below each case statement
‘*Events
Case comEvCD
ComEventMessage = "“Change in the CD line.”
Case comEvVCTS
ComEventMessage = “Change in the CTS line.”
Case comEvVDSR
ComEventMessage = “Change in the DSR line.”
Case comEvRing
ComEventMessage = "“Change in the RI line.”
Case comEvReceive
ComEventMessage = _
“"Receive buffer has RThreshold number of characters.”
Case comEvSend
ComEventMessage = _
“Transmit buffer has SThreshold number of characters.”
Case comEVEOF

ComEventMessage = “EOF character (1Ah) received.”
‘*Errors
Case comEventBreak

ComEventMessage = “A Break was received.”
Case comEventCDTO

ComEventMessage = “CD (RLSD) Timeout.”
Case comEventCTSTO

ComEventMessage = “CTS Timeout.”
Case comEventDSRTO

ComEventMessage = “DSR Timeout.”
Case comEventFrame

ComEventMessage = “Framing Error”
Case comEventOverrun

ComEventMessage = “Overrun; data Lost.”
Case comEventRxOver

ComEventMessage = “Receive buffer overflow.”
Case comEventRxParity

ComEventMessage = “Parity Error.”
Case comEventTxFull

ComEventMessage = “Transmit buffer full.”
Case comEventDCB

ComEventMessage = "“Unexpected error retrieving DCB.”

End Select

Listing 4-1: Code for the template application’s Main form. (Sheet 4 of 5)

Serial Port Complete 59

Chapter 4

‘Use for debugging:
‘Debug.Print ComEventMessage
End Sub

Listing 4-1: Code for the template application’s Main form. (Sheet 5 of 5)

The OnComm routine uses a Select Case structure to detect the Comm event.
An application can place whatever code is appropriate code under each event. For
use in debugging, a ComEventMessage string variable contains a description
of each error.

The fncInitializeComPort function opens the selected COM port and sets
its properties. An application can use this routine to configure the port as needed.

General Routines

60

Listing 4-2 includes general routines that might be used by a program that
accesses a serial port. Some of the routines access controls and variables on the
forms in the template, but other than this, the routines are independent of a partic-
ular application.

The routines relate to finding ports, timing issues, and activities to perform on
starting up and shutting down the application. The listing also includes many con-
stant and API function declarations from the win32api.txt file included with
Visual Basic.

Finding Ports

An application that uses MSComm doesn’t have to know anything about a port
except its name, which is simply COM1, COM2, and so on up. In most cases, the
application doesn’t have to know the port’s address or the assigned IRQ line.
because MSComm handles these details. But it is useful for an application to
know what ports are available in a system, so it can offer users a choice. The rou-
tines offer two ways to find ports.

The FindPorts routine detects ports by trying to open all ports from COMI

through COM16. If the port opens or returns a Port In Use error, it exists. The
routine adds the name of each port found to the Commports array.

The routine fncGetHighestComPortNumber accomplishes the same thing
in another way, by using the EscapeComFunction API call to find the number
of the highest installed port.

Serial Port Complete

PC Programming

Option Explicit

‘General routines used by applications

‘that access the serial port.

‘Some routines access forms and variables in template.vbp.

‘The following constants are from win32api.txt:
‘Constants used in DCB access

‘Parity

Global Const NOPARITY = 0
Global Const ODDPARITY = 1
Global Const EVENPARITY = 2
Global Const MARKPARITY = 3
Global Const SPACEPARITY = 4
‘Stop bits

Global Const ONESTOPBIT = 0
Global Const ONESSTOPBITS = 1
Global Const TWOSTOPBITS = 2
‘Global Const IGNORE = 0
‘Global Const INFINITE = &HFFFF
‘Errors

Global Const CE_RXOVER = &HI1
Global Const CE_OVERRUN = &H2
Global Const CE_RXPARITY = &H4
Global Const CE_FRAME = &HS
Global Const CE_BREAK = &H10
Global Const CE_CTSTO = &H20
Global Const CE_DSRTO = &H40
Global Const CE_RLSDTO = &H80
Global Const CE_TXFULL = &H100
Global Const CE_PTO = &H200
Global Const CE_IOE = &H400
Global Const CE_DNS = &H800
Global Const CE_OOP = &H1000
Global Const CE_MODE = &H8000

Listing 4-2: General-purpose routines for programs that access serial ports.

(Sheet 1

of 14)

Serial Port Complete

Chapter 4

Global Const IE _BADID = (-1)
Global Const IE OPEN = (-2)
Global Const IE NOPEN = (-3)
Global Const IE_MEMORY = (-4)
Global Const IE_DEFAULT = (-5)
Global Const IE_HARDWARE (-10)
Global Const IE BYTESIZE (-11)
Global Const IE_BAUDRATE (-12)

‘CommEventMask bits

Global Const EV_RXCHAR = &H1
Global Const EV_RXFLAG = &H2
Global Const EV_TXEMPTY = &H4
Global Const EV_CTS = &HS8
Global Const EV_DSR = &H10
Global Const EV_RLSD = &H20
Global Const EV_BREAK = &H40
Global Const EV_ERR = &H80
Global Const EV_RING = &H100
Global Const EV_PERR = &H200
Global Const EV_CTSS &H400
Global Const EV_DSRS = &H800
Global Const EV_RLSDS = &H1000

‘EscapeCommFunction values
Global Const SETXOFF = 1
Global Const SETXON =
Global Const SETRTS =
Global Const CLRRTS =
Global Const SETDTR =
Global Const CLRDTR =
Global Const RESETDEV 7
Global Const GETMAXLPT 8
Global Const GETMAXCOM = 9
Global Const GETBASEIRQ = 10

(o2 2 B = VS R 8

Listing 4-2: General-purpose routines for programs that access serial ports.
(Sheet 2 of 14)

62 Serial Port Complete

PC Programming

‘Bit rates

Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global

Global
Global
Global
Global
Global
Global
Global
Global
Global
Global
Global

N DTR
Public
Public
Public

‘' RTS
Public
Public
Public
Public

Const CBR_110 = &HFF10
Const CBR_300 = &HFF11
Const CBR_600 = &HFF12
Const CBR_1200 = &HFF13
Const CBR_2400 = &HFF14
Const CBR_4800 = &HFF15
Const CBR_9600 = &HFF16
Const CBR_14400 = &HFF17
Const CBR_19200 = &HFF18
Const CBR_38400 = &HFF1B
Const CBR_56000 = &HFF1F
Const CBR_128000 = &HFF23
Const CBR_256000 = &HFF27
Const CN_RECEIVE = &H1
Const CN_TRANSMIT = &H2
Const CN_EVENT = &H4

Const CSTF_CTSHOLD = &H1
Const CSTF_DSRHOLD = &H2
Const CSTF_RLSDHOLD &H4
Const CSTF_XOFFHOLD = &HS8
Const CSTF_XOFFSENT = &HI10
Const CSTF_EOF = &H20
Const CSTF_TXIM = &H40
Const LPTx = &HS80

Control Flow Values.

Const DTR_CONTROL_DISABLE = &HO
Const DTR_CONTROL_ENABLE = &H1
Const DTR_CONTROL_HANDSHAKE = &H2

Control Flow Values

Const RTS_CONTROL_DISABLE = &HO
Const RTS_CONTROL_ENABLE = &H1
Const RTS_CONTROL_HANDSHAKE = &H2
Const RTS_CONTROL_TOGGLE = &H3

Listing 4-2: General-purpose routines for programs that access serial ports.
(Sheet 3 of 14)

Serial Port Complete

63

Chapter 4

*‘DCB Bits wvalues:

Public Const FLAG_ fBinary& = &H1

Public Const FLAG fParity& = &H2

Public Const FLAG_ fOutxCtsFlow = &H4
Public Const FLAG_ fOutxDsrFlow = &HS8
Public Const FLAG_ fDtrControl = &H30
Public Const FLAG fDsrSensitivity = &H40
Public Const FLAG_ fTXContinueOnXoff = &HS80
Public Const FLAG fOutX = &H100

Public Const FLAG fInX = &H200

Public Const FLAG_ fErrorChar = &H400
Public Const FLAG_fNull = &H800

Public Const FLAG fRtsControl = &H3000
Public Const FLAG fAbortOnError = &H4000

‘End of win32api.txt constants.

Public Type COMMTIMEOQUTS
ReadIntervalTimeout As Long
ReadTotalTimoutMultiplier As Long
ReadTotalTimeoutConstant As Long
WriteTotalTimeoutMultiplier As Long
WriteTotalTimeoutConstant As Long

End Type

Public Type dcbType
DCBlength As Long
BaudRate As Long
Bitsl As Long
wReserved As Integer
XonLim As Integer
Xofflim As Integer
ByteSize As Byte
Parity As Byte
StopBits As Byte
XonChar As Byte
XoffChar As Byte
ErrorChar As Byte
EofChar As Byte
EvtChar As Byte
wReserved2 As Integer

End Type

Listing 4-2: General-purpose routines for programs that access serial ports.

(Sheet 4 of 14)

64

Serial Port Complete

PC Programming

‘Global variables & constants used by the application:
Public Const ProjectName = “SerialPortComplete”

Public BitRate As Long

Public Buffer As Variant
Public CommDCB As dcbType
Public CommPorts() As String
Public OneByteDelay As Single
Public PortExists As Boolean
Public PortInUse As Boolean
Public PortNumber As Integer
Public PortOpen As Boolean
Public SaveDatalInFile As Boolean
Public TimedOut As Boolean
Public ValidPort As Boolean

Listing 4-2: General-purpose routines for programs that access serial ports.
(Sheet 5 of 14)

Serial Port Complete 65

Chapter 4

‘API declares:

Public Declare Function apiGetCommState _
Lib “kernel32” _
Alias “GetCommState”
(ByVal nCid As Long,
1pDCB As dcbType)
As Long

Public Declare Function apiSetCommState _
Lib “kernel32” _
Alias “SetCommState” _
(ByVal hCommDev As Long,
1pDCB As dcbType)
As Long

Public Declare Function EscapeCommFunction _
Lib “kernel32” _
(ByVal nCid As Long,
ByVal nFunc As Long)
As Long

Public Declare Function GetCommTimeouts _
Lib “kernel32” _
(ByVal hFile As Long, _
lpCommTimeouts As COMMTIMEOUTS)
As Long

Public Declare Function SetCommTimeouts _
Lib “kernel32” _
(ByVal hFile As Long, _
lpCommTimeouts As COMMTIMEOUTS)
As Long

Public Declare Function timeGetTime _
Lib “winmm.dll” ()
As Long

Public Declare Function TransmitCommChar _
Lib “kernel32” _
(ByVal nCid As Long,
ByVal cChar As Byte)
As Long

Listing 4-2: General-purpose routines for programs that access serial ports.
(Sheet 6 of 14)

66 Serial Port Complete

PC Programming

Public Function fncAddChecksumToAsciiHexString _
(UserString As String)
As String
‘Calculates a checksum for a string containing
‘a series bytes in Ascii Hex format.
‘Places the checksum in Ascii Hex format
‘at the end of the string.
Dim Count As Integer
Dim Sum As Long
Dim Checksum As Byte
Dim ChecksumAsAsciiHex As String
‘Add the values of each Ascii Hex pair:
For Count = 1 To Len(UserString) - 1 Step 2
Sum = Sum + Val (“*&h” & Mid(UserString, Count, 2))
Next Count
‘The checksum is the low byte of the sum.
Checksum = Sum - (CInt(Sum / 256)) * 256
ChecksumAsAsciiHex = fncByteToAsciiHex (Checksum)
*Add the checksum to the end of the string.
fncAddChecksumToAsciiHexString = UserString & ChecksumAsAsciiHex
End Function

Public Function fncByteToAsciiHex _
(ByteToConvert As Byte)
As String
‘Converts a byte to a 2-character ASCII Hex string
Dim AsciiHex As String
AsciiHex = Hex$ (ByteToConvert)

If Len(AsciiHex) = 1 Then
AsciiHex = “0” & AsciiHex
End If

fncByteToAsciiHex = AsciiHex
End Function

Public Function fncDisplayDateAndTime () As String
‘Date and time formatting.
fncDisplayDateAndTime = _
CStr (Format (Date, "“General Date”)) & “, “ &
(Format (Time, “Long Time”))
End Function

Listing 4-2: General-purpose routines for programs that access serial ports.
(Sheet 7 of 14)

Serial Port Complete 67

Chapter 4

Public Function fncGetHighestComPortNumber () As Integer
‘Returns the number of the system’s highest COM port.
‘Also shows how to use the EscapeCommFunction API call.
Dim ClosePortOnExit As Boolean
Dim PortCount As Long
Dim handle As Long
‘The API call requires a CommID of an open port.
If frmMain.MSComml.PortOpen = False Then
frmMain.MSComml.PortOpen = True
ClosePortOnExit = True
Else
ClosePortOnExit = False
End If
handle = frmMain.MSComml.CommID
PortCount = GETMAXCOM
‘Add 1 because EscapeCommFunction begins counting at 0.
fncGetHighestComPortNumber = _
EscapeCommFunction (handle, PortCount) + 1
If ClosePortOnExit = True Then
frmMain.MSComml . PortOpen = False
End If
End Function

Public Function fncOneByteDelay(BitRate As Long) As Single
‘Calculate the time in milliseconds to transmit

‘8 bits + 1 Start & 1 Stop bit.

Dim DelayTime as Integer

DelayTime = 10000 / BitRate

fncOneByteDelay = DelayTime

End Function

Listing 4-2: General-purpose routines for programs that access serial ports.
(Sheet 8 of 14)

68 Serial Port Complete

PC Programming

Public Function fncVerifyChecksum _
(UserString As String)
As Boolean
‘Verifies data by comparing a received checksum
‘to the calculated wvalue.
‘UserString is a series of bytes in Ascii Hex format,
‘ending in a checksum.
Dim Count As Integer
Dim Sum As Long
Dim Checksum As Byte
Dim ChecksumAsAsciiHex As String
‘Add the values of each Ascii Hex pair:
For Count = 1 To Len(UserString) - 3 Step 2
Sum = Sum + Val (“*&h” & Mid(UserString, Count, 2))
Next Count
‘The checksum is the low byte of the sum.
Checksum = Sum - (CInt(Sum / 256)) * 256
ChecksumAsAsciiHex = fncByteToAsciiHex (Checksum)
‘Compare the calculated checksum to the received checksum.

If Checksum = Val (“&h” & (Right (UserString, 2))) Then
fncVerifyChecksum = True

Else
fncVerifyChecksum = False

End If

End Function

Public Sub Delay(DelayInMilliseconds As Single)
‘Delay timer with approximately l-msec. resolution.
‘Uses the API function timeGetTime.
‘Rolls over 24 days after the last Windows startup.
Dim Timeout As Single
Timeout = DelayInMilliseconds + timeGetTime ()
Do Until timeGetTime() =>= Timeout

DoEvents
Loop
End Sub

Listing 4-2: General-purpose routines for programs that access serial ports.
(Sheet 9 of 14)

Serial Port Complete 69

Chapter 4

Public Sub EditDCB()

‘Enables changes to a port’s DCB.

‘The port must be open.

Dim Success As Boolean

Dim PortID As Long

PortID = frmMain.MSComml.CommID

Success = apiGetCommState (PortID, CommDCB)

‘To change a value, uncomment and revise the appropriate line:
‘CommDCB.BaudRate = 2400

‘*CommDCB.Bitsl = &H11l

‘CommDCB.XonLim = 64

‘CommDCB.XoffLim = 64

‘CommDCB.ByteSize = 8
‘CommDCB.Parity = 0
‘CommDCB.StopBits = 0
*CommDCB. XonChar = &H11
*CommDCB.XoffChar = &H13
*CommDCB . ErrorChar = 0
‘CommDCB.EofChar = &H1A
‘CommDCB.EvtChar = 0

‘Write the values to the DCB.
Success = apiSetCommState (PortID, CommDCB)

‘Read the wvalues back to verify changes.
Success = apiGetCommState (PortID, CommDCB)

Debug.Print "“DCBlength: “, Hex$ (CommDCB.DCBlength)
Debug.Print "“BaudRate: %, CommDCB.BaudRate
Debug.Print “Bitsl: “, Hex$ (CommDCB.Bitsl); “h”
Debug.Print “wReserved: “, Hex$ (CommDCB.wReserved)
Debug.Print “XonLim: “, CommDCB.XonLim

Debug.Print “XoffLim: “, CommDCB.XoffLim

Debug.Print "“ByteSize: “, CommDCB.ByteSize
Debug.Print “Parity: “, CommDCB.Parity

Debug.Print “StopBits: “, CommDCB.StopBits
Debug.Print “XonChar: “, Hex$ (CommDCB.ZXonChar); “h”
Debug.Print “XoffChar: “, Hex$ (CommDCB.XoffChar); “h”
Debug.Print “ErrorChar: “, Hex$ (CommDCB.ErrorChar); “h”
Debug.Print “EofChar: “, Hex$ (CommDCB.EcfChar); “h”
Debug.Print “EvtChar: “, Hex$ (CommDCB.EvtChar); “h”
Debug.Print “wReserved2: “, Hex$ (CommDCB.wReserved2)
End Sub

Listing 4-2: General-purpose routines for programs that access serial ports.
(Sheet 10 of 14)

70 Serial Port Complete

PC Programming

Public Sub FindPorts()

‘Find Comm ports by trying to open each.

‘Each port must support the current settings (bit rate, etc.).

Dim Count As Integer: Dim NumberOfPorts As Integer

Dim SavedPortNumber As Integer: Dim SaveCurrentPort As Boolean

ReDim CommPorts(l To 16)

On Error Resume Next

SaveCurrentPort = False: NumberOfPorts = 0

‘If a port is already open, reopen it on exiting.

If frmMain.MSComml.PortOpen = True Then
frmMain.MSComml.PortOpen = False
SavedPortNumber = PortNumber
SaveCurrentPort = True

End If

For Count = 1 To 16

frmMain.MSComml . CommPort = Count
frmMain.MSComml . PortOpen True
If Err.Number = 8005 Then
‘The port is already open & exists, so add it to the list.
NumberQfPorts = NumberOfPorts + 1
CommPorts (NumberOfPorts) = “COM” & CStr (Count)
If SavedPortNumber = Count then
frmMain.MSComml.PortOpen = False
End If
ElseIf frmMain.MSComml.PortOpen = True Then
‘If the port opens, it exists.
‘Close it and add to the list.
frmMain.MSComml.PortOpen = False
NumberQfPorts = NumberOfPorts + 1
CommPorts (NumberOfPorts) = “COM” & CStr (Count)
Err.Clear
End If

Next Count

On Error GoTo 0 ‘Disable the error handler

ReDim Preserve CommPorts (1l To NumberOfPorts)

If SaveCurrentPort = True Then

PortNumber = SavedPortNumber
frmMain.MSComml . CommPort = PortNumber
If frmMain.MSComml.PortOpen = False Then
frmMain.MSComml.PortOpen = True
EndIf
End If
End Sub

Listing 4-2: General-purpose routines for programs that access serial ports.
(Sheet 11 of 14)

Serial Port Complete 71

Chapter 4

Public Sub GetNewSettings()

‘Read and store user changes in the Setup menu.

BitRate = Val (frmPortSettings.cboBitRate.Text)
PortNumber = Val (Right (frmPortSettings.cboPort.Text, 1))
Call frmMain.fncInitializeComPort (BitRate, PortNumber)
End Sub

Public Sub GetSettings ()

‘Get user settings from last time.

BitRate = GetSetting(ProjectName, “Startup”, "“BitRate”, 1200)
PortNumber = GetSetting(ProjectName, “Startup”, “PortNumber”, 1)
‘Defaults in case values retrieved are invalid:

If BitRate < 300 Then BitRate = 9600

If PortNumber < 1 Then PortNumber = 1

End Sub

Sub ImmediateTransmit (ByteToSend As Byte)

‘Places a byte at the top of the transmit buffer

‘for immediate sending.

Dim Success As Boolean

Success = TransmitCommChar (frmMain.MSComml.CommID, ByteToSend)
End Sub

Public Sub LowResDelay (DelayInMilliseconds As Single)
'Uses the system timer, with resolution of about 56 milliseconds.
Dim Timeout As Single
'Add the delay to the current time.
Timeout = Timer + DelayInMilliseconds / 1000
If Timeout > 86399 Then
'If the end of the delay spans midnight,
"'subtract 24 hrs. from the Timeout count:
Timeout = Timeout - 86399
'and wait for midnight:
Do Until Timer < 100
DoEvents
Loop
End If
'Wait for the Timeout count.
Do Until Timer >= Timeout
DoEvents
Loop
End Sub

Listing 4-2: General-purpose routines for programs that access serial ports.
(Sheet 12 of 14)

72 Serial Port Complete

PC Programming

Public Sub SaveSettings()
‘Save user settings for next time.

SaveSetting ProjectName, "“Startup”, “BitRate”, BitRate
SaveSetting ProjectName, "“Startup”, “PortNumber”, PortNumber
End Sub

Public Sub ShutDown ()

‘*Close the port.

If frmMain.MSComml.PortOpen = True Then
frmMain.MSComml.PortOpen = False

End If

Call SaveSettings

End Sub

Public Sub Startup/()
Call GetSettings
PortOpen = frmMain.fncInitializeComPort (BitRate, PortNumber)
Call frmPortSettings.SetBitRateComboBox
Call frmPortSettings.SetPortComboBox
Call VbSetCommTimeouts (BitRate)
If ValidPort = False Then
frmPortSettings.Show
Else
frmPortSettings.Hide
End If
End Sub

Listing 4-2: General-purpose routines for programs that access serial ports.
(Sheet 13 of 14)

Serial Port Complete 73

Chapter 4

Public Sub VbSetCommTimeouts (BitRate As Long)
‘The default timeout for serial-port operations is 5 seconds.
‘This routine sets the timeout so that
‘the requested number of bytes can transmit or be read
‘at the current bit rate.
‘Uses the GetCommTimeocuts and SetCommTimeouts API functions.
Dim Timeouts As COMMTIMEQUTS
Dim Success As Long
Dim OneByteTimeout As Long
Success = GetCommTimeouts (frmMain.MSComml.CommID, Timeouts)
OneByteTimeout = CLng(fncOneByteDelay(BitRate))
If frmMain.MSComml.PortOpen = True Then
‘All values are milliseconds
‘Maximum time between two received characters:
Timeouts.ReadIntervalTimeout = OneByteTimeout
‘Maximum time for a character to arrive:
Timeouts.ReadTotalTimoutMultiplier = OneByteTimeout
‘Provide enough time for the bytes to arrive + 1 second.
Timeouts.ReadTotalTimeoutConstant = 1000
‘Maximum time for a character to transmit:
Timeouts.WriteTotalTimeoutMultiplier = OneByteTimeout
‘Provide enough time for the bytes to transmit + 1 second.
Timeouts.WriteTotalTimecutConstant = 1000
Success = SetCommTimeouts (frmMain.MSComml.CommID, Timeouts)
End If
‘For debugging/verifying:
‘Success = GetCommTimeouts (frmMain.MSComml.CommID, Timeouts)
‘Debug.Print Timeouts.ReadIntervalTimeout
‘Debug.Print Timeouts.ReadTotalTimoutMultiplier
‘Debug.Print Timeouts.ReadTotalTimeoutConstant
‘Debug.Print Timeouts.WriteTotalTimeoutMultiplier
‘Debug.Print Timeouts.WriteTotalTimeoutConstant
End Sub

Listing 4-2: General-purpose routines for programs that access serial ports.
(Sheet 14 of 14)

Timing Routines

Many of the routines relate to timing issues. Applications that use serial commu-
nications may use timing to determine when a transmission is finished or when to
quit waiting for a response from a remote computer. Windows also has timeout

settings that an application may adjust.

General-purpose Delays. Two general-purpose routines are useful any time the
code needs to time a specific delay. For example, an application may need to

74 Serial Port Complete

PC Programming

wait for an event but give up if nothing happens after a specified wait, or it may
need to output a pulse of a specific width.

One routine uses an API call and has resolution of about 1 millisecond. The other
uses Visual Basic’s Timer function, with resolution of about 56 milliseconds.

The Delay routine waits the requested number of milliseconds. The routine uses
the timeGetTime API function, which is part of Windows’ multimedia sub-
system. The function has a resolution of 1 millisecond. The accuracy of the rou-
tine isn’t guaranteed, however, because Windows can cause delays that result in
the timed delay being unpredictably longer than what was requested. Still, the rou-
tine is fine for generating delays that must be a minimum value, but don’t have a
rigid maximum.

The timeGetTime function returns the number of seconds since Windows was
started. It overflows after 24 days, when the value increments from the maximum
positive value, 7FFFFFFFh, to the negative value 80000000h. A delay that begins
just before a rollover won’t end as expected, so if you expect an application to run
continuously, without rebooting, you should add code that handles rollovers. (The
only problem is that you have to wait 24 days to test the code! While waiting, you
can test by simulating t imeGetTime’s count with a software timer.)

An alternative timing routine is LowResDelay, which uses the system timer to
generate a delay. The system timer operates at 18 cycles/second, so the resolution
of this routine is about 56 milliseconds. As with the previous routine, Windows
may cause delays that are longer than the specified time.

LowResDelay uses the Timer function, which returns the number of millisec-
onds since midnight. The code handles rollovers, which occur when a delay spans
midnight. Another approach is to use a Timer control, which doesn’t have mid-
night rollovers, but requires a cascading count for delays longer than 65 seconds.

One-byte Delay. The fncOneByteDelay routine calculates the time required
to transmit one byte. This is useful in some half-duplex links, where the computer
must switch off the transmitter after sending data, to allow another computer to
transmit. The delay ensures that all of the bits in the byte have transmitted. The
VbSetCommTimeouts routine also uses this delay time.

Handling Comm Timeouts. The Set CommTimeouts API function determines
how long Windows’ communications driver will allow to complete an Output or
Input operation. The default for each is five seconds. When a timeout occurs,
the operation quits, whether or not it has completed, and with no indication of fail-
ure. Received data will remain in the buffer until the application reads it, but in a
transmit operation, the transmit buffer clears on timeout. This is not a desirable
situation!

Serial Port Complete 75

Chapter 4

76

To prevent timeouts, use SetCommTimeouts to set values longer than the long-
est expected time the application will need to complete send and receive opera-
tions. The VbSetCommTimeouts routine can accomplish this by setting the
timeouts to the amount of time required to transfer the data at the current bit rate,
plus 1 second. To set the timeouts to a fixed value, set all of the parameters to 0
except ReadTotalTimeoutConstant and WriteTotalTimeoutCon-
stant.

Hardware handshaking can slow the transfers as well, so don’t forget to take that
into account if necessary. For example, if the PC is communicating with a micro-
controller that may take seconds to toggle a handshaking signal, add this time to
the timeout.

Each Input and Output statement starts a new timeout clock, so if an applica-
tion transfers small blocks of bytes and the receiving PC has no large handshaking
delays, the default five-second timeouts should cause no problems.

When receiving, you can prevent timeout problems by checking the InBuffer-
Count property and executing the Input statement only when the expected data
is present. This is good a practice anyway, because Visual Basic returns an error
on attempting to read an empty buffer.

To disable all timeouts, set all of the values to 0.

Time Formatting. The final routine relating to timing is fncDisplayDate-
AndTime, which formats date and time information. The application might use
the formatting in displaying or storing the times of transfers.

Handling User Settings

Other routines in the module help to ensure a graceful startup and shutdown of an
application. The Startup and Shutdown routines contain code that programs
execute on starting or ending a program. These are called by the main form’s
Load and Unload routines.

Shutdown calls the SaveSettings routine, which stores user settings in the
system registry. Startup calls the companion routine GetSettings, which
retrieves the settings the next time the program runs. Using these routines will
save users the tedium of re-selecting settings each time they run a program. The
template application stores only the current bit rate and port number. You can add
additional settings as appropriate. To save on registry clutter, all of the examples
in this book stores settings under the same appname: “SerialPortComplete”.

The GetNewSettings routine stores changes made by the user in the Setup
menu.

Serial Port Complete

PC Programming

Auto-detecting the Port to Use

When there are multiple serial ports, selecting the port to use in software can be a
hit-or-miss affair. Sometimes an application can free the user from having to
know this information by automatically detecting which port connects to the link
the program will access.

For example, when setting up a link, a computer can try to send a message on each
of its COM ports. The computer at the other end of the link watches for the mes-
sage and sends a reply to let the sending computer know when it’s found the port.
Or a link may use an unconventional handshake that’s easily detected.

The Basic Stamp’s editor software is an example of a link that autodetects which
port is connected to a Stamp. The software also includes an option to specify the
port manually, in the command line. This is always a good idea, for times when an
autodetect doesn’t work.

Error Checking

Two functions relate to calculating checksums for error checking. The function
fncAddChecksumToAsciiHexString calculates a checksum for a string
and appends it to the string. And fncVerifyChecksum compares a string to its
checksum and returns true if the checksum is the expected value.

Selecting a Port

Listing 4-3 has the code for the Port Settings form in Figure 4-1, which enables
users to select a port and bit rate. When the form loads, it calls FindPorts to
detect the available ports and selects the user’s previous port and bit-rate settings,
if any. A text box displays status or error messages.

Saving Data

Listing 4-4 has the code for the Data File form in Figure 4-1, which enables
users to select a file to store received data for later viewing or processing. The
Select File command button brings up a Common Dialog box for the user to select
or create a file. Option buttons determine whether the program overwrites or
appends to existing data in the file.

Accessing Files

Visual Basic offers several ways to read and write to files. Table 4-1 summarizes
the options. Which to select depends on how the data will be used. Data stored as

Serial Port Complete 77

Chapter 4

Option Explicit
‘Enables users to select a serial port and bit rate.

Private Sub cboBitRate_ Change ()
Call VbSetCommTimeouts (BitRate)
End Sub

Private Sub cmdCancel Click()
Hide
End Sub

Private Sub cmdOK Click()
'"The application's main form reads the new settings.
Call GetNewSettings
ValidPort = fncCheckForValidPort
If ValidPort = True Then
Hide
End If
End Sub

Private Sub Form Load()
Dim Count As Integer
Call FindPorts
‘Set default values if a retrieved setting is invalid.
‘Be sure the selected port exists.
PortExists = False
For Count = 1 To UBound (CommPorts())
‘Compare the selected port number with the names in CommPorts.

If “COM” & CStr (PortNumber) = CommPorts (Count) Then
PortExists = True
End If

Next Count
‘Display the Setup window if the retrieved port number is invalid,
‘or if the port is unavailable.
ValidPort = fncCheckForValidPort
If ValidPort = False Then
Show
End If
Call InitializePortComboBox
Call InitializeBitRateComboBox
End Sub

Listing 4-3: Code for the Port Settings form. (Sheet 1 of 3)

78 Serial Port Complete

PC Programming

Private Sub InitializeBitRateComboBox ()
cboBitRate.AddItem (“300")
cboBitRate.AddItem (“1200")
cboBitRate.AddItem (“2400")
cboBitRate.AddItem (“4800")
cboBitRate.AddItem (“9600")
cboBitRate.AddItem (“19200")
cboBitRate.AddItem (“57600")
cboBitRate.AddItem (“115200")

End Sub

Private Sub InitializePortComboBox ()

Dim Count as Integer

For Count = 1 To UBound (CommPorts())
cboPort .AddItem CommPorts (Count)

Next Count

End Sub

Public Function fncCheckForvValidPort ()
‘Find out if the selected port exists and is available.
‘If not, display the Setup window
‘to enable the user to select another.
fncCheckForvValidPort = True
If PortNumber < 1 Then
Show
cboPort.ListIndex = -1
txtStatus.Text = “Please select a COM port.”
fncCheckForvValidbPort = False
End If
If PortExists = False Then
Show
cboPort.ListIndex = -1

txtStatus.Text = “COM” & PortNumber & “ is unavailable.

select a different port.”
fncCheckForvValidbPort = False
End If
End Function

Please

Listing 4-3: Code for the Port Settings form. (Sheet 2 of 3)

Serial Port Complete

79

Chapter 4

Public Sub SetBitRateComboBox ()
‘Set the index of the BitRate combo box.
Do

cboBitRate.ListIndex = cboBitRate.ListIndex + 1
Loop Until Val (cboBitRate.Text) = BitRate _

Or cbhboBitRate.lListIndex = cboBitRate.ListCount - 1
End Sub

Public Sub SetPortComboBox ()
‘Set the index of the Port combo box.
‘Read the numeric characters in the name of the selected port:
*rcoMmiv, “CcomMz”", etc.
Do
cboPort.ListIndex = cboPort.ListIndex + 1
Loop Until _
Val (Right (cboPort.Text, (Len(cboPort.Text) - 3))) = PortNumber
Or cboPort.ListIndex = cboPort.ListCount - 1
End Sub

Listing 4-3: Code for the Port Settings form. (Sheet 3 of 3)

strings is easy to view, while binary data is more compact and suited for calcula-
tions. Visual Basic’s Help has more details on how to use each.

Other Ways to Access Serial Ports

MSComm isn’t the only way to access serial ports in Visual-Basic programs.
Alternatives include using API functions or using a DLL or other driver that
enables reading and writing directly to the port registers.

API Functions

The Windows API includes functions for serial communications. For the most
part, these duplicate the abilities of MSComm. There are two situations when you
might use API functions for serial communications: when MSComm or a similar
control isn’t available, or when you need to perform a function that MSComm
doesn’t support.

Where MSComm (or a third-party control) is an option, it’s almost always the
preferred choice. MSComm is simple to use because it’s designed specifically for

80 Serial Port Complete

PC Programming

Option Explicit
‘Enables the user to select a file for storing data.
Dim DataFile As String

Private Sub cmdOK Click()
Hide
If optDataFile(1l) .Value = True Then
If optAppendOrOverwrite(0) .Value = True Then
Open DataFile For Append As #2
Else
Open DataFile For Output As #2
End If
End If
End Sub

Private Sub cmdSelectFile Click()
cdlDataFile.Filter = “All files (*.x) |*_ x~
cdlDataFile.filename = DataFile
cdlDataFile.Flags = cdlOFNPathMustExist
cdlDataFile.Flags cdlOFNOverwritePrompt
cdlDataFile.Flags cdlOFNCreatePrompt
‘Get the selected file from the common dialog box.
cdlDataFile.ShowOpen
If cdlDataFile.filename <> ““ Then
‘Save the filename and path.
DataFile = cdlDataFile.filename
cmdOK.Enabled = True
Else
End If
End Sub

Private Sub Form Load/()
optDataFile (0) .Value = True
End Sub

Private Sub GetSettings/()
DataFile = GetSetting(ProjectName, “DataFile”, “DataFile”,
End Sub

w \\)

Listing 4-4: Code for selecting a file for storing data. (Sheet 1 of 2)

Serial Port Complete

81

Chapter 4

Private Sub optDataFile Click(Index As Integer)

‘Configure the display elements.

If optDataFile(0) .Value = True Then
optAppendOrOverwrite (0) .Enabled
optAppendOrOverwrite (1) .Enabled
cmdSelectFile.Enabled = False
frmMain.SaveDataInFile = False
cmdOK.Enabled = True

Else
optAppendOrOverwrite (0) .Enabled = True
optAppendOrOverwrite (1) .Enabled = True
optAppendOrOverwrite (0) .Value = True
cmdSelectFile.Enabled = True
frmMain.SaveDataInFile = True
cmdOK.Enabled = False
‘Bring up the dialog box to select a file.
cmdSelectFile.Value = True

End If

End Sub

False
False

Private Sub SaveSettings()
SaveSetting ProjectName, "“DataFile”, “DataFile”, DataFile
End Sub

Listing 4-4: Code for selecting a file for storing data. (Sheet 2 of 2)

use with Visual Basic, and its performance is as good or better than using API
calls.

For situations that do require API calls, Visual Basic includes win32api.txt, a file
that contains Visual-Basic declarations for API functions and the many constants
they use. Each API call in an application must have a declaration.

But successful use of API functions requires knowing much more than you can
glean from the declarations alone. Windows has precise and unyielding require-
ments relating to the size, structure, and location of the values passed to and from
API functions. Variable types don’t always correspond to Visual Basic’s conven-
tions, and the required syntax is often not at all obvious.

In this book, I provide only an overview of API functions relating to serial com-
munications, plus a few examples of routines that do things that aren’t available
from MSComm. If you want to know more about API programming, the simplest
way to get started is with a reference, such as Daniel Appleman’s Visual Basic 5.0
Programming Guide to the Win32 API, which includes code for a serial link using
API functions. Another excellent reference is Richard Grier’s Visual Basic Pro-

82 Serial Port Complete

Table 4-1: Visual-Basic options for reading and writing to files.

PC Programming

Syntax |Description |Use With
For Writing to Files:
Print # Can insert spaces or tabs between items. Input,
LineInput#
Put Writes raw data to the specified record or byte [Get
number in the file.
Write # Adds comma delimiters, quotation marks around |Input #
strings, and a carriage return/linefeed at the end of
each output list.
For Reading from Files:
Get Reads a single record or byte into a variable Put
Input Returns a string. Print #,Put
InputB Returns byte data from a text file. Print #,Put
Input # Reads data into variables. Write #
Line Input # |Reads one line and assigns it to a string. Print #

Serial Port Complete

grammer’s Guide to Serial Communications, which includes serial-port routines
using API functions and many other useful examples and tips for use with
MSComm.

Table 4-2 lists 32-bit API functions that relate to serial communications. (The
16-bit API is somewhat different.) The functions relate to configuring a port, read-
ing and writing to it, and setting and detecting events at a port.

Windows defines a structure called a device control block (DCB) that holds port
settings. Table 4-3 lists the fields contained in the DCB and their functions. Table
4-4 lists the functions of the bits in the DCB’s Bits field. Most of these correspond
to MSComm’s properties.

Editing the Device Control Block

Listing 4-2’s EA1tDCB routine enables you to change the information in a port’s
DCB. The routine reads the current values into a DCB structure. A series of com-
mented-out statements write to each element. To change a value, uncomment its
statement and enter the desired value. The routine writes the values back to the
port’s DCB, then reads and displays them to verify any changes.

Quick Send

Another API function offers the ability to move a character to the front of the
transmit buffer so it transmits next. This could be useful if an application discov-
ers it needs to send a byte immediately, while in the middle of sending a large

83

Chapter 4

Table 4-2: 32-bit Windows API functions related to serial communications.

API Function

|Purpose

Opening and Closing Ports

CreateFile Opens a port.

CloseHandle Closes the port.

Configuring

BuildCommDCB Loads a device control block with settings.

BuildCommDCBANdTimeouts

Loads a device control block with settings and timeouts.

CommConfigDialog Displays a port-configuration dialog box.
CreateEvent Creates an event object for an overlapped structure.
GetCommConfig Retrieves configuration information in the DCB.
GetCommProperties Retrieves available settings for a port.
GetCommState Retrieves port configuration.
GetCommTimeouts Retrieves timeout settings.

GlobalAlloc Reserves a block of global memory for serial I/O.
GlobalFree Frees a reserved block of global memory.
SetCommConfig Configures a port.

SetCommMask Determines which events to detect.
SetCommState Sets configuration information in the DCB.
SetCommTimeouts Sets port timeouts.

SetupComm Sets recommended buffer sizes.

Transferring Data

ClearCommBreak

Ends transmission of break signal.

ClearCommError

Clears error and sets GetLastError

EscapeCommFunction

Allows explicit control of handshaking signals.

GetCommMask Retrieves status of requested events.
GetCommModemStatus Retrieves status of handshaking signals.
GetLastError Returns an error from a previous API call.
PurgeComm Clears buffers and pending operations.
ReadFile Reads data from a port.

SetCommBreak Transmits break signal.

TransmitComChar Places a character at the front of the output buffer.
WaitCommEvent Waits for an event specified with SetCommMask.

WaitForSingleObject

Waits for an object to be signaled or timeout.

WriteFile

Writes data to a port.

84

Serial Port Complete

PC Programming

Table 4-3: Serial port DCB fields.

Field Type |Description

DCBLength long Size of the DCB structure (78 bytes).

BaudRate long Bit rate.

Bits long Specifies various parameters. (see Table 4-4.)

wReserved integer |Reserved.

XonLim integer |Send Xon when the number of characters in the receive buffer is less
than this value.

XoffLim integer |Send Xoff when the number of characters in the receive buffer is
greater than this value.

ByteSize byte Bits per character (4-8).

Parity byte Constants: EVENPARITY, MARKPARITY, NOPARITY, ODDPAR-
ITY, SPACEPARITY.

StopBits byte Constants: ONESTOPBIT, ONESSTOPBITS, TWOSTOPBITS

XonChar byte |Xon character. Usually 11h.

XoffChar byte |Xoff character. Usually 13h.

ErrorChar byte Character to use on receive error.

EofChar byte Character to indicate end of data.

EvtChar byte |Character to signal an error.

wReserved| integer |Unused.

block of data. Listing 4-2’s ImmediateTransmit routine performs this func-
tion by calling the TransmitCommChar API function.

Direct Port Access

The most low-level way to access a serial port is to write directly to the port’s reg-
isters. Visual Basic doesn’t include the ability to access ports directly, but you can
add it. Under Windows 95 and 3.x, all you need is a DLL containing Inp and
Out routines and declarations that enable you to access the routines.

The disk that accompanies this book includes DLLs for use under Windows 3.x
and 95. Windows 95 programs can also use a VxD. Windows NT requires a ker-
nel-mode driver for port access. There are several shareware and commercial
sources for each of these.

Direct port access is useful if you want to do something that you can’t do with
MSComm or an API call, such as putting a port into loopback mode. You can also
do many of the same things MSComm does, such as setting the bit rate, number of
data bits, and parity type and sending and receiving data.

Serial Port Complete 85

Chapter 4

Table 4-4: Functions of bit flags.

Bit# |Name Description

0 fBinary Always 1 in W95. Indicates binary mode. Eof character does not signal
end of data.

1 fParity l=parity checking on.

O=parity checking off.

2 fOutxCtsFlow | 1=no transmit when CTS=0.
0=CTS ignored.

3 fOutxDsrFlow |1=no transmit when DSR=0.
0=DSR ignored.

4-5 fDtrControl DTR_CONTROL_DISABLE
DTR_CONTROL_ENABLE
DTR_CONTROL_HANDSHAKE

6 fDsrSensitivity | 1=ignore received bytes when DSR=0.
0=DSR has no effect.

7 fTxContin- 1=ignore Xoff.

ueOnXoff O=stop transmitting after receiving Xoff.

8 fOutX 1=use XOn/XOff protocol when transmitting.
0O=don’t use transmit Xon/Xoff.

9 fInX 1=use XOn/XOff protocol when receiving.

(O=don’t use receive Xon/Xoff.

10 fNull I=discard received Null characters (Chr(0)).
O=don’t discard Null characters.

11-12 |fRtsControl RTS_CONTROL_DISABLE=RTS Off.
RTS_CONTROL_ENABLE=RTS On.
RTS_CONTROL_HANDSHAKE=RTS On if receive buffer < 1/2 full,
Off if receive buffer > 3/4 full.
RTS_CONTROL_TOGGLE=RTS On if bytes in the receive buffer,
Off if receive buffer empty. (NT only)

13 fAbortOnError |1=abort Comm operations on error.
O=don’t abort on error

14-31 |(fDummy?2 Unused.

A system-level driver has the ability to prevent other applications from accessing
a port. However, MSComm doesn’t block direct access to a port’s addresses, so
reading and writing with a DLL is possible even if MSComm has opened the port.
To access a port directly, you need to know its base address. Although it’s not an
elegant way to do it, if you don’t have access to MSComm, you can even use Inp
and Out to read and write data at the port:

Dim BaseAdddress as Integer

Dim ByteToWrite as Integer

BaseAddress = &h2F8

ByteToWrite = &hAS

86 Serial Port Complete

PC Programming

‘Write a byte to the port:
Out BaseAddress, ByteToWrite
‘Read a byte at the port:
ByteRead = Inp (BaseAddress)

Inp and Out pass integers, but read and write 8-bit values at the serial port.

You can also use the DLL to read and write to any of the UART registers
described in Chapter 3.

Here is code to toggle the break signal from a port at 2F8h:

Dim LCR As Integer

Dim LCRAddress As Integer

Dim BaseAddress As Integer
BaseAddress = &H2F8

‘Set Break is bit 6 of LCR (line control register).
LCRAddress = BaseAddress + 3
‘Read the current value in LCR.
LCR = Inp(LCRAddress)

‘Set bit 6 high.

Out LCRAddress, LCR Or &H40
‘Set bit 6 low.

Out LCRAddress, LCR And &HBF

Using Older Basics

Most of this book concentrates on using version 5 of Visual Basic. However, Win-
dows 3.x applications must use an earlier version. And many DOS systems use
QuickBasic or a similar language. This book doesn’t cover every nuance of using
these languages in serial-port applications, but the following sections include
some of the differences to be aware of.

Visual Basic Versions

Like other programming languages, Visual Basic has evolved over time. Many of
the changes relate to the evolution of Windows itself. The switch from Windows
3.x to Windows 95 and NT included a switch from a 16-bit to 32-bit operating
system.

Windows 3.x is 16-bit, which means that it can run on a PC with a 16-bit data bus.
This includes machines with 80286 and higher CPUs. Windows 95, 98, and NT
are 32-bit operating systems and require the 32-bit data bus found on the 80386
and higher CPUs.

Serial Port Complete 87

Chapter 4

88

A 16-bit program can run under Windows 3.x, 95/98, or NT. A 32-bit program
requires a 32-bit operating system.

Version 3 of Visual Basic (VB3) creates 16-bit applications. Version 4 (VB4) was
the first to support 32-bit applications. The Professional version of VB4 straddled
both worlds, with the ability to create both 16- and 32-bit applications. The Stan-
dard version of VB4 created only the 32-bit applications. With Version 5 (VBS),
support for 16-bit programming was dropped entirely.

If you need to support systems running Windows 3.x, you need to use VB3 or
16-bit VB4. If you’re programming only for systems that use Windows 95 or later
or NT, you can use any version of Visual Basic.

One difference between 16- and 32-bit programs is that each uses a different Win-
dows API. A 16-bit application that uses API calls will probably require some
changes when upgrading to 32 bits. In particular, the serial-communications API
has many changes.

Changes in the String Variable Type

The 16- and 32-bit versions of Visual Basic each treat text characters differently.
The change has little effect on serial links that transfer text. However, because
16-bit programs have traditionally used string variables to store binary data, the
change does affect some applications that transfer binary data, especially if you're
upgrading a 16-bit application to 32 bits.

In 16-bit Visual Basic (and other older Basics), the String is the only 8-bit variable
type. Each String character is an 8-bit ANSI code. For this reason, string variables
became the method of choice for storing binary data. Applications used Mid and
similar string-manipulation statements and functions to store and retrieve bytes in
strings.
For example, this routine creates a string containing 256 bytes with values from 0
to 255:

Dim TestString as String

Dim Count as Integer

For Count = 0 to 255

Mid (TestString, Count) = Chr (Count)

Next Count
The Chr operator returns an ANSI code, which may be any value from 0 to 255.
In a 16-bit program, you can use ANSI strings any time you want to store bytes,
whether or not their values have anything to do with text strings. For example a
series of readings from an analog-to-digital converter consists of numeric values,
not text, but you can store the values as ANSI codes in a string.

Serial Port Complete

PC Programming

In 32-bit Visual Basic, the String variable type stores text characters as 16-bit
Unicodes, so storing binary data in strings is no longer convenient. The solution is
to use the new Byte variable type, introduced in VB4 and described earlier in this
chapter. However, VB4’s MSComm doesn’t have an InputMode property and
reads and writes only strings, so VBS is required for transferring byte arrays.
Although the 32-bit versions of Visual Basic use Unicode internally, MSComm
continues to send and receive text as ANSI, and Visual-Basic programs automati-
cally convert between the two. So even if one computer in a link uses ANSI and
the other uses Unicode, you can transfer text between them without having to
translate between formats. The only time a problem may arise is one computer
uses DBCS strings, which use a different 16-bit code.

The ANSI/Unicode difference can cause problems when upgrading an application
from 16-bit to 32-bit. If the 16-bit application stores binary data as string charac-
ters, each byte in the 32-bit version will use 16 bits rather than 8.

For compatibility, the characters for most of the first 128 and most of the next 128
Unicodes correspond to their matching ANSI codes (with the upper byte equal to
zero). The exceptions are the codes 82h-8Ch, 91h-9Ch, and 9Fh. Listing 4-5 is a
routine that compares the Unicode characters that correspond to the ANSI codes
from O to 255 and displays the differences. Because of these differences, convert-
ing from Unicode to ANSI is more complicated than just dropping the higher
byte.

If you need to work with ANSI strings in a 32-bit application, Visual Basic has
functions and statements to help. StrConv converts a Unicode string to ANSI, or
the reverse. And the various string-manipulation functions now have byte ver-
sions that treat the strings byte-by-byte: LeftB, MidB, RightB, LenB,and
SO on.

Accessing Ports under DOS

Some monitoring and control applications use DOS rather than Windows. A
machine dedicated to collecting or sending data for a specific task may not need
the abilities and features of Windows. Dedication to a single task means that
there’s no need for Windows’” multitasking. An application that runs with very lit-
tle or no operator intervention means that there’s no need for Windows’ visual
interface. And the hardware requirements for a DOS system are much less than
for Windows, so DOS is a good choice for older or simpler machines.

In these cases, you can access serial ports with Microsoft’s QuickBasic or similar
DOS Basics.

Serial Port Complete 89

Chapter 4

Dim
Dim
Dim
For

Count As Integer

AnsiValue As Integer

UnicodeValue As Integer

Count = 0 To 255

AnsiValue = Count

‘Chr gets the ANSI character;
‘AscW gets its Unicode equivalent.
UnicodeValue = AscW(Chr (Count))
'Display codes that differ.

If AnsiValue <> UnicodeValue Then

Debug.Print Chr (Count) & " = ANSI " & Hex$ (Count)
& " = Unicode " & Hex$ (AscW(Chr (Count)))

End If

Next Count

Listing 4-5: This routine displays the codes of characters whose ANSI codes and
Unicodes differ.

90

Accessing serial ports under QuickBasic and Visual Basic is actually similar in
many ways. QuickBasic’s Open COM statement performs the functions of many
of the properties in Visual Basic’s MSComm. Instead of setting object properties
to specify bit rate and other parameters, you set arguments in an option list.
QuickBasic’s On COM statement enables automatic detecting of incoming data,
much like MSComm’s comEvReceive event.

To find serial ports under DOS, you can read the addresses stored in the BIOS
data area, as described in Chapter 3. The Peek operator will read the addresses.

Most commercial DOS software that accesses serial ports controls the UART
directly. Another option is to use BIOS interrupt 14h, which has services to initial-
ize, send to, receive from, and read the status of the serial port. MS-DOS’s inter-
rupt 21h, functions 03h and 04h will also send to and receive from a serial port.
None of these options uses interrupts and all are limited in what they can control,
so they’re rarely used.

Serial Port Complete

Microcontroller Serial Ports

Microcontroller
Serial Ports

PCs aren’t the only computers that have asynchronous serial ports. Many micro-
controllers and embedded controllers have them as well. Serial ports are a handy
way for PCs and microcontrollers of all varieties to communicate with each other.

The features and abilities of microcontrollers’ serial ports vary. On inexpensive
8-bit microcontrollers, the ports tend to be stripped to essentials, though they may
include features that are useful in control circuits but not available in PCs. An
embedded PC may have one or more UARTS identical to those in PCs.

This book includes examples that use two microcontrollers: Parallax’s Basic
Stamp 11, based on Microchip’s 16C57 PIC, and the 8052-Basic, based on the
8052 microcontroller. Their serial ports differ in features and abilities, so together
they make a good introduction to microcontroller ports in general, even if these
aren’t what you end up using in a project.

The 8051 Family

The 8052-Basic is a member of the 8051 family, which has long been one of the
most popular microcontroller families. The original 8051 has an 8-bit data bus and

Serial Port Complete 91

Chapter 5

the ability to access 64 kilobytes each of program and data memory. The family
now includes dozens of alternatives, including high-speed varieties and chips with
more memory, a wider data bus, and other added features. From here on, I'll use
8051 to refer to the entire chip family.

The Serial Port

92

The 8051 includes an on-chip USART, which sends and receives both synchro-
nous and asynchronous serial data. The asynchronous interface is full duplex, with
dedicated transmit and receive pins on the chip. Each direction has a 1-byte buffer
and the port has a hardware interrupt.

The input and output are 5V TTL logic levels, so a converter chip or other circuit
is needed to convert to RS-232 or RS-485.

Unlike PCs, the 8051 doesn’t have built-in support for control and handshaking
lines, such as RTS/CTS and DTR/DSR. If you want to use these or other control
signals, you can program their functions in firmware, using any available port
bits.

Modes

The 8051°s serial port has four modes. Mode 1 is basic asynchronous communica-
tions using 1 Start bit, 8 data bits, and 1 Stop bit. With a 12-Mhz clock, the bit rate
can be as high as 62.5kbps.

Modes 2 and 3 support a ninth data bit that is especially useful for detecting
addresses in a network. Chapter 11 has more details on 9-bit network protocols.
The ninth data bit is an example of a feature found in many microcontroller ports,
but not on PCs’ serial ports. Mode 2 allows a faster bit rate, up to 1/32 of the clock
rate, while Mode 3 supports more bit rates.

The final mode supported by the 8051, Mode 0, enables using the port in synchro-
nous links. One line transmits a clock, and the other is used for both sending and
receiving data.

Interrupts

If the serial-port interrupt is enabled, an interrupt occurs during the Stop bit when-
ever a byte is sent or received. The firmware must read internal flags to determine
which event has occurred, and must clear the flag that was set. Instead of using
interrupts, the firmware may check periodically for incoming data and ensure
before transmitting that the transmit buffer is empty.

Serial Port Complete

Microcontroller Serial Ports

Registers

Several internal registers control and configure the serial communications. SBUF
holds received data and data to send. SCON selects the mode, enables the
receiver, holds the 9th data bit and interrupt flags, and determines how to use the
9th bit. A timer control register (TCON or T2CON) determines the bit rate. The IE

register enables the serial-port interrupt.

Interfacing Options

The 8051°s TX (serial transmit) output is weak, so even a short link will probably
require an external driver and buffer. For RS-232 links, a MAX232 or similar chip
will do the job, as described in Chapter 6.

The 8052-Basic

The 8052-Basic chip enables you to use Basic to write programs for the 8051 fam-
ily. The chip is an 8052, which is an enhanced 8051 with more ROM program
memory (8k), a second timer, and other enhancements. The 80C52-Basic is iden-
tical, except that it’s based on a CMOS 80C52.

The chip’s ROM contains a Basic-52 interpreter, a version of Basic designed for
use in microcontroller projects. If you’ve programmed in other variants of Basic,
the syntax of Basic-52 will be familiar in many ways. But Basic-52 is greatly sim-
plified compared even to DOS QuickBasic, because the interpreter resides in just
8K of ROM. But the language does include features that PC Basics don’t, such as
commands for EPROM programming.

The interpreter includes console routines for communications with a computer ter-
minal. These days, the terminal is most likely to be a PC running terminal-emula-
tion software such as Windows 95’s HyperTerminal. To use the terminal
interface, you connect the 8052-Basic’s serial port to the serial port of a PC or
other computer running terminal-emulation software. The console routines enable
you to use the PC’s keyboard and video display to communicate with the chip,
including writing, storing, running, and debugging programs. When debugging is
complete, you can disconnect the PC and the 8052-Basic will run the program on
its own.

If the application requires communications with a remote computer, you can keep
the link to the PC or use the serial port to communicate with a different CPU. The
remote computer can use terminal-emulation software, or it may use any custom
programming that understands Basic-52’s syntax rules.

Serial Port Complete 93

Chapter 5

Line Receiver

‘L Line Driver
— SRAM 80C52 —D;C‘ Serial 1/

-1 40m g with — Rr?‘;zgéA, 93'422.
2 3m I BASIC P al -485
n3 ww |- EEPROM ;
3 e with utiliies [—] interpreter // 8-12 .
: H g | T
ma a3m *INT1 3
LA H rmiE
1 a0 m | ADCO — T
E :% 2w | o7 Optional |~/2 g Analog Inputs (optional)
=3
- 14 rl | PBS @
"Rl 25 m | PB4 5-v Q
uie 258 |res Regulator -]
RL z3m | Pot +V (8-16 unregulated)
: 23 :? : GND Port A
32 kHz 12c 78
| Coprocessor
= an Port Bl
T RTC 78
7
PWM

Figure 5-1: Micromint’'s Domino module contains a complete 8052-Basic system.
(Images courtesy of Micromint.)

94

The interpreter also designates another port bit as a second, output-only serial
port, intended for use with a serial printer.

An 8052-Basic system requires external RAM for temporary data storage and
EEPROM, EPROM, or battery-backed RAM for program storage. Several ven-
dors offer printed-circuit boards with the 8052-Basic chip along with program and
data memory, an RS-232 interface, and other I/O bits. Some products use
enhanced versions of the interpreter. Figure 5-1 and Figure 5-2 show examples of
8052-Basic systems. Micromint’s Domino is a complete 80C52-Basic system in a
40-pin package. The Micro-485 from Blue Earth Research is another compact
80C52-Basic system. It resides on a small circuit board between two 25-pin D-sub
connectors and has an RS-485 interface. The Micro-440e is similar, but with an
RS-232 interface.

Basic compilers are also available for the 8051 family. Compiled programs are
faster and allow the use of a cheaper, ROMless 8031 or 8032. Figure 5-3 shows
Systronix’s HSM/KISS board. The board holds Dallas Semiconductor’s 80C320
High-Speed Microcontroller, which is an enhanced 8051 with two serial ports.
The board comes with a serial program loader, and Systronix also offers a Basic
compiler for the chip.

Serial Port Complete

Microcontroller Serial Ports

:BhS]C s
|IMONS1

32K
EPROM

4 CHANNEL
12-BIT A/D
CONVERTER

Figure 5-2: Blue Earth Research’s Micro-485 and Micro-440e include both a Basic
interpreter and a monitor program.(Images courtesy of Blue Earth Research.)

Communications Abilities

The Basic-52 language includes a variety of features for serial communications.
These make it easy to write programs that exchange serial data without having to
know the details of the chip’s port registers. The statements enable the chip to
communicate directly with a user via Basic-52’s terminal interface, or to
exchange information with another program running on a remote computer with
or without user intervention.

Systronix’s Basic-52 Programming manual has more details on Basic-52 pro-
gramming, and my Microcontroller ldea Book covers hardware design and appli-
cation examples for the 8052-Basic. The following section includes details that
relate specifically to serial communications and the 8052-Basic.

Serial Port Complete 95

Chapter 5

Figure 5-3: Systronix’s HSM/KISS board contains an enhanced 8051 from Dallas
Semiconductor. The chip has two serial ports. (Photo courtesy of Systronix.)

Sending Data

The Print, PHO ., and PH1. statements write to the serial port. With a terminal
interface, the data displays on the video screen. You can use the same statements
to send information to custom applications.

The statement and syntax determine whether or not Basic-52 adds a leading or
trailing space (20h), leading zeros (30h), a trailing H (48h), or a carriage return
(0Dh) and line feed (OAh). These additions can be useful for displayed values, but
in many cases they’re unneeded when sending values directly to a program.

A Print statement can send text:

PRINT “456",
456

STRING 91,10

$(0)="123"
PRINT $(0),
123

or numeric values in ASCII format:

A=57
B-99
PRINT A,B

96 Serial Port Complete

Microcontroller Serial Ports

57 99
To send the character represented by an ASCII code, use the Chr operator:

A=57
PRINT CHR(A),
9

In the above example, Basic-52 writes 57 (01010111), which is the ASCII code
for 9, to the serial port. The terminal translates 57 to the character 9.
Print adds both a leading and trailing space (20h) to numeric values, but not to
strings.
Before using any string variables, the program must allocate memory for them
with a String statement:
STRING TotalBytes, BytesPerString
where
BytesPerString = the largest number of characters a string will hold.
TotalBytes = ((BytesPerString + 1) * NumberOfStrings) + 1
To reserve space for ten strings with up to eight characters in each, use:
STRING 91,8
To reserve space for one string with two characters, use:
STRING 4,2

A PHO. statement sends values as ASCII Hex characters, with a leading space
and a trailing H:
A=0F1H

PHO. A,
F1H

B=16
PHO. B
10H
PH1 . is identical, except that it always sends four characters, filling with zeros as
needed:
A=0F1H

PHO. A,
00F1H

B=16
PHO. B
0010H

A comma at the end of a Print or PHO. statement causes Basic-52 to send just
the data. Otherwise, Basic-52 will follow the data with a carriage return and line

Serial Port Complete 97

Chapter 5

98

feed. The receiving computer may use these codes as an end-of-value indicator, or
it may ignore them if unneeded.

Receiving Data
For reading the serial port, there are two choices, each suitable for different uses.

Get reads the last character received at the serial port. If no character has arrived
since the last Get statement, it returns zero. Get is a good way to receive single
text characters, or to get the 8052-Basic’s attention before sending more data. The
program doesn’t have to be watching the port when the character arrives. Instead,
it can read Get periodically, and the byte will be waiting when the program gets
to 1t.

This routine waits for a character to arrive, then displays it:

10 DO

20 G=GET

30 UNTIL Ge<>0

40 PRINT G, CHR(G)
RUN

53 5

Get can read any text character. It clears the eighth bit, so values from 80h
through FFh are the same as O through 7Fh.

You can read multiple bytes with multiple Gets, but the sending computer may
have to add a pacing delay between bytes, to enable Basic-52 to read and store
each byte before executing the next Get.
The other option for reading data is the Input statement, which reads up to a car-
riage return:

INPUT A
Input is useful for reading one or more bytes when the program is expecting
incoming data. Unlike Get, Input doesn’t remember data that arrives before the
statement executes. One statement can read multiple values. Data sent to an
Input statement must end in a carriage return or carriage return + line feed.
Basic-52 echoes all received Input data back out the serial port, ending with car-
riage return and line feed codes, even if the sending computer sent only a carriage
return.
Unlike Get, Input doesn’t discard the eighth bit. But as with Get, binary data
is best sent in ASCII Hex format, because Basic-52 uses the carriage return as the
end-of-input indicator, and also captures certain control codes, as described
below.

Serial Port Complete

Microcontroller Serial Ports

Input data can be stored in one or more numeric or string variables. The
responding computer must include a comma between numeric values and a car-
riage return after each series of values:

10 STRING 91,10

20 INPUT ,$(0),$(1),A,B
30 PRINT $(0),$(1),A,B
RUN

abc

987

43,76

abc987 43 76

If the carriage return arrives before the specified number of values, Basic-52 will
send the message Try Again, and all data has to be re-entered from the begin-
ning:

10 STRING 91,10

20 INPUT ,$(0),$(1),A,B

30 PRINT $(0),$(1),A,B

RUN

abc
987
43

TRY AGAIN

abc

987

43,76

abc987 43 76

The statement may also include a prompt:

10 INPUT “Please enter a wvalue. " ,A
20 PRINT A
RUN
Please enter a wvalue. 900
900

If there is no prompt, the statement uses a question mark as the prompt. To sup-
press the prompt entirely, place a comma after Input:

10 INPUT, A

20 PRINT A

RUN

49
49

Serial Port Complete 99

Chapter 5

Processing Received Data

Basic-52’s Asc operator can extract ASCII codes for the individual characters in
received string. You can then convert the ASCII codes to the numeric values they
represent, and combine them to find the value represented by the string.

Basic-52 has no Val operator to find the value of a string character, so programs
must do this another way. The ASCII codes for 0 through 9 are 48-57, so the
value of a numeric character equals (ASCII code - 48). ASCII Hex also uses the
characters A—F. The codes for A through F are 65 -70, so each value equals
(ASCII code - 55). Once you have the value of each digit, multiply each by the
appropriate value (1, 10, 100) or (1, 16), and add the results. If you allow
lower-case a—f (61h—66h) in ASCII Hex values, you’ll need to test for those as
well.

The following example reads a 3-character string, finds the value of each digit,
and stores the result in D:

10 STRING 5,3

20 INPUT ,$(0)

30 D1=(ASC(S(0),1)-48)*100
40 D2=(ASC($(0),2)-48)*10
50 D3=(ASC($(0),3)-48)

60 D=D1+D2+D3

70 PRINT D

RUN

123
123

This routine finds the value of a 2-character ASCII Hex string:

10 STRING 4,2

20 INPUT ,$(0)

30 D1=ASC($(0),1)

40 IF D1>58 THEN D1=D1-55 ELSE D1=D1-48
50 D2=ASC($(0),2)

60 IF D2>58 THEN D2=D2-55 ELSE D2=D2-48
70 D=D1*16+D2

80 PHO. D

RUN

Fl
F1H

Any remote computer can communicate with an 8052-Basic as long as it obeys
Basic-52’s syntax rules. Most importantly, arriving data has to be able to co-exist

100 Serial Port Complete

Microcontroller Serial Ports

with the interpreter’s built-in communications routines (unless you install your
own driver, as described below). This requires a few compromises.

The interpreter monitors all received serial data for three control codes: Con-
trol+C (03) ends the current program, Control+S (13h) pauses output to the serial
port and Control+Q (11h) resumes output. When Basic-52 detects any of these, it
removes the byte from the serial buffer and carries out the assigned function.

So, for example, when a byte with a value of 3 arrives at the serial port, the
Basic-52 program will end and return the system to the bootup prompt. This will
occur even if the program is in the middle of an Input statement. And whether
or not Basic-52 is sending data to pause or resume, bytes with values of 11h and
13h will disappear from the serial buffer, and Get and Input won’t detect them.

Because of these limits, the simplest approach is to send all data as text characters,
with binary data in ASCII Hex format. You can also assign most of the remaining
values from 0 to 255 to commands or other functions, as long as you avoid the
codes with special meanings.

As an example, a remote computer may send a value from O to 7Fh to be read by a
Get statement. Or the computer may send a series of bytes or strings separated by
commas and followed by a carriage return, to be read by an Input statement. In
the other direction, Basic-52 may use a Print statement to send a string ending
in a carriage return, or multiple values separated by spaces, with a carriage return
following the last value.

Basic-52 does offer a couple of workarounds if you don’t want Control+C or error
messages to stop the current program, including disabling Control+C and using a
Run Trap mode to restart a program on Control+C or an error. The Basic-52 Pro-
gramming manual has details on how to enable these modes. A remote computer
can also restart a Basic-52 program by sending Control+C (if needed), then RUN
and a carriage return.

Custom Communications

Basic-52 also includes the ability to replace its built-in communications routines
with custom routines. These routines must be assembled or compiled and stored in
external program memory. Bytes at 4030h and 4033h in external memory tell
Basic-52 where to find the routines. Installing your own communications driver
gives you the flexibility to program the communications exactly as you wish,
while still using Basic-52 for other programming.

Serial Port Complete 101

Chapter 5

ey

Figure 5-4: Two Basic Stamps: the BS1C (left) and BS2. (Photos courtesy of

Parallax Inc.)

BASIC STAMP [1
% SOUT (+5-+]15VDC) PWR %;
?SIN GMD?2
TATN -RESE'l'?I
?GND +5V7®
— PO PIS|—
6 19
1P P14
?PQ Pl:‘ST?
— P3 P12 —
=1 pa P e
ITPS P1®T4
— P6 P9—3
L21p; pg |

Figure 5-5: Pinout of the Basic Stamp II.

The Basic Stamp

102

Another example of a microcontroller with a serial port is Parallax Inc.’s Basic
Stamp. Like the 8052-Basic, the Stamp is a microcontroller with a Basic inter-
preter on-chip. There are two models. Each uses a microcontroller from Micro-
chip’s PIC family. The Stamp I uses a 16C56, and the Stamp II, a 16C57 (Figure
5-4).

Because of its enhanced features, the Stamp II is a better choice for many applica-
tions that use serial communications, especially with multiple nodes. The module
has the footprint of a 24-pin DIP chip, with 16 pins of I/O, 2 kilobytes of
EEPROM for storing user programs, and 24 bytes available for variable storage.
For a power supply, it can use an unregulated DC supply from just over +5V to
+15V (such as a 9V battery) or a regulated +5V supply.

Figure 5-5 shows the pinout. In some of the Stamp’s documentation, GND is
referred to as Vss, Sin, as RX, and Sout, as TX. Sin and Sout could stand for

Serial Port Complete

Microcontroller Serial Ports

Serialln and SerialOut, but I prefer to think of them as Stampin and StampOut,
because these more precisely describe the direction of data flow.

Like the 8052-Basic, the Stamp II uses an asynchronous serial interface for pro-
gramming and debugging. To communicate with the Stamp, Parallax provides the
Stamp?2 host program, which runs under DOS and includes a text editor for writ-
ing programs, plus the ability to load Basic programs into the Stamp II and load
and save programs on disk. You can also use the serial port to communicate with
other devices.

The Stamp IC is a smaller and simpler version with 14 pins and 8 I/O bits. An ear-
lier version resided on a larger circuit board and used through-hole rather than sur-
face-mount components. Both versions have 256 bytes for storing user programs
and 14 bytes of variable storage. Instead of connecting to a PC’s serial port, The
Stamp I uses a parallel-port interface for programming and debugging.
(Serial-port software is available for the Macintosh, which has no parallel printer
port.) As on the Stamp II, programs can use asynchronous serial communications
to communicate with other devices.

Both Stamps use versions of Parallax’s PBasic interpreter. Like Basic-52, PBasic
has much in common with other Basics, yet is customized for use in a microcon-
troller. The Stamps’ PIC microcontrollers are smaller and simpler in design than
the 8052, so their interpreter is smaller and simpler to match.

Parallax offers carrier boards for both Stamps. Each includes a socket for the
Stamp, a connector for PC communications, battery clip, reset button, and proto-
typing area. You can develop a project right on the carrier board or you can use a
breadboard, your own perfboard, or any other method you prefer. Other vendors
offer products with added features to make project development easy.

Serial Links

This chapter includes essential information for connecting a Stamp to a PC. Later
chapters have more on the PC’s RS-232 signals and how to use them.

The Stamp II may use as many as five serial-port signals plus a ground wire,
though all of these aren’t always needed. Table 5-1 lists the signal lines and their
uses.

If you use the provided carrier board and cable, all you have to do is plug the cable
into the board and a port on a PC (Figure 5-6A). The carrier board’s connector is
wired as a 9-pin RS-232 DCE device, so you don’t need a null-modem cable or
converter (as described in Chapter 7). The carrier board connects DSR and RTS.
This connection enables the host software to detect which port connects to the
Stamp.

Serial Port Complete 103

Chapter 5

(A) COMMUNICATIONS & PROGRAMMING L INK

CONNECTOR
STAMP 11 25 (9)-PIN
souT S (2 e
2 2 (3)
SIN D)
3 20 (4)
ATNIZ—3 75 |2IR
GND 7156
(OPT I ONAL 5 (6)1°T3
CONNECTION) DSR

(B) COMMUNICATIONS ONLY, NO PROGRAMMING

CONNECTOR

STAMP 11 25 (9)-PIN

souT ; ; Ei: RD

SIN 3 TD
ATN

GND 4,23' 7 (5) G

Figure 5-6: Wiring for Basic Stamp Il serial links.

104

If you don’t use the carrier board, you can connect a power supply and serial cable
directly to the Stamp. If you want the host to autodetect the port, connect DSR and
RTS in your circuits. If you don’t include this connection, you can specify a port in
the command line when you run the host software: Stamp2 /2.

Instead of Parallax’s provided cable, you can use any standard RS-232 cable that
contains the needed wires. Standard serial cables may have 3, 9, or 25 wires. A
standard cable with 9 or more wires will work fine. If you make your own cable,
you can make the DSR/RTS connection at the PC’s connector and eliminate two
wires.

When a Stamp project is complete, the host software’s autodetecting and pro-
gram-downloading abilities are no longer needed (Figure 5-6B). ATN should be
held low to prevent accidental resets. To defeat any handshaking enabled at the
PC, you can tie RTS to CTS and tie DTR, DSR, and CD together in the serial cable
or at the serial connector in your circuits. However, it’s usually a simple matter to
disable all handshaking at the PC, and then you don’t need these connections.
When wiring your own circuits, be aware that the Stamp’s -Reset pin connects to
more than the PIC’s -MCLR (reset) input. Additional circuits at -MCLR ensure a
clean reset signal on power-up and enable the host software to reset the chip with
ATN. Don’t tie -Reset high if you need to communicate with the host software! If
you do connect -Reset directly to +5V, the host software won’t be able to reset or

Serial Port Complete

Microcontroller Serial Ports

Table 5-1: Serial-port connections between a Basic Stamp Il and a PC.

Stamp Il PC Serial Port Description

Pin Signal [Signal [9-pin |25-pin

2 Sin TD 3 2 Carries data from the PC to the Stamp.

1 Sout RD 2 3 Carries data from the Stamp to the PC.

- On RTS 7 4 Connects to DSR to enable the host software to
carrier detect which of a PC’s serial ports connects to a
board Stamp.

- - CTS 8 5 No connection.

- On DSR |6 6 See RTS.
carrier
board

4,23 |Vss SG 5 7 Signal ground.

- - CD 1 8 No connection.

3 ATN |[DTR |4 20 Resets the Stamp. The PC’s host software pulses

DTR high to enable downloading of a new program.

communicate with the Stamp. -Reset may be left open or connected to a nor-
mally-open pushbutton with a pullup to +5V.

A Firmware UART

Although some PIC microcontrollers have hardware UARTS, the Stamps’ micro-
controllers don’t. Instead, the Basic Stamps’ UARTSs are implemented in firm-
ware, with the UART’s functions programmed into the interpreter.

The serial ports on the Stamp IC and II are similar in many ways. Neither has any
buffers at all. To read a byte at the serial port, the Stamp must execute a Serin
statement and wait for a byte to arrive. If the byte arrives before Serin executes,
the Stamp won’t see it. If no byte arrives, the Stamp IC will wait forever. To pre-
vent endless waits, the Stamp II allows use of a Timeout modifier that enables
the Stamp to jump to a line label if a specified number of milliseconds pass with
no activity at the port.

Because the Stamp’s port is implemented in firmware, not hardware, it can
include options that hardware ports don’t normally have. The outputs can be
inverted or not, so they’re usable with or without inverting drivers and receivers.
A Stamp can use any of its I/O bits for serial communications. It can even have
multiple serial ports, using different bits for each (though it can use just one at a
time). These abilities greatly simplify project development for Stamps used in
serial links and networks. The Stamp can reserve Sin and Sout for PC communica-
tions for loading and saving programs, viewing debug messages, and other exper-

Serial Port Complete 105

Chapter 5

106

imenting, and use other port bits for the network. When all is working fine, you
can disconnect Sin and Sout and use the Stamp on its own in the network.

If you don’t need 2-way communications, you can even have a 1-bit port. If
you’re connecting the serial ports of two Stamps, you can use the Stamp’s open
baudmode for 2-way communications over 1 bit.

If you want to know how to write a firmware UART, an excellent resource is
Scott Edwards’ PIC Source Book, which contains clearly commented assem-
bly-code routines that emulate each of the Basic Stamp’s instructions, including
Serin and Serout.

Options and Features
Each read or write to the Stamp’s serial port has to specify the bit rate, pin num-
ber, and other information. The values are easily stored in variables or constants,
however, so each needs to appear just once in a program. The statement to read a
serial port on the Stamp II is:
SerIn rpin {\fpin}, baudmode, {plabel,} {timeout,
tlabel,} [InputDatal]
To write, it’s:
SerOut tpin{\fpin}, baudmode, {timeout, tlabel,}
[OutputDatal
or
SerOut tpin, baudmode, {pace} [OutputDatal
The parameters in the above statements are as follows:

rpin and tpin specify the pin to use for the serial input and output. Set these to
16 to use the Stamp’s Sin or Sout pin, or 0-15 to select a port pin. Serout auto-
matically configures the requested pin as an output and leaves it in that state after
transmitting. In a similar way, Serin configures the requested pin as an input
and leaves it in that state after receiving data or a timeout.

\fpin designates a pin for handshaking. On executing Serin, the Stamp sets
fpin low (or high, if using inverted signals) to indicate that it’s ready to receive
data. Serout will wait for its designated fpin to be in the appropriate state before
sending data.

baudmode is a 16-bit word that holds several settings. It specifies the bit rate, the
number of data bits and parity, and the polarity of the bits to send and read. It can
also enable the Stamp’s open baudmode, described below. For most situations,
you can select a baudmode value from the table in the Stamp’s manual. Listing
5-11is a Visual-Basic function that accepts a series of settings and returns a baud-
mode value to match. The value is calculated like this:

Serial Port Complete

Microcontroller Serial Ports

Public Function fncGetBaudMode _
(BitRate As Long,
Parity As Boolean,
Inverted As Boolean, _
OpenBaudMode As Boolean)
As Long
‘Returns the Basic Stamp’s baudmode parameter
‘for the requested settings.
Dim BitRateValue As Long
Dim ParityValue As Long
Dim InvertedValue As Long
Dim OpenBaudModeValue As Long
BitRateValue = 1000000 \ BitRate - 20
If Parity = True Then
ParityValue = 8192

Else
ParityValue = 0
End If
If Inverted = True Then
InvertedValue = 16384
Else
InvertedValue = 0
End If

If OpenBaudMode = True Then
OpenBaudModeValue = 32768

Else
OpenBaudModeValue = 0

End If

fncGetBaudMode = _
(BitRateValue + ParityValue + InvertedValue + _
OpenBaudModeValue)

End Function

Listing 5-1: This Visual-Basic routine calculates the baudmode parameter for the
Basic Stamp’s Serin and Serout statements.

Bits 0-12 equal the period of one bit in microseconds, minus 20. For example,
300 bps has a period of 3333 psecs. Subtract 20 and the result is 3313. The top bit
rate is 38,400 bps, though higher rates may require pacing between bytes, as
described below.

Bit 13 is O for 8 bits, no parity, or 1 for 7 bits, Even parity.

Bit 14 is O for noninverted, 1 for inverted. When connecting two Stamps, both
must have the same polarity. RS-232 uses inverted signals. When using RS-232,

Serial Port Complete 107

Chapter 5

108

select inverted if the Stamp’s interface doesn’t use a MAX232 or other inverting
driver, or non-inverted if it does.

Important tip: If you use inverted baudmode for RS-232 output on a pin other than
Sout, write 1 to the bit on power up. This ensures that the bit will remain high
(RS-232 idle state) until the Start bit of the first SerIn statement pulls it low. For
example, if you're using bit 14 for serial output, place this statement near the
beginning of the program:
high 14

For Serout, bit 15 is 0 for normal operation, and 1 for open baudmode, which
enables connecting multiple Stamps to one line. (Chapter 12 has more on open
baudmode.) Bit 15 is unused by Serin.

plabel names a label to jump to on parity error.

timeout is the number of milliseconds to wait for incoming data on SerIn, or
for fpin to indicate ready on SerOut. Tlabel is the label to jump to on timeout.

pace gives a delay in milliseconds between bytes. Pacing allows time for the
receiving device to process each byte before reading the next. Stamps may require
pacing at 9600 bps or higher.

Data Formats

The final parameters, InputData and OutputData, lists the value or values to
write or read at the serial pins. Both of these allow a variety of modifiers that auto-
matically process data, either before sending it or on receiving it. The modifiers
can save processing time and storage space in the Stamp and make it easy to com-
municate with devices that require specific formats.

The Dec modifier converts SerOut data to the ASCII codes that represent the
value’s decimal digits. For example, an OutputData of [Dec 5] writes 53,
the ASCII code for 5, to the port. An OutputData of ["5"] accomplishes the
same thing. Sending ASCII codes is useful if the receiver will display the values
as ASCII text. Also, some networks send all data as ASCII text, reserving other
values for node addressing, control codes, or other uses.

On the receive side, the Dec modifier causes SerIn to accept ASCII codes for
characters 0-9 until receiving a code for a non-numeric character. SexrIn then
converts the codes to their numeric value, and stores the value in the indicated
variable. This saves memory on the receiving end, because one byte can store a
value represented by two or three characters. For example, input bytes of [50,
53, 53, 10] arethe ASCII codes for 2, 5, 5, and linefeed. An InputData of
[Dec Al, where A is a byte variable, would accept the first three codes, quit on
seeing the non-numeric linefeed character, and store the value 255 in A.

Serial Port Complete

Microcontroller Serial Ports

For Visual-Basic and QuickBasic programmers, SerOut’s Dec is equivalent to
CStr (), and SerIn’s Dec is equivalent to Val ().

The Dec1-Dec5 modifiers wait for the designated number of digits, so there’s no
need to send a non-numeric character with each value. In another variation, SDec
and SDec1-SDec5 enable sending signed values, with “-” preceding the digits
of a negative value.

In a similar way, Hex, Hex1-Hex4 and SHex, Shex1-SHex4 send and accept
hex characters 0-9 and A-F (or a—f). The IHex ISHex modifiers require S pre-
ceding each value. The Bin, SBin, IBin, ISBin modifiers do the same for
binary values, with binary characters 0 and / and a binary prefix of %.

Ensuring that the Stamp Sees Incoming Data

SerIn has two other modifiers: Wait and Skip, which can help to ensure that
the Stamp sees the values intended for it while ignoring any others.

Wait causes the Stamp to ignore all data until it receives a value or values match-
ing the Wait parameter(s). This can be useful in a network where a master node
sends a node address followed by data intended for that node. If the receiving
Stamps use the Wait modifier, they will automatically ignore bytes addressed to
other nodes. Because a node will continue to wait until it recognizes its Wait
modifiers, it won’t miss any data intended for it.

However, there are limitations to using Wait. One is that the data following the
node address can’t include any bytes that equal another node’s address. For exam-
ple, if a master node sends a node address of 1 followed by a data byte of 7, when
node 7 sees the data byte, it will think that master is addressing it. A way around
this is to send all data with a Dec, Hex, or Bin modifier and send the node num-
bers as values (such as 0-7) that don’t correspond to any ASCII codes used by
these formats.

Another limitation to Wait is that nodes can waste a lot of time just watching for
their address to come up. If using the timeout parameter, the timeout count quits
on any received data, so Wait has little use as a data filter. Yet without a timeout,
the node can’t break out of a SerIn if the master fails to send the correct Wait
modifier.

If a node is responsible for other activities, it may make more sense to have the
program periodically read any incoming byte. Then if a byte doesn’t match the
node address, the program can move on instead of being stuck in a Wait state-
ment.

Yet another modifier for SerIn is Skip L, which skips over L bytes of input. A
network node might use this to send a series of bytes, with each byte intended for

Serial Port Complete 109

Chapter 5

a different node. Node 1 can read the first byte; Node 2 can skip the first byte and
read the next; Node 3 skips 2 bytes and reads the third, and so on.

The Stamp I also has SerIn and SerOut statements, which you can use with
any port bits. These are similar to the Stamp II’s statements, except that they don’t
support timeouts, parity, or pacing, and the maximum bit rate is 2400.

Hardware Handshaking

Another option for ensuring that the Stamp sees all data sent to it is to use the
Stamp II’s fpin parameter to designate a port bit for handshaking. Serout’s

Jfpin may connect to CTS, while Serin’s fpin may connect to RTS on a remote

PC. The PC transmits only when CTS is high, and the Stamp transmits only when
RTS is high. The main drawback of this approach is the need to use additional port
bits, cable wires, and possibly drivers and receivers.

Signal Levels

If the cable is short (15 feet), the Stamp II’'s Sin and Sout can connect directly
to an RS-232 port. Because the port outputs on both the Stamp I and II have strong
drivers, and because the Stamp is capable of inverting the signals, a short link
between the port bits and an RS-232 port will also work in most cases, with only a
current-limiting resistor at the RS-232 input. Later chapters have more on Stamp
interfaces.

Stamp-to-Stamp Links

110

Basic Stamps can also use their serial ports to communicate with each other. If the
distance between Stamps is short (15 feet or so), there’s no need for added drivers
or receivers. Just connect a serial output on each Stamp to a serial input on the
other, and add a ground wire if the Stamps don’t share a power supply.

Open Baudmode

Serout includes an open baudmode option that makes it easy for two or more
Stamps to communicate over a single wire. If you’re familiar with open-collector
or open-drain outputs, open baudmode works in a similar way.

Figure 5-7 shows the circuits behind a Stamp’s I/O pin. The CMOS output has
complementary NMOS and PMOS transistors. The output has two driven, or
active, states. For a logic high output, the PMOS transistor switches on, creating a
low-resistance path from the output pin to +5V. For a logic low output, the NMOS
transistor switches on, creating a low-resistance path from the output to ground.

Serial Port Complete

Microcontroller Serial Ports

+5V

Figure 5-7: The circuits inside a Basic Stamp’s 1/O pin.

An input buffer enables programs to read the logic level at the pin. The resistor
and diodes protect the chip by limiting input voltages and currents.

When the pin is being used as an input, neither transistor is on. The output is high
impedance and has no effect on the circuits it connects to. The input buffer reads
the logic level of whatever circuits connect to the pin. Other terms to describe this
state are off, open, or tristated.

In normal operation, a pin being used as an output switches between active high
and active low. In a full-duplex serial link, the serial output connects to an input
pin on another Stamp or other device.

Because each pin can act as an output or input, why not make a l-wire link by
connecting bits on two or more Stamps? In fact, this is possible, as long as only
one bit at a time is configured as an output. If two connected outputs are enabled
at the same time, and if one output is high and the other low, the result is a low
impedance path from +5V to ground that causes the bits’ output transistors to
draw high currents.

To prevent this from happening, all Stamps in the link but one must execute either
a Serin to receive data or an Input statement configure the bit as input. For
example, one Stamp sends data with Serout. After sending the data, and before

Serial Port Complete 111

Chapter 5

NONINVERTED OPEN BAUDMODE

ANY
+5V

LOW QUTPUT BRINGS THE DATA LINE LOW

T:ui DATA ~

TO ADDITIONAL
BASIC STAMPS

GND
| 7
ANY GND ANY GND ANY GND
1/0 PIN 1/0 PIN /0 PIN
BASIC BASIC BASIC
STAMP 11 STAMP 1|1 STAMP |1
INVERTED OPEN BAUDMODE
ANY HIGH OUTPUT BRINGS THE DATA LINE HIGH
IK DATA

_[TVVN TO ADDITIONAL

BASIC STAMPS

GND
ANY GND ANY GND ANY GND
170 PIN 1/0 PIN 1/0 PIN
BASIC BASIC BASIC
STAMP 11 STAMP 11 STAMP 11

Figure 5-8: The Stamp II’'s open baudmode allows easy networking for short links.

112

another Stamp executes a Serout, the transmitting Stamp must execute a
Serin or Input statement to configure the bit as an input.

Open baudmode provides a simpler and safer way to do this. Instead of switching
between active high and active low, the open baudmode outputs switch between
open and a driven state. A pullup or pulldown resistor determines the state of the
line when all outputs that connect to the line are open, and whether the line uses
inverted or noninverted data. Figure 5-8 illustrates.

If Serout sends noninverted data, the line uses a pullup to +5V. If all of the out-
puts are logic 1s, all are open and the pullup brings the line high. Writing 0 to any
output pulls the line low because the resistance between that output and GND is
much less than the resistance between the pullup and +5V.

If Serout uses inverted data, the line uses a pulldown to ground. If all of the out-
puts are open, the pulldown brings the line low. Writing 0 to any output bit results
in a logic high at the pin, which pulls the line high.

Serial Port Complete

Microcontroller Serial Ports

With either configuration, an idle (not transmitting) pin is open. As long as only
one Stamp transmits at a time, the data will arrive without errors. The Stamps that
aren’t transmitting can use Serin statements to read data on the line.

Open baudmode is for use only when connecting Stamps directly, without buffers
or drivers, using any of I/O bits 0-15, with short cables. All connected Stamps
must also share a ground connection. This type of link should handle 8 or more
Stamps.

Adding a Hardware Serial Port

When a microcontroller doesn’t have a serial port, or if a project requires an added
port, an solution is to use an external UART.

Options

Conventional UARTS like the 8250 family require eight parallel data bits, plus
read, write, and other control and status lines. Many microcontrollers don’t have
this many bits to spare. One chip that requires as few as three lines for a bidirec-
tional link is Maxim’s Max3100 SPI/Microwire UART.

An SPI/Microwire UART

The Max3100 converts between synchronous and asynchronous serial data. Fig-
ure 5-9 shows the pinout and Table 5-2 lists the pin functions. The DIP
(through-hole package) has 14 pins, while surface-mount QSOP has 16 pins,
though the package is actually much smaller. The synchronous data is compatible
with SPI and Microwire formats, which require a clock line and a data line for
each direction.

A microcontroller can communicate with the Max3100 by sending and receiving
synchronous data. The microcontroller can toggle SCLK as needed, without wor-
rying about maintaining a specific bit rate. The only restrictions on SCLK’s fre-
quency are a minimum pulse width (high or low) of 100 nanoseconds, and a
minimum clock period (high + low) of 238 nanoseconds.

The synchronous interface exchanges 16-bit words. In data transfers, eight bits are
data, and the other bits may hold status and control information. The chip can also
send and receive configuration data.

Serial Port Complete 113

Chapter 5

Table 5-2: Pin functions for the MAX3100.

Pin Name Description

QsopP DIP

1 1 DIN SPI/Microwire data in.

2 2 DOUT SPI/Microwire data out.

3 3 SCLK SPI/Microwire clock in.

4 4 -CS Chip select.

6 5 -IRQ Interrupt request.

7 6 -SHDN Power-saving shutdown.

8 7 GND Ground.

9 8 X2 Crystal.

10 9 X1 Crystal or external clock input.

11 10 -CTS RS-232 CTS or general-purpose input.
13 11 -RTS RS-232 RTS or general-purpose output.
14 12 RX Asynchronous in.

15 13 TX Asynchronous out.

16 14 vVCC +2.7V to 45V

5,12 - N.C. No connection.

A crystal or ceramic resonator provides the timing reference for the UART’s
bit-rate generator. With a 1.8432Mhz crystal, the chip supports bit rates from 300
to 115,200. To double the available rates, double the crystal frequency.

MAX3100
SPI/MICROWIRE UART
| 14 %DIN VCC%
—2D1N VCCE ?DOUT TXﬁ
] DOUT TX I SCLK RX 3
—4SCLK RXﬁ ?-CS -RTSE
—S—CS —RTSE FN,C. N.C. ﬁ
—6—IRO —CTSQ— T_IRO —CTSE
—7—SHDN X1 a ?—SHDN X1 9—
—1 GND X2— —GND X2 —
DIP QSOP

Figure 5-9: The MAX3100 converts between SPI or Microwire serial data and
asynchronous format.

114

Serial Port Complete

Microcontroller Serial Ports

When the Max3100 receives synchronous data to transmit, it converts the byte to
a standard UART format, including Start and Stop bits, and writes the bits to TX.
The data may have 7 or 8 bits, plus an optional parity bit. The Max3100 doesn’t
calculate a parity bit; the sending device must set the parity as desired. This makes
it easy to use the parity bit as an address/data identifier in 9-bit networks. The
Max3100 can generate an interrupt request on receiving a parity bit of 1.

The chip has 8-byte FIFOs, so the interface doesn’t have to worry about transfer-
ring each received byte before the next arrives.

Possible uses for the Max3100 include adding a second serial port to an
8052-Basic system. This enables sending and receiving serial data with another
computer or a network, while leaving the dedicated serial bits available for
Basic-52’s console interface. You might also use a Max3100 to add a full-duplex,
high-speed interface to a Basic Stamp. The UART’s buffer frees the Stamp from
having to watch for incoming data. Maxim has the complete data sheet.

Serial Port Complete 115

Chapter 5

116

Serial Port Complete

Linking Two Devices with RS-232

Linking Two Devices
with RS-232

RS-232 is one of the most popular computer interfaces of all time. It’s the work-
horse that has been built into just about every PC as well as many other types of
computers from microcontrollers to mainframes, and the devices they connect to.
RS-232’s most common use is to connect to a modem, but other devices with
RS-232 interfaces include printers, data-acquisition modules, test instruments,
and control circuits. You can also use RS-232 as a simple link between computers
of any type.

These days, there are faster and more sophisticated interfaces, but RS-232 contin-
ues to be popular because the hardware and programming requirements are simple
and inexpensive and because so many existing devices already have the interface
built-in. Other choices include descendents of RS-232 that are faster or cheaper,
while remaining compatible with RS-232 in many ways.

This chapter introduces RS-232 and similar interfaces, including their signals and
interface chips. Later chapters discuss cables and other wiring concerns and pro-
gramming.

Serial Port Complete 117

Chapter 6

About RS-232

RS-232 is designed to handle communications between two devices, with a dis-
tance limit of 50 to 100 feet, depending on the bit rate and cable type. Because
RS-232 ports are so common, another popular use is to connect to an adapter that
converts the interface to another type. For example, a simple circuit converts an
RS-232 port to RS-485, which can connect to multiple devices and can use much
longer links.

RS-232 links use unbalanced lines. Although a state of unbalance sounds like
something to be avoided, in this context it just refers to electrical characteristics of
the signals on the lines. In an unbalanced line, the signal voltage is applied to one
wire, and all signal voltages are referenced to a common ground. Another term for
this type of interface is single-ended. In contrast, in the balanced, or differential,
lines described in Chapter 9, each signal uses two wires, with one wire carrying
the inverse of the other.

Features

RS-232 has several advantages:

* It’s ubiquitous. Every PC has one or more RS-232 ports. Newer computers are
now supporting other serial interfaces such as USB, but RS-232 can do things
that USB can’t.

¢ On microcontrollers, interface chips make it easy to convert a 5V serial port to
RS-232.

* Links can be 50 to 100 feet long. Most peripheral interfaces aren’t intended to
go long distances. USB links can be up to 16 feet, and the PC’s parallel printer
interface can go 10 to 15 feet, or 30 feet with IEEE-1284 Type B drivers. But
RS-232 can use much longer cables. If each RS-232 port connects to a modem,
you can use the phone network to transmit worldwide.

* You need just three wires for a 2-way link. A parallel link typically has eight
data lines, two or more control signals, and several ground wires. The cost of
all of the wires and larger connectors can add up.

The downside to RS-232 includes these:

¢ If the other end of the link requires parallel data, it will have to convert the
serial data to parallel. This is easily done, however, with a UART.

« Serial ports are so useful that it may be hard to find a port that’s free for use.
PCs can have multiple serial ports, but a system may not have a unique inter-

118 Serial Port Complete

Linking Two Devices with RS-232

rupt-request line for each. Most microcontrollers have just one hardware serial
port.

* There can be no more than two devices in a link.

¢ The specified maximum data rate is 20,000 bits per second. Many interface
chips can exceed this, however, especially on shorter links.

* Very long links require a different interface.

For higher speeds, longer links, and multi-node links, RS-485’s balanced interface
is a solution.

Signals

In most respects, the standard serial port on PCs conforms to the RS-232 standard.
The Telecommunications Industry Association (TIA) publishes the document that
defines the signal functions, pin locations, and other characteristics of the inter-
face. The standard has been through several revisions since its introduction in the
1960s, with the latest version, designated TIA/EIA-232-F, dated 1997. Previous
versions were a product of the Electronics Industries Association (EIA), but TIA
has taken over this function. A similar standard, V.28, is published by ITU (Inter-
national Telecommunications Union) and CCITT (International Telegraph and
Telephone Consultive Committee).

The original name for the interface was RS-232, and this is the name that has
stuck in popular use. The RS stands for Recommended Standard. In this book, I'll
continue to use RS-232 to refer to interfaces that are compatible with
TIA/EIA-232.

The standard defines three things: the names and functions of the signals in the
link, the electrical characteristics of the signals, and mechanical aspects, including
pin assignments, of the interface. Earlier versions didn’t include all of these. The
new material, such as recommend connectors, was added to document what had
become standard through popular use.

Although the standard designates 25 lines in the interface, PCs and many other
devices rarely support more than the nine signals in Table 6-1. Some devices use
only three lines (or even two, in a 1-way link). Appendix B lists all 25 lines and
their functions. The additional signals are intended for use with synchronous
modems, secondary transmission channels, and selecting a transmission speed on
dual-rate modems. None of these are in common use today.

Table 6-1 uses mnemonic signal names that are basically abbreviations of the sig-
nals’ functions. The standard document assigns completely different names for

Serial Port Complete 119

Chapter 6

Table 6-1: The PC’s serial port and many other interfaces use only these nine signals (or
fewer).

Pin (9-pin) Pin (25-pin) Signal Source Type Description
1 8 CD DCE control Carrier detect
2 3 RD DCE data Received data
3 2 TD DTE data Transmitted
data
4 20 DTR DTE control Data terminal
ready
5 7 GND - - Signal ground
DSR DCE control Data set ready
RTS DTE control Request to
send
8 5 CTS DCE control Clear to send
22 RI DCE control Ring Indicator
- 1,9-19, 21, unused - - -
23-25

the functions. For example, TD is BA and RD is BB. Appendix B lists both names.
In this book, I use the more common mnemonics.

Much of the RS-232 terminology reflects its origin as a standard for communica-
tions between a computer terminal and a modem. A “dumb” terminal is little more
than a keyboard, display, and communications port for accessing a remote com-
puter. An RS-232 link connects the terminal to a modem, which in turn connects
to the phone lines used to dial the remote computer. “Smart” terminals have some
intelligence built-in, but have no disk storage or other features of a complete desk-
top computer.

With terminal-emulation software, such as Windows 95°s HyperTerminal, PCs
can emulate many types of computer terminals. These days, of course, RS-232
does many things besides terminal-to-modem communications. Instead of a termi-
nal, you may find a complete computer, though it may be a tiny microcontroller.
Instead of a modem, the other end of the link may connect to a mouse, printer,
another PC or microcontroller, or just about anything you could imagine.

DTE and DCE

The standard calls the terminal end of the link the Data Terminal Equipment, or
DTE. It calls the modem end the Data Circuit-terminating Equipment, or DCE.
These names again reflect the original purpose of the interface.

120 Serial Port Complete

Linking Two Devices with RS-232

It doesn’t matter which device in a link is the DTE and which is the DCE, but a
link must have one of each. The type determines which signals are inputs and
which are outputs at the connector.

All of the signal names are from the perspective of the DTE. For example, TD
(transmit data) is an output on a DTE and an input on a DCE, while RD (receive
data) is an input on a DTE and an output on a DCE.

With few exceptions, serial ports on PCs are configured as DTEs, and all
modems’ serial ports are DCEs. Most other peripherals are DCEs, but there are
exceptions, including many serial printers. When necessary, a simple adapter,
described in Chapter 7, will convert one type of interface to the other.

The PC’s Nine Signals

The three essential signals for 2-way RS-232 communications are these:

TD. Carries data from the DTE to the DCE. Also called TX and TXD.
RD. Carries data from the DCE to the DTE. Also called RX and RXD.
SG. Signal ground. Also called GND and SGND.
The other signals are optional control signals intended for communicating about
the readiness of a device, or the presence of a ringing or carrier signal on a phone
line.

There are two pairs of handshaking signals: DTR/DSR and RTS/CTS. Each pair
has uses defined by the standard.

There are several ways to describe the state of RS-232 and other control signals. A
signal with a valid positive voltage may be described as On, asserted, or True to
indicate that it’s in its active state. For example, when DTR is True, the data termi-
nal is ready. To bring the signal True, the controlling device raises the line. A sig-
nal with a valid negative voltage may be described as Off, de-asserted, or False to
indicate that it’s in its inactive state. For example, when DTR is False, the data ter-
minal is not ready. To bring the signal False, the controlling device lowers the
line.

In the following descriptions, I use terminal to refer to the DTE and modem to
refer to the DCE.

The DTR/DSR handshake is intended for providing information about the status of
the phone line or other communications channel connected to the modem. The ter-
minal raises DTR (data terminal ready) to request the modem to connect to the
communications channel. In response, the modem raises DSR (data set ready) to
indicate that it’s connected. DSR is False when the modem is not connected to the
communications channel (on detecting a disconnect, for example) or on detecting
a fault.

Serial Port Complete 121

Chapter 6

122

The terminal may also raise DTR in response to RI (ring indicator), to tell the
modem to answer a call. In some links, DTR and DSR are raised on power-up and
just indicate that the equipment is present and powered.

The RTS/CTS handshake provides additional information about whether a device
is ready to receive data. There are two common uses for the signals.

In the first, and original, use, the signal pair provides a full handshake. When the
terminal has data to send, it raises RTS (request to send). In response, the modem
raises CTS (clear to send) to indicate that it’s ready to receive. When the transmis-
sion is finished, the terminal may lower RTS. The modem should then continue
processing whatever data it has received and lower CTS when it’s ready to
respond to the next RTS. When RTS is False, the terminal should wait for CTS to
be False before raising RTS to request a new transmission. In the opposite direc-
tion, in a half-duplex link, the modem may transmit to the terminal only when RTS
is False.

In the other protocol used by these signals, each device uses its output indepen-
dently to let the other know when it’s OK to send data. CTS has the same function:
it indicates whether the DCE is ready to receive data. But RTS is redefined as the
DTE’s Ready for Receiving. Each device checks the opposite end’s signal before
transmitting. The latest version of TIA/EIA-232 includes this definition, which
has long been in popular use.

RI (ring indicator) is True when a ringing signal is present on the communications
channel. The signal is True when the audible ring is present, and False in the
pauses between rings.

The final control signal is CD (carrier detect). The modem raises CD when it
detects a signal of the expected frequency on the phone lines, indicating that a
connection has been established to a remote modem.

SG (signal ground) is the common ground used by all of the signals.

Non-standard Handshakes

When a link doesn’t need a control signal for its intended use, it may use the sig-
nal for another purpose.

One example is the Basic Stamp II, which has unconventional uses for three sig-
nals. Using a non-standard connection between RTS and DTR enables the Stamp
software on the PC to detect which port connects to a Stamp. The Stamp uses DTR
as a reset line. The PC toggles DTR to reset the Stamp and enable downloading of
a user’s Basic program into the Stamp.

Serial Port Complete

Linking Two Devices with RS-232

Break Signaling

One rarely used form of signaling is the Break signal. Setting the break signal in
the PC’s UART causes the output to remain logic 0, which is a positive RS-232
voltage.

The break signal enables in-line signaling to a microcontroller or other device that
has no input buffers or handshaking lines. It also provides a way to toggle the 7D
line as desired for any purpose.

Shield Ground

Pin 1 is a shield connection to allow grounding of a cable shield. This pin isn’t
always connected inside the device, and the 9-pin connector doesn’t include it at
all, so many shields instead use the connector shell to connect to a grounded chas-
sis. The shield normally connects to only to the DTE’s chassis (not the DCE’s).

Earlier versions of the standard called pin 1 protective ground, and it was some-
times used to connect the chassis, or frames, of the equipment on both ends. Each
chassis in turn connected to a safety ground at the equipment’s power plug. The
latest standard recommends using a separate wire (not one of the wires in the con-
nector) to connect the two chassis’ grounds, if needed.

Voltages

RS-232 logic levels are indicated by positive and negative voltages, rather than by
the positive-only signals of 5V TTL and CMOS logic. At an RS-232 data output
(TD), a logic O is defined as equal to or more positive than +5V, and a logic 1 is
defined as equal to or more negative than -5V. In other words, the signals use neg-
ative logic, where the more negative voltage is logic 1.

The control signals use the same voltages, but with positive logic. A positive volt-
age indicates that the function is On, or asserted, and a negative voltage indicates
that the function is Off, or not asserted.

RS-232 interface chips invert the signals. On a UART’s output pin, a logic-1 data
bit or an Off control signal is near 5V, which results in a negative voltage at the
RS-232 interface. A logic-0 data bit or On control signal is near OV, resulting in a
positive voltage at the RS-232 interface.

Because an RS-232 receiver may be at the end of a long cable, by the time the sig-
nal reaches the receiver, its voltage may have attenuated or have noise riding on it.
To allow for this, the minimum required voltages at the receiver are less than at
the driver. An input more positive than +3V is a logic 0 at RD, or On at a control
input. An input more negative than -3V is a logic 1 at RD, or Off at a control

Serial Port Complete 123

Chapter 6

input. According to the standard, the logic level of an input between -3V and +3V
is undefined.

The noise margin, or voltage margin, is the difference between the output and
input voltages. RS-232’s large voltage swings result in a much wider noise margin
than 5V TTL logic. For example, even if an RS-232 driver’s output is the mini-
mum +5V, it can attenuate or have noise spikes as large as 2V at the receiver and
still be a valid logic 0. Many RS-232 outputs have much wider voltage swings: +9
and £12V are common. These in turn give much wider noise margins. The maxi-
mum allowed voltage swing is =15V, though receivers must handle voltages as
high as +25V without damage.

Two other terms used in relation to RS-232 are Mark and Space. Space is logic 0,
and Mark is logic 1. These refer to the physical marks and spaces made by the
mechanical recorders used years ago to log binary data.

Timing Limits

124

TIA/EIA-232 includes both minimum and maximum timing specifications. All of
the many RS-232 interface chips meet these specifications.

The specified slew rate limits the maximum bit rate of the interface. Slew rate is a
measure of how fast the voltage changes when the output switches and describes
an output’s instantaneous rate of voltage change. The slew rate of an RS-232
driver must be 30 Volts per microsecond or less.

The advantage of limiting slew rate is that it improves signal quality by virtually
eliminating problems due to voltage reflections that occur on long links that carry
signals with fast rise and fall times. Chapter 10 has more on this topic.

But the slew rate also limits a link’s maximum speed. At 30 V/us, an output
requires 0.3 microsecond to switch from +5V to -5V. RS-232’s specified maxi-
mum bit rate is 20 kbps, which translates to a bit width of 50 microseconds, or 166
times the switching time at the fastest allowed slew rate.

In reality, because UARTSs read inputs near the middle of the bit, and because
most timing references are very accurate, you can often safely use bit widths as
short as 5 to 10 times the switching time. Taking these into account, some inter-
face chips allow bit rates of 115 kbps and higher, even though this violates the
standard’s recommendations.

Besides having a maximum switching speed, RS-232 drivers must also meet min-
imum standards to ensure that signals don’t linger in the undefined region
between logic states. For the control signals and other signals of 40 bps and lower,
the line must spend no more than 1 millisecond in the transition region between a
valid logic 0 and logic 1. For other data and timing signals, the limit is 4% of a bit

Serial Port Complete

Linking Two Devices with RS-232

width, or 2 microseconds at 20 kbps. The signals’ rise and fall times should also
be as nearly equal as possible.

Converting between 5V Logic and RS-232

Many microcontrollers have asynchronous serial ports, but their inputs and out-
puts use 5V logic rather than RS-232 voltages. Interfacing 5V logic to an RS-232
port requires converting to and from RS-232 levels.

By 5V logic, I mean the logic levels used by TTL or CMOS logic chips powered
by a single +5V power supply, with signal voltages referenced to ground. Table
6-2 illustrates. I also assume positive logic, where the more positive logic level, or
logic-high, is logic 1.

With TTL logic, a logic-low output must be no higher than 0.4V, and a logic-low
input must be no higher than 0.8V. A logic-high output must be at least 2.4V,
while a logic-high input must be at least 2V. Using these levels, an interface may
have 0.4V of noise without causing errors.

These logic levels are used by the original, standard 7400 series of TTL logic and
its derivatives, including 74LS, 74F, and 74ALS TTL. Older microcontrollers
made with NMOS technology also use these logic levels.

Most CMOS chips define logic levels differently and have wider noise margins. A
logic-low CMOS output is no higher than 0.1V, and a logic-low input may be as
high as 20% of the power supply, or 1V with a 5V supply. A logic-high output is
at least 4.9V, and a logic-high input must be at least 70% of the power supply, or
3.5V with a 5V supply. Families that use these logic levels include the 4000
series, 74HC, and 74AC logic.

Some CMOS chips have TTL-compatible inputs and CMOS-compatible outputs.
This enables direct interfacing with either CMOS or TTL logic. Chips that follow
this convention include the 74HCT logic family and most microcontrollers.

The MAX232

A simple way to translate from 5V logic to RS-232 is to use one of the many chips
designed for this purpose. Maxim Semiconductor was the first to offer RS-232
interface chips that require only a +5V power supply. Many other companies,
including Linear Technology, Harris Semiconductor, Texas Instruments, Dallas
Semiconductor, and National Semiconductor, now have similar chips, as well as
dozens of derivatives for just about every conceivable configuration. The chips

Serial Port Complete 125

Chapter 6

Table 6-2: Voltages for 5V TTL and CMOS logic.

Parameter TTL logic (volts) |CMOS logic (volts) [74HCT (volts)
logic-low output (maximum) (0.4 0.1 0.1
logic-high output (minimum) 2.4 35 35
logic-low input (maximum) (0.8 | 0.8
logic-high input (minimum) (2.0 35 2.0

may be listed in catalogs and data books under Linear, Interface, or Special Func-
tion ICs.

The original MAX232 (Figure 6-1) includes two drivers that convert TTL inputs
to RS-232 outputs, and two receivers that accept RS-232 inputs and translate them

to CMOS-compatible outputs. The drivers and receivers also invert the signals.
+5V

T—J’] QuF
16

|.0L&FFICI+ vCC v+ ﬂ_+ +1@V SUPPLY
T3l¢,- V- —\]6 10V SUPPLY
| ouF €2+
+OuF L+ 1. ouF
S co- -
V- ey
11 i I 14
TTL/CMOS T RS-232
INPUTS | 1o wf 7 |ouTPuTS
12 . 13
TTL/CMOS T RS-232
OUTPUTS | _9| o+ 18 [INPUTS
) 5K,
GND T
15
MAX232 =
+5V
i?
vCe
NO CONNECTION—8/ci+ ca+ i]
NO CONNECTIONI—iCI- c2+15
+1@v suPPLY-4 v+ c2- |16
12|y co-llo
-10v suppPLY[17] .
|il‘
2 et 5
TTL/CMOS i RS-232
INPUTS | | weesp 18 |OUTPUTS
L
3 1 4
TTL/CMOS ~ RS-232
OUTPUTS | 20 1+ |19 | INPUTS
— 5.
GND GND
6 |9

MAX233A

Figure 6-1: Chips like the MAX232 and MAX233 make it easy to interface 5V logic
to RS-232.

126 Serial Port Complete

Linking Two Devices with RS-232

The chip contains two charge-pump voltage converters that act as tiny, unregu-
lated power supplies that enable loaded RS-232 outputs of £7V or better. Four
external capacitors store energy for the supplies. The recommended value for the
capacitors is 1UF or larger.

If you use polarized capacitors, take care to get the polarities correct when you put
the circuit together. The voltage at pin 6 is negative, so its capacitor’s + terminal
connects to ground. Because the outputs can be as high as 10V, be sure the capac-
itors are rated for a WVDC of at least 15V. (Most are.)

Other Interface Chips

Table 6-3 shows a selection of other RS-232 interface chips. The MAX232A was
an early improvement, with the ability to operate at higher speeds and use smaller,
0.1uF capacitors. The MAX233 is even more convenient because it requires no
external capacitors at all (but it costs more).

Many RS-232 links use only one driver and one receiver, yet interface chips with
this configuration are rare. The Max3221 is one option.

Many newer chips include a power-saving shutdown feature. A Shutdown input
places the chip in a reduced-power mode. Some chips have a separate Enable
input to enable the receiver so a device won’t miss incoming data even if in shut-
down mode.

The Max3212 has two additional power-saving features. When the inputs aren’t
valid RS-232 voltages (which will occur if the remote driver is disabled), the chip
automatically switches to a low-power mode. If the inputs are valid but idle, a
transition-detecting output indicates when a transition occurs at an input. This sig-
nal is useful for waking up a microcontroller that is in sleep mode and needs to
wake up to process incoming data.

Instead of requiring or generating their own negative voltage source, Dallas Semi-
conductor’s DS275 and DS276 borrow voltages from the opposite end’s interface.

Before the existence of the MAX232, many RS-232 interfaces used the
MC1488/9 quad driver and receiver pair. The * 1488 requires positive and negative
supplies. The ’1489 operates from a 5V supply, but accepts inputs as large as +30
volts. If a circuit already has the required positive and negative supplies available,
and especially if you need four drivers and four receivers, the 1488/89 pair is an
alternative.

If you don’t want to make your own converter, modules are available. Figure 6-2
shows an example.

Serial Port Complete 127

Chapter 6

Table 6-3: Selected RS-232 interface chips.

Source Part Number Features

Maxim Semiconductor |MAX232 original 5V-only chip; 120 kbps, 1 WF caps
National Semiconductor |DS14C232

Maxim Semiconductor |MAX232A 0.1UF caps

National Semiconductor |DS14C202

Maxim Semiconductor |MAX233 no external caps

Maxim Semiconductor |MAX220 22kbps

Linear Technology LTI1180A 200 kbps

Maxim Semiconductor |MAX232A

Maxim Semiconductor |MAX232E high ESD protection

Linear Technology LTI137A

National Semiconductor |DS14(C)88 4 drivers; requires dual supplies

Texas Instruments MC1488

National Semiconductor |DS14(C)89 4 receivers; complements 1488

Texas Instruments MC1489

Maxim Semiconductor |MAX3221 ldriver, 1 receiver

Linear Technology LTC1382 low-power shutdown mode

Maxim Semiconductor |MAX3212 autoshutdown on invalid inputs

Maxim Semiconductor |MAX242 low-power shutdown with separate receiver enable
Linear Technology LTC1384 low-power shutdown with active receivers
Maxim Semiconductor |MAX223

Dallas Semiconductor DS276 low power, for links of 10 ft. or less
Maxim Semiconductor |MAX218 3V supply

Maxim Semiconductor |MAX252A isolated interface

@%. offe o

S Ag RJIL | RIN

x ;gg LEX] aee

ECI LN] aesn

— F

+ o @ TTL/CHOS MODEL
09| ||| emren RS232
* 3| | e Tens

ol |F] | emEre

@ COPYRIGHT |99.4.

BY RE. SMITH E - (=]
O iMoo
(SIBT4-4796

Figure 6-2: This module converts between RS-232 and TTL voltages. (Image
courtesy of R.E. Smith.)

128

Serial Port Complete

Linking Two Devices with RS-232

To view this image, please refer
to the print version of this book

Figure 6-3: The MAX232 and other RS-232 interface chips accept TTL and 5V
CMOS logic inputs.

Most of the example circuits in this book use a MAX232A or MAX233, but you
can use any converter with the appropriate number of drivers and receivers.

Short-range Circuits

If you examine the data sheets for the MAX232 and similar chips, you’ll see that
the RS-232 inputs don’t actually require RS-232 voltages. As Figure 6-3 shows,
the input thresholds are identical to TTL logic, with a logic low defined as 0.8V or
lower and a logic high defined as 2.0V or higher. The inputs of the *1489 also
respond to TTL voltages, with 0.75V or less for logic lows, and 2.25V or more for
logic highs.

This means that you can use any spare gates in a MAX232 or similar chip as
low-speed inverters in a 5V circuit. It also means that in some cases you can use
5V logic to link to an RS-232 port.

Full Duplex

If your serial link is short (10 feet or less), you may be able to communicate with
an RS-232 port by using an inexpensive interface that uses just 5V logic rather
than RS-232 voltages.

Serial Port Complete 129

Chapter 6

DRIVER oV
R2
1K
RI RS-232 OUT
TO TTL/CMOS 33K Ql
SERIAL OUTPUT PN2222
RECE I VER +5V
R4
1K
TO TTL/CMOS R3
SERIAL INPUT T 33K RS-232 1N
DI
ING14
| SGND
L

Figure 6-4: This 5V-only interface will work on many short links.

Figure 6-4 shows an option for connecting a 5V port to a remote RS-232 interface.
This circuit is intended only for short links, because it doesn’t meet RS-232’s
voltage and other requirements. But it’s inexpensive and will do the job in some
situations.

On the driver side, any inverted 5V logic can provide the interface. Figure 6-4
uses Q1, a PN2222 or other NPN general-purpose or switching transistor that acts
as a simple inverter. A TTL/CMOS output drives the base of the transistor, with
RI limiting its base current. When the TTL/CMOS output is low, Q1 is off and R2
pulls RS-232 Out near 5V. When the TTL/CMOS output is high, Q7 switches on,
and RS-232 Out is near OV.

On the receiver side, an input designed for use with 5V logic can be damaged by
RS-232 voltages, so it’s important to protect the 5V inputs in any interface
between the two.

Transistor Q2 inverts and converts RS-232 voltages to SV TTL/CMOS levels.
RS-232 In drives the base of Q2. Resistor R3 limits Q2’s base current. Diode D/
protects Q2 by limiting its base voltage base to about -0.7V when RS-232 In goes
negative. When RS-232 In is at or below 0V, Q2 is off and R4 pulls the
TTL/CMOS input to SV. When RS-232 In goes positive, 02 switches on, bringing
the TTL/CMOS input low.

130 Serial Port Complete

Linking Two Devices with RS-232

+5V

QI
TO TTL SERIAL OUT . NTE2355

RS232 0OUT

TO TTL SERIAL IN

—RS232 IN

02
NTE2356

SGND

Figure 6-5: This half-duplex interface uses the RS-232 input’s negative voltage to
pull the RS-232 output below ground.

Half Duplex

Figure 6-5 shows an alternate 5V circuit. It has wider voltage swings than the pre-
vious circuit, but it’s useful only in half-duplex links, which transmit in one direc-
tion at a time. The Basic Stamp II uses this type of interface. The negative output
matches the negative transmitted voltage, and the positive output is near +5V.
The RS-232 receiver is much like the previous circuit’s, but the driver’s circuit is
different. When TTL Serial Out is low, PNP transistor @/ is on and RS-232 Out
equals the supply voltage, minus Q1’s collector-emitter voltage (a few tenths of a
volt). When TTL Serial Out is high, Q1 is off, and the RS-232 link loops back on
itself through R2. RS-232 Out equals RS-232 In, minus a small voltage across R2.
For this interface to work properly, RS-232 In must be idle (negative) whenever
TTL Serial Out is transmitting.

The NTE2355 and NTE2356 transistors are designed for use as digital switches.
They have built-in biasing resistors and a typical maximum frequency of 250
Mhz. Their emitter-to-base breakdown voltage is higher than most, at 10V.

Serial Port Complete 131

Chapter 6

(A) BASIC STAMP 11
—éSOUT PWRg—g
—351N GND2—2
SATN RES (24
_SGND +5V2—®
RD (TO RS-232) 2P0 P15
TD (FROM RS-232) —n—-Sp] P14
22k /| 18
P2 P13
8 17
P3 P12
b2 P11RS
o 5
L9 Plof>
Llpe PO
L 2lp7 pg s
(B)
+5Y
RS-232 % TTL
MAX233
19 ~ 20
5 — 2 |
RD (TO RS-232) o
TD (FROM RS-232) A
18 4 1]
_ 8 11
13 15
12 16
[17] 10
14
169

BASIC STAMP 1]

JsouT PWR (24
ZSIN GNDf>
—4ATN RES2—1
-45ND +5V[2]
) 20

PO P15
i P14{2
i 18
P2 P13
_8 17

P3 P12
eIy pI1[Lo
I IS
@b Plof
I_IP6 91_4
2 3
27 gL

Figure 6-6: (A) For a short link to an RS-232 port, Basic Stamp 1/O pins require
only a series resistor at the input bit. (B) For a true RS-232 link at Sin and Sout,

use a MAX233 or similar, with double inverters.

132

Other Options for Basic Stamps
Besides the Basic Stamp II’s dedicated serial interface, the Basic Stamp I and II
can use any other port bits for serial communications. The bits have TTL-compat-
ible inputs and outputs.

A short-range interface from a Stamp’s port bit to an RS-232 port requires just one
resistor, as Figure 6-6A shows. This is because the Stamp’s output drivers are
strong enough to drive a short RS-232 link directly, and the inputs have protection
diodes that limit voltages to +0.6V greater than chip’s the power supply. The
resistor provides additional protection by limiting input current. The Stamp’s
baudmode parameter must use inverted signals with this interface.

Serial Port Complete

Linking Two Devices with RS-232

For a true RS-232 interface, you can connect a MAX232 or similar to any of the
I/O port bits. If you want to use the Stamp’s Sin and Sout pins, it’s a little more
complicated because of the Stamp’s additional circuits at these pins.

The Stamp’s hardware inverts the voltages at Sin and Sout, and RS-232 interface
chips also invert the signals. This is no problem when using Serin and Serout
statements, because you can set baudmode to invert the signals in firmware. But
when using the Sin and Sout pins for programming and debugging, there’s no way
to specify inverted signals. A solution is to add inverters to reinvert the signals.
You can use ordinary 5V inverters, or spare MAX232 gates for this, as Figure
6-6B shows.

Port-powered Circuits

Some low-power circuits that connect to an RS-232 port don’t need an external
power supply. Instead, they draw all the power they need from the interface itself.

The power comes from unused outputs. To meet the standard, an RS-232 driver’s
output must be at least 5V with a 3,000-ohm load. From this, we can use Ohm’s
law to deduce that each output can source at least 1.6 milliampere at 5V. In prac-
tice, most RS-232 outputs exceed the minimum, but staying within the specifica-
tion will ensure that a circuit will work on any port.

Using Signals as a Power Source

Figure 6-7 shows ways of using RS-232 outputs as a power source. When in the
On state, RTS and DTR are between +5 and +15V. To set the signals to On in
Visual Basic, set MSComm’s RTSEnable and DTREnable properties to True.

Figure 6-7A shows a simple unregulated output. When an output is positive, it can
serve as a positive voltage source. To double the output current, tie two lines
together as shown, with a IN5819 Schottky diode in each line. This prevents cur-
rent from feeding back into the interface if the voltages differ. You can use any
rectifier diodes, but Schottkys have a lower forward voltage than other silicon
diodes.

You can even use the 7D line as a power source by setting the Break signal, but of
course this prevents you from using the line for data. However, this technique
might be useful if you're using the port as a synchronous interface, using hand-
shaking lines for the clock and data.

Serial Port Complete 133

Chapter 6

(A) UNREGULATED SUPPLY

INS5819
DTR {f——9>+4.7 TO +14.7V 0U1

RTs |

(B) REGULATED SUPPLY

IN5819
DTR
RTS —pf————4
FOR +5V OQUTPUT,
PIN 8 MUST BE
MAXE67 BETWEEN
_lpp INB- +5.4V AND +18V
2 7
+5V OUTG:[—————OUT LBOf—
1 QuF —3L8I SETP

Figure 6-7: You can use spare handshaking outputs as a power source. Diodes
enable using multiple outputs. For a regulated voltage, use a high-efficiency
regulator like the Max667.

Regulating the Voltage

Adding a high-efficiency regulator results in a steady output voltage with little
wasted power. Figure 6-7B shows a regulated 5V output using the MAX667
low-dropout, linear regulator. The input can be as high as 18V, and it needs to be
just 10 millivolts greater than the output, so it will work with most ports. The reg-
ulator’s quiescent current is under 100 microamperes with a load of several milli-
amperes.

For a circuit that will work even if the RS-232 output drops below 5V, use the
MAXT770, which is a switching regulator that has a 5V output with an input
between 2V and 16V. The *770 requires several external components, including
an inductor and output transistor. If you need only one or a few supplies, Maxim
has an inexpensive evaluation kit containing a PC board with all of the compo-
nents installed.

Another option for port power is to use a lower regulated voltage, either by con-
necting voltage-divider resistors between Vout, Set, and Gnd as described in the
MAX667’s data sheet, or by using a regulator with a lower fixed output such as
the 3V MAX689.

134 Serial Port Complete

Linking Two Devices with RS-232

Because you can count on getting at most a few milliamperes from the port, use
care in choosing components that will use port power. Use the lowest-power com-
ponents you can find, and use a 3V supply if possible.

Alternate Interfaces

If RS-232 doesn’t meet your circuit’s needs there may be an alternate interface
that does. For some applications, a direct connection or simple 5V buffers and
drivers are all that’s needed. Or a different TIA/EIA interface may be more appro-
priate than RS-232.

Direct Connection

If the interface is between two microcontrollers or other chips whose serial ports
use 5V logic, you may be able to connect the ports directly, output to input, with-
out using RS-232 at all.

However, the outputs on many microcontrollers, such as the 8051, are quite weak.
If this is the case, you can add a driver such as a 74L.S240. These and similar chips
can drive links up to 10 to 15 feet long. At the receiving end, a buffer with
Schmitt-trigger inputs (7415240, 74LS14) helps to reject noise. LSTTL
buffer/drivers are cheaper than RS-232 interface chips. If you use inverters at the
drivers, be sure to reinvert the signals at the receivers.

Other Unbalanced Interfaces

Table 6-4 compares RS-232 with other TIA/EIA interfaces that use unbalanced
lines. Chapter 9 has details on TIA/EIA’s balanced interfaces. (The titles of recent
revisions begin with TIA/EIA, while earlier ones are EIA/TIA.)

EIA/TIA-562 defines an interface for transmitting at up 64kbps. The receiver sen-
sitivity is identical to RS-232, but the output voltages are slightly lower, with a
range from +£3.3V to £13.2V. For data rates faster than 20 kbps, maximum capac-
itance must be 1000pF or less. Linear Technology’s LTC1385 is an EIA/TIA-562
interface chip that operates from a single 3.3V supply.

Other alternatives use a combination of balanced and unbalanced signals. As Fig-
ure 6-8 shows, EIA/TIA-423 (commonly called RS-423) allows up to ten receiv-
ers and one transmitter. The drivers are unbalanced, like RS-232, but the receivers
are balanced (and identical to RS-422’s receivers, described in Chapter 9). The

Serial Port Complete 135

Chapter 6

Table 6-4: EIA/TIA unbalanced interfaces.

Specification

EIA/TIA-232-F

ElA-423-A

EIA/TIA-562

EIA/TIA-530-A

Cable length, max
(feet), unshielded
cable, 20pF/ft,
100kbits/sec

50

50

15 ft @ 64kbps

4000

Data rate, max
(bits/sec)

64k

Driver output
(minimum, volts)

+3.3

Driver output
(maximum, volts)

+13.2

Receiver
sensitivity (volts)

Maximum
number of drivers

Maximum
number receivers

10

10

Receiver input
resistance (ohms)

3k-7k

450 (minimum)

3k-7k

450, 4k*

*Data and some control lines use a balanced interface. Other signals use an unbalanced interface.

receivers use the driver’s output voltage and the link’s signal-ground wire as the
differential voltages.
EIA/TTA-530A uses balanced drivers and receivers for TD, RD, RTS, CTS, and
CD, and unbalanced lines for DTR, DSR, and RI. This gives better performance

1>

TTL
IN _T_
DS3691

RS-423 DRIVER

DS26LS32A
RS-423 RECEIVERS

(UP TO

1@ RECEIVERS)

RECEIVERS
HAVE TTL
OUTPUTS

Figure 6-8: An RS-423 interface can have just one transmitter, but up to 10

receivers.

136

Serial Port Complete

Linking Two Devices with RS-232

than RS-232, but requires more wires. This interface has largely replaced the ear-
lier EIA-449, which used a 37-pin connector.

Another source for similar standards is ITU/CCITT.

Serial Port Complete 137

Chapter 6

138

Serial Port Complete

Connectors and Cables for RS-232

Connectors and Cables
for RS-232

An RS-232 link may use any of a number of connector types, pin configurations,
and combinations of signals. Because of the many options, problems in serial
links are often the result of miswired connections, so understanding this part of
the link is important when designing or troubleshooting a link. This chapter dis-
cusses cables, connectors, and wiring configurations for RS-232.

Connectors

Figure 7-1 shows popular connectors used in RS-232 interfaces, and Figure 7-2
shows the pinouts of the connectors described in TIA/EIA-232. On most connec-
tors, the pin or socket numbers are stamped near the pins or sockets, though you
may have to look closely to see them.

25-pin Shells

Although the original RS-232 standard didn’t recommend a connector, recent ver-
sions specify what had become a standard configuration by default. The recom-
mended connector type is a 25-pin D-sub connector. The connector’s shell is

Serial Port Complete 139

Chapter 7

Figure 7-1: RS-232 D-sub connectors: clockwise from top left: 25-pin male, 9-pin
male, 9-pin female, 25-pin female.

roughly in the shape of an upper-case D, which forces you to orient the connector
correctly when you plug it in. The contacts are in two staggered rows, with the
contacts in each row 0.109" apart. The DTE connector has male (pin) contacts,
and the DCE has female (socket) contacts. Another name for this connector is
DB-25, with the B indicating the shell size and 25 indicating the number of pins.
On a PC, don’t confuse the parallel port’s D-sub with the serial connector. On
most PCs, the parallel ports use 25-pin female D-subs, while 25-pin serial ports
use male connectors. Some SCSI interfaces also use a 25-pin female D-subs.

9-pin Shells

These days, most PCs use a 9-pin male D-sub connector for serial ports. These
include only the nine signals described in Chapter 6. This smaller connector was
introduced early in the PC’s history, on IBM’s model AT, probably because it
leaves more room for other connectors on an expansion card’s back panel. This
connector is also called the DE-9, with the E indicating the shell size. Some
sources call it the DB-9, probably because it replaced the DB-25 on the PC.

The 9-pin connector has different pin designations, even for the signals that are on
pins 1-9 on the 25-pin connector. Especially confusing is that pins 2 and 3 are
reversed, with pin 2 as RD and pin 3 as TD.

The Alt A Connector

140

For use when space is tight, the standard doesn’t mention the DE-9 connector, but
instead recommends a connector it calls Alt A. This connector has 26 contacts
spaced 0.05" apart in each of two parallel rows, surrounded by a D-shell. The pin
assignments are the same as for the 25-pin connector, with pin 26 unused. This

Serial Port Complete

Connectors and Cables for RS-232

144\1 1% 14
o |2 21 O
15| © O |15
o |3 310
16| © O |16
o |4 41 O
17| o O |17
o |5 51O
18| © O |18
o |6 6| O
19| o O |19
o |7 71 O
20| © O |2
o |8 8| O
21 O O 21
o |9 gl O
22| O O |22
o |1@ 2| O
23| © O |23
o |11 1| O
24| o O |24
o |12 12| O
2h| O O 25
\OJ13]3&
DTE DOCE
[MALE) (FEMALE)
25-PIN D-SUB (0B-25)
/ \
16| o @ % % 0 0|16
17 0 o |2 410 0O (17
Blisl g|lglis
O —
6(o L 11O g AL 1838 |58
o2 2|0 22| 0 o g g|0o oO|22
¥ O O 7 23| 0 o |i@ 1|0 0|23
o3 3|0 24| 0 © []] 11/0 O |24
8| o O |8 55| 0 o |[2 2|0 0 |35
90044009 26| o o |15 i5/0 0 |26
° 2 2 O \/ \/
DTE OCE DTE DCE
(MALE) (FEMALE) (CABLE) (EQUIPMENT)
9-PIN D-SUB (DE-9) 26-PIN [ALT A) CONNECTOR

Figure 7-2: Pin locations for RS-232 connectors.

connector is the same for DTEs and DCEs. The cable always uses male connec-
tors, and the equipment always uses female connectors.

Modular Connectors

Other connectors you may see are the modul

ar plugs and jacks best known as the

connectors on wall jacks for indoor telephone wiring (Figure 7-3). These are com-

pact, reliable, and inexpensive solutions whe
and are commonly known by RJ codes, suc

Serial Port Complete

n there are no more than eight wires,
h as RJ-11. RJ stands for registered

141

Chapter 7

Figure 7-3: Links with few wires may use modular phone connectors.

jack. However, the RJ codes actually refer to Universal Service Ordering Codes
(USOC), that define specific wiring configurations on the jacks.

A 6-position connector commonly called RJ-11 is a WEW6 in Western Union’s
naming convention. (According to the USOC, an RJ-11 interface has wires on
only the two middle contacts. RJ-14 uses the four middle contacts, and RJ-25 uses
all six.) The 8-position connector, WEWS, is commonly called RJ-45, though this
again refers to a specific 8-wire interface.

You can use 6- or 8-position connectors in RS-232 links that require few wires.
The EIA/TIA-561 standard specifies a pinout for an 8-position jack (Table 7-1). It
includes everything in the 9-pin interface except DSR. The 6-position connector
has no recommended pinout.

Adapters

142

If you need to link different connector types, adapters and cables are available in a
variety of configurations, or you can make your own.

All RS-232 inputs and outputs must be able to withstand a short circuit to any
other RS-232 signal, including ground, without damage. This specification is very
comforting when you accidently hook up a link incorrectly!

Connector Sizes

To connect a DTE to a DCE when both ends have the same size connector, the
cable connects each wire straight across, pin 1 to pin 1, pin 2 to pin 2, and so on.
Connecting a 9-pin to a 25-pin connector requires a cable or adapter that routes
the signals correctly. Figure 7-4 illustrates.

If you do a lot with varied serial port configurations, it pays to invest in an assort-
ment of connectors, cables, and adapters. One rule that always seems to hold true
is that no matter how many types of connectors and cables you collect, you won’t

Serial Port Complete

Connectors and Cables for RS-232

25-PIN 9-PIN
SIGNAL CONNECTOR CONNECTOR

TD
RD
RTS
CTS
DSR
GND
cD
DTR
RI

Figure 7-4: Wiring for a 9-pin to 25-pin connection.

[= =T B'e IR W) R S PR S]

|t0.l:.»—u‘lo‘=cn‘-.|mw

20
22

have what you need when you need it! Connectors with solder-cup or individual
crimped connections are convenient because they enable you to wire connectors
any way you want when necessary (Figure 7-5).

These are some of the unexpected obstacles you may face in cabling an interface:

You need to connect a 25-conductor cable to a PC with a 9-pin connector.
But some 9-to-25-pin adapters are too wide to fit in the available space on
the back panel. Solution: use an adapter with a short cable between the
two connectors.

Figure 7-5: When making your own cables, there are several options for
connecting the wires to the connector. From left to right: a ribbon cable clamps
into an IDC (insulation displacement connector); individual wires solder onto
solder-cup connectors; other connectors accept wires with crimp-on connectors.

Serial Port Complete 143

Chapter 7

144

Table 7-1: Recommended pinout for EIA/TIA-561 with an 8-position
RJ-type connector.

Pin # Signal
RI
CD
DTR
SG
RD
TD
CTS
RTS

Ol | || = W=

Many connectors have a hex nut on either side of the D-shell, to enable
the connector to screw onto the device it plugs into. Sometimes these hex
nuts aren’t removable, and if both connectors have them, the hex nuts
keep the connectors from mating. Solution: avoid these connectors!

A 9-pin-to-9-pin cable works fine until you want to use a breakout box
with 25-pin connectors. Solution: use a 9-to-25-pin adapter on each side
of the breakout box.

Null Modems

Occasionally, a link will have two DTEs, or (less often) two DCEs. If you use a
straight-across cable, the two 7D outputs connect to each other, the two RD inputs
connect to each other, and neither port sees anything sent by the other.

The solution is to use a null-modem cable or connector, which simulates a con-
nection between a DTE and a DCE by swapping the complimentary signal and
control lines. For example, each TD connects to the opposite end’s RD. The name
null modem refers to its origin as a cable that bypasses the computer-to-modem
(DTE-to-DCE) connection and directly connects two computers (DTE-to-DTE).

There are several null-modem configurations (Figure 7-6).

The simplest is for 3-wire connections. The null modem swaps the RD and TD
lines, so that each TD connects to the opposite RD. This is all you need if the
devices don’t use hardware handshaking.

The use of 25- and 9-pin connectors can lead to confusion when wiring even this
simple null-modem, because it involves two sets of conversions. Use Figure 7-6’s
wiring to determine the null-modem connections for two connectors of the same
size. Then if necessary, use Figure 7-4‘s wiring to convert between 9- and 25-pin
connectors on one end. For example, if you’re connecting a 25-pin DTE to a 9-pin

Serial Port Complete

S IGNAL

TD
RD
GND

S IGNAL

0

RD
RTS
CTS
DSR

CcD
DTR
GND

S IGNAL

10

RD
RTS
CTs
DSR

CcD
DTR
GND

Connectors and Cables for RS-232

DTE, the TD and RD lines end up connected straight across, pin 2 to pin 2 and pin
3 to pin 3.

The full-handshake null modem allows hardware handshaking. Both the data and
handshaking outputs connect to their corresponding inputs on the opposite device.

In a loopback null modem, the handshaking outputs are looped back to the corre-
sponding inputs on the same device. This loopback handshaking gives the illusion
of full handshaking, when in fact there is no handshake at all. The sending device
Jjust assumes that the receiving device is always ready. This is useful when one
device requires handshaking signals but the other can’t provide them. However,
using this type of null modem will result in data errors if the receiving device
can’t keep up with the transmissions.

You can also use the loopback handshake in a DTE-to-DCE interface when only
one device requires handshaking. In this case, the data lines connect normally, but

9-PIN CONNECTORS 25-PIN CONNECTORS

PIN PIN SIGNAL SIGNAL PIN PIN S 1GNAL
s ><d: B o>t R
2 2 RD RD 3 3 RD
5 5 GND GND 7 7 GND
NO HANDSHAKE
PIN PIN SIGNAL SIGNAL PIN PIN SIGNAL
e o>t R
2 2 RD RD 3 3 RD
8 8 CTs CTsS 5 5 CTS
6 6 DSR DSR 6 6 DSR
1 1 CD CcD 8 8 CcD
4 4 DTR DTR 20 20 DTR
5 5 GND GND 7 7 GND
FULL HANDSHAKE
PIN PIN SIGNAL SIGNAL PIN PIN S IGNAL
< B o>l R
2 2 RD RD 3 3 RD
7 7 RTS RTS 4 4 RTS
o H s o crs s s o
& 6 DSR DSR 6 & DSR
! 3 E ! ch ch 8 } E 8 CcD
4 4 DTR DTR 20 20 DTR
5 S GND GND 7 7 GND

LOOPBACK HANDSHAKE

Figure 7-6: Null-modem connections for connecting two DTEs or two DCEs.

Serial

Port Complete 145

Chapter 7

the handshaking outputs are looped back to their corresponding inputs. On a DTE,
you would connect together RTS, CTS, DSR, and CD. In this way, whenever the
DTE asserts RTS, it will also appear that the DCE is asserting CTS, DSR, and CD.
A variation is to connect RTS to CTS and connect DTR to DSR and CD.

A final type of null modem is required for use with some serial printers. Serial
printers are often configured as DTEs, so TD and RD must be swapped when con-
necting to a PC. Also, many printers use DTR as a handshaking signal, while some
PC software assumes the use of CTS. When this is the case, the cable or an adapter
must connect the printer’s DTR, rather than RTS, to the PC’s CTS.

A few older serial-port cards have jumpers that enable you to force the handshak-
ing lines true. You can do the same thing in software.

Cables

RS-232 cables vary in number of wires and in amount and type of shielding. For
long links, it’s important to keep the cable length within the recommended limits.

Length Limits

146

Early versions of the RS-232 standard recommended limiting cable length to 50
feet, and this is still a good general guideline. For data rates of 20,000 bps or less,
you can use just about any type of cable in links of up to 50 feet.

Later versions of the standard eliminate this limit and instead specify a maximum
capacitance of 2500 picofarads at the receiver. This value includes the capacitance
of the receiver, the mutual capacitance between conductors in the cable, and the
capacitance between the conductor and the cable shield or, on unshielded cable,
between the conductor and earth ground.

The capacitance has several effects. It limits the slew rate, or rate of voltage
change when an output switches. A higher capacitance resulting in a lower slew
rate and slower transitions. A higher capacitance also means that a voltage change
requires more current to charge the capacitance, so the overall power consumption
of the drivers is greater. Capacitance between wires can also result in crosstalk,
where the signal on one wire also shows up on adjacent wires.

Unshielded Cable

Cable manufacturers often specify the capacitance of their products in picofarads
per foot. For unshielded cable, an appendix to TIA/EIA-232 recommends adding

Serial Port Complete

Connectors and Cables for RS-232

50 percent to the cable’s capacitance to account for conductor-to-ground capaci-
tance.

The formula to calculate cable length for unshielded cable is:

CableLength = _
(2500 - InputCapacitanceOfReceiver) / _
(CableCapacitance * 1.5)

Cable length is in feet, input capacitance in pF, and cable capacitance in pF/ft.
The standard doesn’t recommend any particular cable type. Typical capacitance of
ribbon cable is 15 pF/ft. Assuming that the receiver’s input is 100 pF, the cable
could be as long as 106 feet ((2500-100)/(15%1.5)). Typical capacitance for a sin-
gle, unshielded twisted pair is 12pF/ft. Again assuming an input capacitance of
100 pF, maximum cable length is 133 feet.

Shielded Cable

Adding shielding to the cable shortens the maximum length, but shielding is
sometimes required to block noise from coupling into or out of the cable. For
shielded twisted-pair cable, the recommendation is to triple the value of the con-
ductor-to-conductor capacitance to account for the conductor-to-shield capaci-
tance.

So the formula to calculate cable length for shielded cable is:

CableLength = _
(2500 - InputCapacitanceOfReceiver) / _
(CableCapacitance * 3)

Cable length is in feet, input capacitance in pF, and cable capacitance in pF/ft.
This reduces the maximum length of shielded, twisted-pair cable to 66 feet.

If you want to use a link that exceeds the capacitance limit, you’ll probably still be
able to communicate, though at lower bit rates. Over short cables, with corre-
spondingly lower capacitance, you should be able to communicate faster than
20,000 bps, if both the transmitting and receiving hardware support higher rates.

Twisted Pairs

For reduced crosstalk, you can use twisted-pair cable and multiple ground wires
with RS-232. Each signal wire should be twisted with a ground wire. Chapter 10
has more on twisted pairs.

How Many Wires?

Whatever type of cable you choose, be sure that it has all of the wires your link
needs! A cable with the nine wires supported by the 9-pin D-sub will handle most

Serial Port Complete 147

Chapter 7

situations. Some serial cables have just three wires and don’t support hardware
handshaking. And of course, if you have 25-pin connectors on both ends, there’s
no harm in using a full 25-wire cable.

Many connectors are molded, with no easy way to visually inspect to find out
what wires they contain. When in doubt, use an ohmmeter at the connectors to
find out how many wires are in the cable.

Isolated Links

RS-232’s large noise margins help to make the interface reliable and immune to
data errors caused by external noise coupling into the wires. If a link’s environ-
ment is electrically noisy, isolation can keep noise from coupling between the link
and the circuits it connects to.

Isolation works by dividing a circuit into independent sections. The sections use
optical and magnetic coupling to transfer power and data, while filtering out much
of the noise.

The isolation may isolate the grounds, the data link, or both. Ground isolation
makes a circuit immune to power surges and noise in the earth ground shared by
nearby circuits. In long links, ground isolation also makes the link immune to dif-
ferences in ground potential from end to end. Isolating the data link keeps noise
from coupling between the link and the circuits it connects to.

Ways to Achieve Isolation

148

Most circuit connections use a direct method such as solder joints or mechanical
connections such screw terminals or crimps. With galvanic isolation, a circuit’s
ground and signal wires have no ohmic path, or direct contact, with another cir-
cuit. Instead, the circuits may use optical or magnetic coupling to transfer power
and signals. Isolation makes each circuit immune to noise in the other.

Common ways to achieve galvanic isolation include transformers to isolate power
and optoisolators to isolate data. In a transformer, magnetic coupling between the
windings causes current in the primary winding to induce a current in the second-
ary winding. Optoisolators transfer energy by means of phototransistors and pho-
todiodes that emit and detect energy in the visible or infrared bands. In a similar
way, a fiber-optic interface converts an electrical signal to light for transmitting in
an optical fiber, and converts light to an electrical signal at the receiver.

Serial Port Complete

Connectors and Cables for RS-232

For complete isolation, each end of an RS-232 link requires two things: an iso-
lated power supply for the RS-232 interface and an isolated interface to transfer
the signals across the isolation barrier.

About Grounds

Understanding isolation requires understanding the concept of ground. All current
must eventually return to its source. A ground connection is any low-impedance
path for this purpose. Different types of grounds include signal ground, analog
and digital grounds, earth ground, and safety ground.

Signal Ground

Signal ground refers to the ground terminal of a power supply’s output, and all
points that connect to it. In RS-232 links, SG is the signal ground. Because
RS-232 receivers measure voltages between the signal lines and SG, a noise spike
on the SG line can cause a receiver to misread a logic level.

In digital logic, +5V is a shorthand way of saying 5 volts above signal ground.
When a circuit uses more than one power supply, even if the supplies” grounds
aren’t isolated from each other, maintaining separate ground paths reduces the
noise that couples from one path into another. The ground wires of each supply
can use separate wiring and circuit-board traces, connecting together only at the
supplies.

Circuits that contain both analog and digital circuits may provide a separate
ground for each, connecting the two paths at only one point, near the power sup-
ply. Digital grounds tend to be noisy, because digital outputs draw high currents
when they switch, so it makes sense to separate them from analog circuits, which
may be sensitive to tiny voltage changes.

Safety Ground

Safety ground, or protective ground, is an earth-ground connection, which is com-
monly a large-diameter copper wire or copper-plated pipe partially buried under-
ground. One of the three wires at an electrical outlet’s wall socket connects to a
safety ground.

The other wires at the outlet are the hot wire, which carries the 115VAC line volt-
age, and the neutral wire, which carries the 1 15VAC’s return current. The neutral
wire connects to the safety ground at the service entrance to the building. This
means that the neutral wires of all of a building’s circuits normally have a com-
mon connection at the service entrance.

Serial Port Complete 149

Chapter 7

150

The safety ground provides a low-impedance path to ground in case of a fault. For
example, in many power supplies, a screw terminal connects the safety-ground
wire to the supply’s metal chassis. If the chassis isn’t grounded and a loose wire or
component failure causes a voltage source to contact the chassis, the chassis may
carry a high voltage. This results in danger of electrical shock if someone touches
the chassis while in contact with electrical ground. If the chassis is grounded, cur-
rent instead follows the low-impedance path to earth ground until a fuse blows
and the circuit opens, removing the danger.

The TIA/EIA-232 standard says that a DCE may have a removable strap to con-
nect SG to safety ground. In reality, the SG line on both DCEs and DTEs often
connects to a safety ground.

Earth Ground

Earth ground refers to the electrical potential of the earth itself. A safety ground is
an earth ground. Because any electrical circuit may connect to earth ground, it’s
usually not a quiet, stable reference, but may carry huge amounts of noise of all
types. Events that can cause ground noise include equipment switching on and off,
power-system fluctuations, circuit malfunctions, lightning strikes, or anything that
causes a surge in current. The noise may show up as dips, spikes, 60-Hz oscilla-
tions, or just about any other type of variation you can imagine.

Earth grounds at different locations may or may not connect electrically to each
other. Whether or not they do, and how much the ground voltages vary, depends
partly on how well the medium between the ground connections conducts electric-
ity. Within a building, the electrical wiring provides a common connection to
earth ground. Between buildings or over long distances, current will follow what-
ever path it can find. Wet soil is a better conductor than solid granite.

Effects of Common Grounds

If the two ends of an RS-232 link share a common earth ground and the SG line
also connects to safety ground, ground currents from all sources will choose the
path of least resistance: earth ground or the SG wire. This situation, where there
are multiple return paths, is called a ground loop, and is not desirable! If the two
devices are in different buildings, using different power systems, SG is likely to
have lower impedance than other paths, and ground currents from other sources
may find their way into the link’s ground wire. The result is a noisy ground in the
link. A link with isolated grounds avoids this problem.

Serial Port Complete

Connectors and Cables for RS-232

Power Supply Grounds

An isolated interface requires a power supply for each side of the isolation barrier.
Figure 7-7 shows two isolated RS-232 interfaces. Each uses a dual power supply,
where a transformer steps 115VAC to lower voltages on two secondary windings.
One winding provides voltage for the computer or other circuits that connect to
equipment side of the optoisolator. The other winding provides the voltage for the
RS-232 interface. Each supply has its own ground, and the grounds must have no
common connection to an earth ground, the chassis, or signal ground. Instead of
one supply with two windings, the interface may use two entirely separate power
supplies or batteries whose outputs don’t share a common ground.

How do you know if a DC supply isolated from earth ground? The answer
requires knowing something about what’s inside the supply.

In most DC supplies powered by line voltage, a transformer steps the line voltage
to a lower value, and other components rectify, filter, and regulate the trans-
former’s output to a steady DC value. The only connection required between the
transformer’s primary and secondary windings is the magnetic coupling induced
when current flows in the primary. The transformer thus has the ability to isolate
the power supply’s outputs from the line-voltage wiring and safety ground.

In fact, the outputs of some power supplies for digital circuits have no connection
to safety ground. There is little risk of electrical shock at the outputs because the
voltages are low, the regulator limits the current, and a fuse opens the circuit if it
tries to draw large currents.

In other supplies, the output’s ground terminal connects to safety ground, break-
ing the isolation. The result is a shared ground with any other circuits that also
connect to the safety ground, or earth ground. A connection may exist even if the
circuits are in different buildings or thousands of feet apart.

The safest route is to assume that a supply’s ground isn’t isolated unless you can
prove that it is. Don’t assume that the SG pin on a PC’s RS-232 or RS-485 port is
isolated from earth ground; it may not be.

A supply with a 2-wire power plug may appear to have no safety-ground connec-
tion, but don’t forget that the neutral wire connects to safety ground when the sup-
ply is plugged in. The supply’s output is isolated only if its ground line doesn’t
connect to the neutral wire.

For supplies that contain a transformer, you can use an ohmmeter to find out if the
output is isolated from safety ground. With the supply unplugged from the wall
socket, measure the resistance between safety ground on the supply’s AC power
plug and the DC output’s ground terminal. If the meter shows a connection,

Serial Port Complete 151

Chapter 7

g RECTIFIER REGULATOR[© VCCI
115VAC —_|__
g RECTIFIER REGULATOR[©O VCC2
FRAME GROUND /77 DUAL POWER SUPPLY
: V%:l L vee? :
: r o ?? ISOLATED |
: l u2 o :
. 4 7K| BN139, . .
R e R S - Sy S I P
: IN 5’;&?%‘?%3 lg > ? RS-232
: o <] ouT ;
: I I o = [oe :
Do — Tsels T L T |
. ouT Co 3 eloy 13 5] '
. © ' BN139 12 16 :
. ul 33K -
; 740514 g . g—? [i7] 1o
: HEX ' L |
' TTL_INVERTER 332.‘?’.ii§5 = :
! GND e . I. 5—1 J.G |9 SGND '
:) L V4 :
L MAX233 -
L RS-232 INTERFACE'
_______________________ TTL TO RS-232
SRR e SRR Vega T
: (@] ' :
* NON- ; , ISOLATED |
| 1SOLATED U | :
: IK | 6NI139 . .
' g, . R 33K sl s Ta—zsz :
! 10 g = 2l S s RS-232
| R$-232 ¥k o [Rs:2%2
. INPUT 5 Y <l :
i - 19 e 20 .
. = L 8 - 1] '
! L lUB VCC2 13 1] :
' . ' 6N139 12 6 ,
: TO 3.3K - :
© RS-232 ’ & E [17] 10 .
L OUTRUT g4 Z% 3#%%.5 14 :
oo = S - [6]o soNp -
;) C u7_ ;
. . MAX233

R5-232 INTERFACE

RS-232 TO RS-232

Figure 7-7: Optoisolators created an isolated interface from TTL to RS-232, or
from an existing RS-232 interface to isolated RS-232.

152

Serial Port Complete

Connectors and Cables for RS-232

there’s no isolation. The neutral wire and safety ground should have no connec-
tion inside the supply. You can verify this with an ohmmeter as well.

Some supplies don’t use transformers. They just rectify, reduce, and filter the line
voltage directly. In this case, the output isn’t isolated from earth ground. Even if
the power plug has no safety-ground pin, the neutral wire connects to safety
ground when the supply is plugged in.

Optoisolating

Optoisolators transfer signals across an isolation barrier. An optoisolator consists
of a photodiode coupled to a phototransistor. Current through the photodiode
causes it to emit energy in the visible or infrared band. The energy switches the
phototransistor on, resulting in a low resistance between the transistor’s emitter
and collector. The phototransistor’s base may be left unconnected. Adding a resis-
tor from base to emitter results in faster switching but lower output current.

Figure 7-7’s interfaces use 6N139 optoisolators, which are designed for direct
interfacing to LSTTL logic. Their gain is high: 400% with a photodiode current of
just 0.5 milliamp. In the TTL-to-RS-232 circuit, a logic low at pin 3 of the
74LS 14 inverter causes current to flow through the photodiode. This switches on
the corresponding phototransistor, bringing its collector low. The MAX233
inverts the signal and transmits a positive RS-232 voltage.

A logic high on pin 3 of the 74LS14 switches off the photodiode and phototransis-
tor. The MAX233’s internal pullup at pin 2 results in a negative RS-232 voltage.

The other direction works in a similar way. A negative RS-232 input causes the
MAX233 to output a logic high. This switches on the photodiode and its pho-
totransistor, resulting in a logic low at pin 1 and a logic high at pin 2 of the
74LS14. A positive RS-232 input causes the MAX233 to output a logic low. This
switches the photodiode and its phototransistor off. A pullup brings pin 1 of the
74L.S 14 high, resulting in a logic low at pin 2.

The RS-232-t0-RS-232 circuit shows how to isolate an existing, non-isolated
RS-232 interface by using an RS-232 output to drive a photodiode directly. When
the RS-232 voltage is positive, the photodiode is on, and the isolated RS-232 out-
put is also positive. When the non-isolated output is negative, the photodiode is
off and a diode clamps the voltage at about -0.7V. In the other direction, the cir-
cuits are similar to the top circuits, except that no 'LS14 inverter is needed
because the non-isolated RS-232 interface inverts the signal.

For VCCI in the bottom circuit, you can use a positive output at DTR or RTS, if
it’s otherwise unused. The cable on the VCC/ side of this circuit should be short.

Serial Port Complete 153

Chapter 7

Typical turn-on and turn-off times for phototransistors is several microseconds,
which should cause no problems at data rates of 20kbps or less. For fast bit rates,
look for a photodiode with switching times of 1/10 or less of the bit width.

Another way to achieve an isolated interface is to use separate, isolated 12V sup-
plies for the RS-232 side of the interface. This also enables you to use the cheaper
1488/9 drivers and receivers.

If you don’t want to build your own isolation circuits, the Max252 is a complete,
isolated RS-232 interface in a single package. The chip includes an oscillator and
tiny transformer to generate an isolated supply from the chip’s 5V supply. It also
has two optoisolated driver/receiver pairs.

Fiber Optics

A completely different way to isolate a link is to use fiber optic cable in place of
copper wire. Fiber optic cable carries signals in the form of the presence or
absence of light, or it may use more complex encoding methods.

Fiber optics have several advantages. They are immune to ground noise and elec-
tromagnetic interference, and they generate no electromagnetic interface. A cable
typically can run 1 to 2.5 miles before requiring a repeater.

The main disadvantage is expense, including the need for special tools and con-
nectors.

Surge Protection

154

Another way to protect circuits from noise or damaging voltages and currents is
surge protection. The ideal surge protection would absorb all voltages and cur-
rents outside the link’s operating range, while not limiting the link’s transmissions
in any way. In real life, a variety of devices can protect a link from many disasters
due to voltage surges, though all add some capacitance to the link, and thus limit
the maximum bit rate.

In normal operation, the protection device presents a high impedance and is virtu-
ally invisible to the transmitting circuits. When the line sees a high-voltage surge,
the protection device switches on, providing a low-impedance path to ground.
Two useful surge-suppression devices are TVS diodes and gas-discharge tubes.
TVS (transient voltage suppression) diodes have low capacitance when off,
respond quickly (1 picosecond), and are available in many breakdown-voltage
ranges. Gas-discharge tubes are slower, but can protect against higher voltages.
Some links use both. Each should connect through a ground strap or other
low-impedance connection directly to an earth ground.

Serial Port Complete

Connectors and Cables for RS-232

jomnaanaa

Figure 7-8: Breakout boxes may include LEDs that show the signal states and
jumpers or switches to enable different wiring configurations.

Troubleshooting Tools

A breakout box, voltmeter, and oscilloscope are all helpful tools when you’re set-
ting up or troubleshooting a serial link.

A breakout box (Figure 7-8) connects in series with a serial cable, and displays the
status of each line in the link.

LEDs indicate the logic states. Some boxes have separate red and green LEDs,
while others use bicolor LEDs that can display both colors. Red indicates a nega-
tive voltage; green indicates positive. Some boxes also have jumper connections
that enable you to rewire the interface in any configuration, for example, to deter-
mine what type of null modem the link requires.

If you lack a breakout box, you can monitor the lines one at a time with a voltme-
ter. If you’re not sure whether a connector is wired as a DTE or DCE, a voltmeter
is all you need to identify which of pins 2 and 3 is the data input, and which is the
data output. An oscilloscope will also work for this, of course.

You can measure directly at the port connector, or on the connector at the end of
the cable, whichever is more convenient. Measure on a port that is powered, but
idle (not currently in use).

On the connector, measure the voltage from pin 2 to signal ground (pin 7 on a
25-pin connector, pin 5 on a 9-pin). Also measure from pin 3 to signal ground. On
an idle port, an output should measure a negative voltage of at least -5V, and typi-

Serial Port Complete 155

Chapter 7

156

cally ranges from -7 to -12V. An open, or unconnected, input should measure less
than +2V, and typically is close to OV.

So, if pin 2 on a 25-pin connector is a negative voltage, you have a DTE, and if
pin 3 is negative, you have a DCE. On a 9-pin connector, it’s the reverse: a nega-
tive pin 2 means it’s a DCE, while a negative pin 3 mean it’s a DTE.

On a breakout box, just see which of TD and RD shows the negative voltage.

Sometimes there’s no substitute for watching the actual signals. A digital oscillo-
scope is ideal for viewing serial data. You can trigger on a Start bit or control line
and the scope will display and preserve the waveform to examine at your leisure.
You can save a waveform and compare it to waveforms captured later. If the time-
base has a variable control, you can simplify the reading of bits by setting the dis-
play’s grid for one division per bit.

When viewing RS-232 data, don’t forget that the data transmits LSB first, and that
the logic levels are inverted. If the bits following the Start bit are 1111 1110 from
left to right on the screen, their byte value is 80h, not FEh or 7Fh.

A logic analyzer is another good tool for viewing serial data. Many logic analyz-
ers have eight or more channels, which enables you to view multiple data and
handshaking lines at once. Also available are hardware and software tools
designed specifically for debugging serial links, including triggering on specific
characters and other functions for detecting and analyzing signals.

Serial Port Complete

RS-232 Applications

RS-232 Applications

This chapter shows examples of RS-232 links, including an application that
enables a PC to exchange data with another PC or a microcontroller, ways to use
RS-232 for direct control and monitoring of remote signals, and tips on using the
built-in communications tools in Windows and DOS.

Linking Two Computers

Figure 8-1 is the user screen for an application that uses a serial link to enable a
local computer to communicate with a remote computer. Listing 8-1 is the pro-
gram code for the application, which builds on the template application intro-
duced in Chapter 4. You can use the code as a starting point for programming a
monitoring or control link between PCs, or between a PC and a Basic Stamp or
8052-Basic system. You can modify it as needed for use with other CPUs.

A 2-PC Link

Connecting two PCs’ RS-232 ports is usually just a matter of hooking up the
cable. Both ports will almost certainly be configured as DTEs, so you’ll need a
null-modem cable or adapter, as described in Chapter 7. The application also
works fine with a full-duplex RS-485 link, as described in Chapter 9.

Serial Port Complete 157

Chapter 8

w. Serial Port Complete [_[O] x|
Setup
Dﬂlﬂ i Lt R Trﬂnsfer
hex b —Interval
—In — Out " seconds |
32 64 |15 v| & minutes
? F | houre et
34 74 -
30 61 C Single |
39 20 @ Continuous Stop
3A 6F ’
32 75
37 74
IData transfer completed: 1/20/98, 4:06:15 P

Figure 8-1: This program exchanges blocks of eight bytes with a remote
computer.

158

Basic Operation

The PCs exchange blocks of eight bytes. The bytes may contain commands, data,
or other information. The local PC sends eight bytes, then waits for the remote PC
to send eight bytes in return.

An option button selects Single or Continuous data transfers. In Single mode,
clicking Start causes the PC to transfer data once. In Continuous mode, the PC
transfers data repeatedly, at the selected interval. Option buttons and a combo box
select the interval length in seconds, minutes, or hours.

Text boxes display the bytes sent and received. A Status text box indicates the
date and time of each transfer and whether it succeeded or failed.

You can program the remote computer in Visual Basic, QBasic, or a different lan-
guage entirely. A Visual Basic program for the remote PC would be similar to
Listing 8-1’s, but simpler, because the remote PC just waits to receive data, then
replies. This book’s program disk includes DOS QuickBasic code for a remote
PC.

The example program exchanges simple test data. In an application, the data may
consist of readings or settings for I/O ports, commands, or anything else the com-
puters need to exchange. Instead of blocks of eight bytes, the programs may
exchange blocks of any size, or entire files.

Serial Port Complete

RS-232 Applications

Option Explicit
‘This program uses a serial port to
‘exchange blocks of 8 bytes with a remote computer.
Private Type typDataTransferFormat
SingleOrContinuous As String
IntervalUnits As String
IntervalValue As Single
End Type
Dim DataOut (7) As Byte
Dim DataIn(7) As Byte
Dim DataTransferFormat As typDataTransferFormat
Dim PreviousTime As Date
Dim TimeOfTransfer As String
Dim Timeout As Boolean
Dim TransferInProgress As Boolean
Public RemoteCPU As String
Public SaveDataInFile As Boolean

Private Sub cboDataFormat Click()
‘Change the display to match the selected format.
Dim Count As Integer
Select Case cboDataFormat.Text
Case “text”
For Count = 0 To 7
txtDataOut (Count) .Text = Chr$ (DataOut (Count))
txtDatalIn(Count) .Text = Chr$(DatalIn(Count))
Next Count
Case “decimal”
For Count = 0 To 7
txtDataOut (Count) .Text = CStr(DataOut (Count))
txtDataIn(Count) .Text = CStr (Dataln(Count))
Next Count
Case “hex”
For Count = 0 To 7
txtDataOut (Count) .Text = Hex$ (DataOut (Count))
txtDatalIn(Count) .Text = Hex$ (DataIn(Count))
Next Count
End Select
End Sub

Listing 8-1: Code for the PC’s main form. (Sheet 1 of 13)

Serial Port Complete 159

Chapter 8

Private Sub cbolntervalValue Click()
‘Store the selected interval.
DataTransferFormat.IntervalValue = Val (cboIntervalValue.Text)
‘With shorter intervals, check elapsed time more often.
Select Case DataTransferFormat.IntervalUnits
Case “seconds”
tmrTransferInterval.Interval = 100

Case “minutes”, “hours”
tmrTransferInterval.Interval = 1000
End Select
End Sub

Private Sub cmdStart Click()
‘Initiate data transfer in the selected format.
Select Case DataTransferFormat.SingleOrContinuous
Case “single”
*Transfer data once.
Call TransferData(DataTransferFormat)
Case “continuous”
cmdStart .Enabled = False
cmdStop.Enabled = True
cmdStop. SetFocus
PreviousTime = Now
tmrTransferInterval.Enabled = True
‘Do one transfer immediately, then let the timer take over.
Call TransferData(DataTransferFormat)
End Select
End Sub

Private Sub cmdStop Click()

‘Stop transferring data.
tmrTransferInterval .Enabled = False
cmdStop.Enabled = False
cmdStart.Enabled = True

End Sub

Listing 8-1: Code for the PC’s main form. (Sheet 2 of 13)

160 Serial Port Complete

RS-232 Applications

Private Sub DisplayDataToSend ()
Dim Count As Integer
Select Case cboDataFormat.Text
Case “text”
For Count = 0 To 7
txtDataOut (Count) .Text = Chr$ (DataOut (Count))
Next Count
Case “decimal”
For Count = 0 To 7
txtDataOut (Count) = DataOut (Count)
Next Count
Case “hex”
For Count = 0 To 7
txtDataOut (Count)
Next Count
End Select
End Sub

Hex$ (DataOut (Count))

Private Sub DisplayReceivedData ()
Dim Count As Integer
Select Case cboDataFormat.Text
Case “text”
For Count = 0 To 7
txtDatalIn(Count) .Text = Chr$(DatalIn(Count))
Next Count
Case “decimal”
For Count = 0 To 7
txtDataln (Count) = DataIn(Count)
Next Count
Case “hex"”
For Count = 0 To 7
txtDataln(Count) = Hex$ (DatalIn (Count))
Next Count
End Select
End Sub

Private Function fncDisplayDateAndTime () As String
‘Date and time formatting.
fncDisplayDateAndTime = _
CStr (Format (Date, "“General Date”)) & “, “ &
(Format (Time, “Long Time”))
End Function

Listing 8-1: Code for the PC’s main form. (Sheet 3 of 13)

Serial Port Complete 161

Chapter 8

Private Function fncGet8052sAttention() As Boolean
‘Send a byte to the 8052-Basic & wait for a response.
‘Give up on timeout.
Dim ByteArray(0) As Byte
Dim OutputBuffer As Variant
Dim InputData() As Byte
‘Use Control+A to signal the 8052:
Const Attention = 1
‘Use Control+F for Acknowledge.
Const Acknowledge = 6
Timeout = False
tmrTimeout.Interval = 2000
ByteArray (0) = Attention
OutputBuffer = ByteArray ()
‘Send the byte.
MSComml.Output = OutputBuffer
‘Wait for the 8052 to reply.
tmrTimeout.Enabled = True
Do
DoEvents
Loop Until (MSComml.InBufferCount > 0) Or (Timeout = True)
If Timeout = False Then
tmrTimeout.Enabled = False
‘Read the received byte.
Buffer = MSComml.Input
InputData () = Buffer
‘The 8052 returns an Acknowledge.
If InputData(0) = Acknowledge Then
fncGet8052sAttention = True
‘Short delay to enable the 8052
‘to execute an Input statement.
Call LowResDelay(0.2)
Else
fncGet8052sAttention = False
txtStatus.Text = _

“Incorrect response from 8052, “ & fncDisplayDateAndTime
End If
Else
txtStatus.Text = _
"No response from 8052, “ & fncDisplayDateAndTime
End If

End Function

Listing 8-1: Code for the PC’s main form. (Sheet 4 of 13)

162 Serial Port Complete

RS-232 Applications

Private Function fncGetStampsAttention() As Boolean
‘Send a byte repeatedly until the Stamp responds or timeout.
‘Give up on timeout.
Dim ByteArray(0) As Byte
Dim OutputBuffer As Variant
Dim DelayBetweenBytes As Single
Const Attention = &HAS
Const Acknowledge = &HA6G
Timeout = False
tmrTimeout.Interval = 2000
'Delay 2 byte widths between bytes
'to make it easier for the Stamp to detect the Start bit.
DelayBetweenBytes = fncOneByteDelay(CSng(BitRate)) * 2
'"The Stamp watches for the Attention byte.
ByteArray (0) = Attention
'"Wait for the Stamp to send a byte in reply.
tmrTimeout.Enabled = True
Do
OutputBuffer = ByteArray ()
MSComml.Output = OutputBuffer
Call Delay(DelayBetweenBytes)
Loop Until (MSComml.InBufferCount > 0) Or (Timeout = True)
If Timeout = False Then
tmrTimeout .Enabled = False
‘Read the received byte.
Buffer = MSComml.Input
‘The Stamp returns an Acknowledge.
If Buffer(0) = Acknowledge Then
fncGetStampsAttention = True
‘Short delay to enable Stamp _
‘to execute Serin statement.
Call LowResDelay(0.2)
Else
fncGetStampsAttention = False
txtStatus.Text = _
“Incorrect response from Stamp, ™ & _
fnchisplayDateAndTime

End If
Else
txtStatus.Text = _
“No response from Stamp, “ & fncDisplayDateAndTime
End If

End Function

Listing 8-1: Code for the PC’s main form. (Sheet 5 of 13)

Serial Port Complete 163

Chapter 8

Private Sub Form Load()

Show

Call Startup

Call GetSettings
TransferInProgress = False
Timeout = False
tmrTimeout.Interval = 3000
tmrTransferInterval .Enabled = False
Call InitializeDisplayElements
SaveDataInFile = False

Load frmRemoteCPU

End Sub

Private Sub Form Unload (Cancel As Integer)
Call SaveSettings

Call ShutDown

Close #2

Unload frmRemoteCPU

Unload frmDataFile

End

End Sub

Private Sub GetDataToSend()

*Collect the 8 bytes to send to the remote computer
‘and store them in DataOut ()

‘Dummy data for testing:

DataOut (0) = AscB(“d")
DataOut (1) = AscB(“a”)
DataOut (2) = AscB(“t”)
DataOut (3) = AscB(“a”)
DataOut (4) = &H20 ‘space
DataOut (5) = AscB(“o")
DataOut (6) = AscB(“u”
DataOut (7) = AscB(“t")

End Sub

Private Sub InitializeDataFormatComboBox ()
cboDataFormat .AddItem “text”

cboDataFormat .AddItem “decimal”
cboDataFormat .AddItem “hex”

End Sub

Listing 8-1: Code for the PC’s main form. (Sheet 6 of 13)

164 Serial Port Complete

RS-232 Applications

Private Sub InitializeDisplayElements ()
Dim Count As Integer
Call InitializeDataFormatComboBox
optSingleOrContinuous (0) .Value = True
optIntervalUnits(0) .Value = True
cboIntervalValue.ListIndex = 0
cboDataFormat.ListIndex = 0
txtStatus.Locked = True
For Count = 0 To 7

txtDataln (Count) .Locked = True
Next Count
txtStatus.Text = ""
DataTransferFormat.IntervalValue = 1
cmdStop.Enabled = False
End Sub

Private Sub mnuDataFile Click(Index As Integer)
frmDataFile.Show
End Sub

Private Sub mnuPortSettings Click(Index As Integer)
frmPortSettings.Show
End Sub

Private Sub mnuRemoteCPU Click (Index As Integer)
frmRemoteCPU. Show
End Sub

Listing 8-1: Code for the PC’s main form. (Sheet 7 of 13)

Serial Port Complete 165

Chapter 8

Private Sub optIntervalUnits_Click(Index As Integer)
‘Configure the interval combo box to match the units selected.
Dim Maximum As Integer
Dim Count As Integer
cboIntervalvValue.Clear
Select Case Index
Case 0
Maximum = 59

DataTransferFormat.IntervalUnits = “seconds”
Case 1

Maximum = 59

DataTransferFormat.IntervalUnits = “minutes”
Case 2

Maximum = 24

DataTransferFormat.IntervalUnits = “hours”

End Select

For Count = 1 To Maximum
cboIntervalValue.AddItem CStr (Count)

Next Count

End Sub

Private Sub optSingleOrContinuous Click (Index As Integer)
Select Case Index
Case 0
DataTransferFormat.SingleOrContinuous = “single”
‘Disable interval selection:
optIntervalUnits(0) .Enabled = False

optIntervalUnits(1l) .Enabled = False
optIntervalUnits(2) .Enabled = False

Case 1
DataTransferFormat.SingleOrContinuous = “continuous”

‘Enable interval selection:
optIntervalUnits (0) .Enabled = True
optIntervalUnits(1l) .Enabled True
optIntervalUnits(2) .Enabled True
End Select
End Sub

Listing 8-1: Code for the PC’s main form. (Sheet 8 of 13)

166 Serial Port Complete

RS-232 Applications

Private Sub ReceiveData()

‘Receive and display data from the remote computer.
Dim InputBuffer As Variant

Dim Count As Integer

Dim ByteArray() As Byte

Dim BytesIn As Integer

Dim ByteCount As Integer

‘Time out if no response

tmrTimeout.Enabled = True

Timeout = False

'8052-Basic echoes the received data, plus CR+LF.

‘So the PC receives 10 additional bytes from an 8052.

If RemoteCPU = “8052-Basic” Then
ByteCount = 18

Else
ByteCount = 8

End If

‘Wait for the bytes to arrive

Do
DoEvents

BytesIn = MSComml.InBufferCount
Loop Until (BytesIn >= ByteCount) Or (Timeout = True)
If Timeout = True Then
Timeout = False
txtStatus.Text = _
“"Remote computer not responding: “ & _
fncDisplayDateAndTime
Else
tmrTimeout.Enabled = False
‘Get and display received data.
InputBuffer = MSComml.Input
‘Assign the variant’s contents
‘to a variable-length byte array.
ByteArray () = InputBuffer
‘Store the byte array’s contents in Dataln.
‘For 8052-Basic, ignore the first ten bytes.
For Count = 0 To 7
DataIn(Count) = ByteArray(Count + ByteCount - 8)
Next Count
Call DisplayReceivedData
End If
End Sub

Listing 8-1: Code for the PC’s main form. (Sheet 9 of 13)

Serial Port Complete 167

Chapter 8

Private Sub SendDataf()
‘Send data to the remote computer.
Dim OutputBuffer As Variant
Dim CarriageReturn(0) As Byte
‘The 8052-Basic’s Input statement requires a carriage return.
CarriageReturn(0) = &HD
‘Get the data to send, display it, & write it to the serial port.
Call GetDataToSend
Call DisplayDataToSend
‘Assign the byte array to a variant.
OutputBuffer = DataOut ()
‘Write the variant to the serial port.
MSComml.Output = OutputBuffer
If RemoteCPU = “8052-Basic” Then
OutputBuffer = CarriageReturn/()
MSComml.Output = OutputBuffer
End If
End Sub

Private Sub StoreReceivedData()
‘Save received data and time in a file.
Write #2, _
TimeOfTransfer, _
CStr (DataIn(0)),
CStr(DataIn(l)),
CStr(DataIn(2)),
CStr (DataIn(3)),
CStr (DataIn(4)),
CStr (DataIn(5)),
CStr (DataIn(6)),
CStr (DataIn (7))
End Sub

Private Sub tmrTimeout Timer ()
tmrTimeout .Enabled = False
Timeout = True

End Sub

Listing 8-1: Code for the PC’s main form. (Sheet 10 of 13)

168 Serial Port Complete

RS-232 Applications

Private Sub tmrTransferInterval Timer ()
‘See if it’s time to do a transfer.
Dim CurrentTime As Date
Dim Units As String
CurrentTime = Now
Select Case DataTransferFormat.IntervalUnits
Case “seconds”
Units = “s”
Case “minutes”
Units = “n”
Case “hours”
Units = “h”
End Select
‘If elapsed time since the last transfer is more than
‘the selected seconds, minutes, or hours, do a data transfer.
If DateDiff (Units, PreviousTime, CurrentTime) >= _
DataTransferFormat.IntervalValue Then
PreviousTime = CurrentTime
‘But don’t start a new transfer if one is in progress.
If TransferInProgress = False Then
Call TransferData(DataTransferFormat)
End If
End If
End Sub

Listing 8-1: Code for the PC’s main form. (Sheet 11 of 13)

Serial Port Complete 169

Chapter 8

Private Sub TransferData _
(DataTransferFormat As typDataTransferFormat)
Dim ClearToSend As Boolean
TransferInProgress = True
txtStatus.Text = """
MSComml . InBufferCount = 0
‘If necessary, get the remote CPU’s attention.
Select Case RemoteCPU
Case “pPC”
ClearToSend = True
Case “Basic Stamp”
ClearToSend = fncGetStampsAttention
Case "“8052-Basic”
ClearToSend
End Select
If ClearToSend = True Then
Call SendData
Call ReceiveData
TimeOfTransfer = fncDisplayDateAndTime

fncGet8052sAttention

If txtStatus.Text = ““ Then
txtStatus.Text = _
“Data transfer completed: “ & TimeOfTransfer
End If

If SaveDataInFile = True Then
Call StoreReceivedData
End If
End If
TransferInProgress = False
End Sub

Listing 8-1: Code for the PC’s main form. (Sheet 12 of 13)

170 Serial Port Complete

RS-232 Applications

Public Function fncInitializeComPort _
(BitRate As Long, PortNumber As Integer) As Boolean
‘BitRate and PortNumber are passed to this routine.
‘All other properties are set explicitly in the routine.
Dim ComSettings$
If MSComml.PortOpen = True Then
MSComml .PortOpen = False
End If
ComSettings = CStr (BitRate) & “,N,8,1”
MSComml . CommPort = PortNumber
‘ bit rate, no parity, 8 data, and 1 stop bit.
MSComml.Settings = ComSettings
‘Set to 0 to read entire buffer on Input
MSComml. InputLen = 0
MSComml.InBufferSize = 256
‘Input and output data are the contents of a byte array
‘stored in a variant.
MSComml . InputMode = comInputModeBinary
‘MSComm does no handshaking.
MSComml .Handshaking = comNone
MSComml.OutBufferSize = 256
MSComml .EOFEnable = False
'‘No OnComm event on received data.
MSComml .RThreshold = 0
‘No OnComm transmit event.
MSComml . SThreshold = 0
MSComml.PortOpen = True: fncInitializeComPort = True
End Function

Listing 8-1: Code for the PC’s main form. (Sheet 13 of 13)

Selecting a Remote CPU

An added menu item to the template application is Remote CPU, which brings up
Figure 8-2’s form. Listing 8-2 is the code for this form, which sets the Remo-

wm. Serial Port Complete !B

Remote CPU————
< PC

" Basic Stamp
 8052-Basic oK

Figure 8-2: The application can communicate with several CPU types.

Serial Port Complete

Chapter 8

Option Explicit
‘Enables the user to specify the type of remote computer.
‘Each has different communication requirements.

Private Sub cmdOK Click()
Dim Index As Integer
Index = -1
Do
Index = Index + 1
Loop Until optRemoteCPU(Index) .Value = True
Select Case Index
Case 0
frmMain.RemoteCPU = “PC”
Case 1
frmMain.RemoteCPU = “Basic Stamp”
Case 2
frmMain.RemoteCPU = “8052-Basic”
End Select
Hide
End Sub

Private Sub Form Load()
optRemoteCPU(0) .Value = True
Call GetSettings

End Sub

Private Sub Form Unload (Cancel As Integer)
Call SaveSettings
End Sub

Private Sub GetSettings/()
Dim Index As Integer
Index = -1
frmMain.RemoteCPU = _
GetSetting(ProjectName, “Startup”, “RemoteCPU”, “PC")
Do
Index = Index + 1
Loop Until optRemoteCPU(Index) .Caption = _
frmMain.RemoteCPU Or Index = 2
optRemoteCPU (Index) .Value = True
End Sub

Listing 8-2: Code for Figure 8-2‘s form.

172 Serial Port Complete

RS-232 Applications

Private Sub SaveSettings ()

SaveSetting ProjectName, "“Startup”, “RemoteCPU”,
frmMain.RemoteCPU

End Sub

Listing 8-2: Code for Figure 8-2‘s form.

teCPU variable to the appropriate value. The main application uses this informa-
tion to handle specific needs of different CPUs.

PC-to-Basic Stamp Link

Figure 8-3 shows a link between a PC and a Basic Stamp II. The link uses a true
RS-232 interface to link two of the Stamp’s port pins to a PC’s serial port. A
MAX233 converts to RS-232 voltages. This circuit leaves the Stamp’s Sin and
Sout pins unused, though you can connect them to another PC’s serial port for
development and debugging.

The Stamp communicates with the PC as in the previous example, exchanging
blocks of eight bytes. Listing 8-3 is the Stamp’s program code.

RS-232
25 (9)-PIN
MAX233 .oy CONNECTOR
BASIC STAMP 11 —
isouT PWR (2 7
jSiN GND2_2_L_+5V 4 > 3
ATN RESIES = 5 . 2
45ND veyi2l <
L 53 p15122 20 — 19 2 (3)]qp
- 7§ 19 ™ 3 (2)
= P2 Pl3—= 11 8
8lp3 P12~ ey
Sipa P11{Le 1o R
o 15
TIPS P1Of 16 12
1—2P6 Pgl—3 10 17
L4p7 P8~ L4
9|6_ 7 (5)senp

Figure 8-3: A link between a Basic Stamp and a PC.

Serial Port Complete 173

Chapter 8

'StampII RS-232 link to PC.
‘The PC and Stamp exchange blocks of 8 bytes.
*‘All debug statements are for troubleshooting & may be removed.

‘Variables:
DataIn var byte(8)
DataOut var byte(8)

Constants:

‘Serial I/0 bits:
‘serial transmit output
SerialOutput con 14
‘serial receive input
SerialInput con 15

Attention con $AS
Acknowledge con $A6

‘Serial transmissions are at 2400 bps, noninverted, 8-N-1
BaudMode con 396

‘Timeouts are 2 seconds.
TimeOut con 2000

‘Bits 0-13 are undefined (free for any use).
‘Bits 14-15 are for serial link:

dirld=1

dirls5=0

‘Default test data:
DataOut (0)="1"

DataOut (1)="2"
DataOut (2)="3"
DataOut (3)="4"
DataOut (4)="5"
DataOut (5)="6"
DataOut (6)="7"
DataOut (7)="8"

Listing 8-3: Basic Stamp Il code for an RS-232 link. (Sheet 1 of 2)

174 Serial Port Complete

RS-232 Applications

‘main program loop:

debug “Waiting to receive data...”,cr

begin:

gosub NodeActivities

‘Wait for a byte or timeout.

‘Skip the first byte received. (It may be a partial byte.)
‘If the expected byte is received, send a reply

serin serialinput,baudmode, timeout,Begin, [Skip 1, DataIn(0)]
debug “received “,dec Dataln(0),cr

if DataIn(0)=Attention then TransferData

goto begin

end

NoData:
debug “No data received.”,cr
GoTo Begin

TransferData:

‘Send acknowledge byte.

debug “sending ack”,cr

serout SerialOutput,BaudMode, [Acknowledge]

‘Wait to ensure PC has stopped sending Attention byte.

pause 100

‘Read incoming bytes.

Serin SeriallInput, baudmode, timeout,NoData, [DataIn(0), DataIn(l),
DataIn(2), DataIn(3), DataIn(4), DataIn(5), DataIn(é), DataIn(7)
1

debug “Received: “,DataIn(0), DataIn(l), DataIn(2), DataIn(3),
DataIn(4), DataIn(5), DatalIn(é), DataIn(7),cr

‘Send 8 bytes

serout SerialOutput,Baudmode, [DataOut (0), DataOut(l),

DataOut (2), DataOut(3), DataOut(4), DataOut(5), DataOut(e),
DataOut (7)]

debug “Sending: “,DataOut (0), DataOut(l), DataOut(2), DataOut(3),
DataOut (4), DataOut(5), DataOut(6), DataOut(7),cr

goto begin

NodeActivities:

‘Use this routine for any activities the Stamp is responsible for
on its own.

‘Set one output byte to match port bits 0-7.

‘DataOut (0) =InL

return

Listing 8-3: Basic Stamp Il code for an RS-232 link. (Sheet 2 of 2)

Serial Port Complete 175

Chapter 8

Exchanging Data

The biggest difference between communicating with a Stamp and a PC is that the
Stamp’s serial port has no input buffer. Because of this, the PC first sends a byte
to get the Stamp’s attention (in fncGetStampsAttention). Because the
Stamp might be busy doing something else when the PC sends its byte, the PC
sends the byte repeatedly until it either sees a response or decides that the Stamp
isn’t going to respond at all.

The PC adds a delay of at least one byte width between the bytes. This is to help
the Stamp identify the Start bit. Otherwise, if SerIn begins reading in the middle
of a byte, it will misread the value. The Stamp’s SerIn statement skips the first
byte it detects, in case it’s a partial byte, and waits for the next Start bit. Figure
8-4’s waveforms show a PC signaling a Stamp until the Stamp responds.

The Stamp alternates between watching for incoming serial data and carrying out
its own duties. With each Serin statement, the Stamp spends an allotted time
waiting for incoming data. When the Stamp detects a byte, it branches to a subrou-
tine that sends a byte back to the PC to acknowledge that it has received the byte.
The Stamp then executes a SerIn statement and waits for the expected eight
bytes. The PC sends the bytes, and the Stamp stores them and sends eight bytes
back to the PC. The PC reads the received bytes and the communication is com-
plete.

If the Stamp sees no data, it jumps to the beginning of its program.

2> m
T v A T

1 Ch1: 10WVolt 10 ms
2)Ch2: 10 Volt 10 ms

Figure 8-4: Trace 1 shows a byte sent repeatedly by a PC to a Basic Stamp.
When the Stamp responds (trace 2), the PC stops sending.

176 Serial Port Complete

RS-232 Applications

In the example code, the initial bytes exchanged to get and acknowledge the
Stamp’s attention are specific values, but otherwise have no particular meaning.
However, these bytes could contain data or commands as well.

Ensuring that the Stamp Sees Incoming Data

If the Stamp has little else to do except watch for incoming data, it will detect
incoming bytes without problems. If the Stamp spends most of its time in other
activities, the timing of the communications is more critical.

To guarantee that the Stamp will see a byte sent by the PC, two conditions must be
met. First, the interval between bytes sent by the PC should be shorter than the
Stamp’s Serin Timeout value. And the total time that the PC spends trying to
get the Stamp’s attention should be longer than the interval between SexrIn state-
ments at the Stamp.

In the example code, the PC sends the byte continuously for up to two seconds,
and the Stamp watches its serial port for one second at a time. The PC could delay
up to one second between sending each pair of bytes, but sending the bytes contin-
uously ensures the quickest response from the Stamp. The Stamp must execute
SerIn at least once every two seconds, to ensure that the PC doesn’t time out
before the Stamp detects an incoming byte. If the PC sees no response after two
seconds, it displays a message and moves on.

You can adjust the timing values as needed. For example, if the Stamp may delay
as much as 5 seconds between SerIn statements, the PC’s timeout limit should
be greater than 5 seconds.

PC-to 8052-Basic Link

The application also supports a link between an 8052-Basic and a PC. Use a
Max233 or similar interface at the 8052’s Serial In and Serial Out pins, as
described in Chapter 5.

Like the other CPUs, the 8052-Basic sends and receives blocks of eight bytes.
Listing 8-4 shows the Basic-52 program code.

Ensuring that the 8052-Basic Sees Incoming Data
As with the Stamp, when the PC wants to send data, it first gets the 8052’s atten-

tion by sending a byte and waiting for a reply (in fncGet8052sAttention).
Because Basic-52’s Get statement can retrieve the last byte received, the PC

Serial Port Complete 177

Chapter 8

10 REM 8052-Basic link

20

30

40

50

60

100
110
120
130
140
150
160
170
180
190
200
210

500
510
520
590

1000
1010
1020
1030
1040
1050
1060
1070

REM reserve room for two 8-byte strings
STRING 19,8
REM Attention and Acknowledge bytes:
ATT=1
ACK=6
REM main program loop
DO
REM perform other activities
GOSUB 500
REM check for incoming byte
G=GET
REM if a received byte matches
REM the expect value,
REM jump to a subroutine
IF G=ATT THEN GOSUB 1000
WHILE 1=1
END

REM node activities
REM dummy test data
$(0)="12345678"
RETURN

REM send acknowledge

PRINT CHR (ACK)

REM store incoming bytes in a string.

REM The bytes end with a carriage return.
INPUT ,$(1)

REM Send 8 bytes back in a string

PRINT $(0),

RETURN

Listing 8-4: Basic-52 code for an RS-232 link.

178

sends the Attention byte only once, then waits a set amount of time for a reply
before giving up.

Like the Stamp, the 8052 alternates between performing its normal duties and
watching for serial input. A Get statement periodically reads the last byte that
arrived at the serial port.

If Get matches the expected value, the program jumps to a subroutine. The
8052-Basic sends a byte back to the PC and then executes an Input statement
that waits for a line of text followed by a carriage return.

Serial Port Complete

RS-232 Applications

Exchanging Data

When the PC sees the byte returned by the 8052, it sends eight bytes, followed by
a carriage return (0Dh).

When the 8052 has detected and stored the eight bytes, it sends eight bytes back to
the PC, which reads and displays the bytes. Because Basic-52 echoes back the
received Input characters plus a carriage return and linefeed, the PC skips the
first ten bytes received. Figure 8-5 shows waveforms for a PC and 8052-Basic
exchanging data.

The data bytes from the PC can be text or anything except certain control codes or
a carriage return or linefeed, as explained in Chapter 5. Basic-52’s Asc operator
can extract individual bytes from a received string. After executing an Input
statement, the 8052 will wait forever for a carriage return, so if for some reason it
misses it, sending another will send the program on its way. A program error will
stop the program, unless one of the options described in Chapter 5 is enabled.

Simple I/O

Some applications don’t need to transfer bytes of data, but only require a few bits
of input and output. RS-232’s handshaking lines are a simple solution that doesn’t
even require even a UART at the remote end. Most ports have four inputs (CTS,
DSR, CD, and RI) and two outputs (RTS, DTR) available for this use.

2>
i
|l !

13Ch1: 10 Volt 2.5 ms
2)Ch2 10WVolt 2.5 ms

Figure 8-5: Trace 1 shows a PC sending eight bytes to an 8052-Basic. Trace 2
shows the 8052-Basic echoing the received data, then sending eight bytes back
to the PC.

Serial Port Complete 179

Chapter 8

Because the signals are RS-232, the cable can be 50 feet or more. If you need TTL
levels at the far end, a MA X232 will do the conversion. An obvious use is to con-
trol or read simple switches, but interfacing to any other TTL-level signals is pos-
sible.

If you want to use the RS-232 levels directly, remember that the outputs may
range from £5V to £15V. For example, if you use an output to drive an LED, the
current through the LED, and thus its brightness, will vary with the output volt-
age. Buffer any signals that carry high currents or that drive relay coils or other
inductive loads.

Accessing the Signals

Visual Basic’s MSComm control has Boolean properties that enable you to read
and write to the each of the signals except RI:

‘Open the port with no handshaking
Dim CTS as Boolean

Dim DSR as Boolean

Dim CD as Boolean

‘To read the inputs:

CTS = MsComml.CTSHolding

DSR MSComml .DTRHolding

CD = MSCOMM1.CDHolding

‘To write to the outputs:

MSComml .RTSEnable = True

MSComml .DTREnable = False
Setting a signal True brings it positive at the RS-232 interface, while False brings
it negative. In the same way, a positive input reads True, and a negative input
reads False.
If you need to use RI as well, you can read its status by directly reading bit 6 in the
UART’s Modem Status Register (at the port’s base address + 6). To do so, you'll
need to know the port’s base address and use a DLL or other driver as explained in
Chapter 4.

For DOS programmers, QuickBasic doesn’t include functions for reading and
writing to the handshaking lines, but you can do so by reading and writing directly
to the registers in the port’s UART.

Connecting to a Stand-alone UART

If you want to control or read many parallel 1/O bits from a serial port, an alterna-
tive is to use a stand-alone UART. The Harris/RCA 6402 is an older UART that is

180 Serial Port Complete

RS-232 Applications

convenient for basic monitoring and control links because it has separate parallel
transmit and receive pins. Other UARTS, such as the 8250 series used in most
PCs, are designed for interfacing to a computer’s data bus, and have a single set of
bidirectional data lines.

The chip requires a counter or bit-rate generator such as the MC14411, but
requires no programming beyond selecting a setup in hardware. A MAX232 will
convert the UART’s serial bits to RS-232. You can connect this UART to a
microcontroller’s serial port or, with an RS-232 interface, to a PC’s serial port.

Controlling Synchronous Interfaces

Another use for a port’s handshaking lines is to control a synchronous serial inter-
face. These interfaces have a clock line and one or two data lines. Devices with
synchronous interfaces include serial EEPROMSs, analog-to-digital converters,
shift registers, or any device that supports an SPI, I>C, or Microwire interface. The
easiest devices to use have no minimum clock frequency and allow the clock to
toggle as needed.

The 74L.5S299 universal shift register is a synchronous device whose eight parallel
bits can be configured as inputs or outputs.

If you’re short on outputs to use to control a synchronous interface, you can even
use 7D as a clock. MSComm’s Break property enables setting 7D True and
False as desired. The OnComm event comEventBreak detects a break signal
equal to at least one character width. Or, to cause a positive pulse equal to 1 bit
width (the Start bit), write a single byte of FFh to TD. For a positive pulse equal to
9 bits (8 data bits plus Start), write a byte of 0. In a similar way, you can use RD to
detect a change from a negative to positive RS-232 voltage as a Start bit.
MSComm will generate a framing error if the input pulse’s width doesn’t match
MSComm’s settings, but your program can ignore this.

Operating System Tools

MS-DOS and Windows 95 have built-in ways to link PCs via their serial (or paral-
lel) ports. For file transfers or even simple networks, these may be all you need.

Serial Port Complete 181

Y ou download this file from web-site: http://www.pcports.ru

Chapter 8

Direct Cable Connection

182

Windows 95 has PC-to-PC communications abilities with its Direct Cable Con-
nection (DCC). DCC creates a simple network between two computers. Both
computers must be running Windows 95.

With DCC, one computer is the host, and the other is the guest. The guest has
access to the resources of the host, including accessing the host’s files, drives, and
printers and even running applications on the host. If the host is connected to a
network, the guest can access the network, and the host can access shared
resources on the guest.

DCC works with either serial or parallel ports. Serial ports require a null-modem
cable or adapter. For parallel connections, DCC can use a nibble-mode
(Laplink-type) bidirectional cable, or a special Direct Parallel Universal Cable
from Parallel Technologies. The Universal cable is useful if the ports on both
computers are capable of bidirectional, EPP, or ECP data transfers. The cable
automatically detects the port types at each end and configures itself for the fastest
data transfers possible. The parallel link is faster, but the serial link is handy if you
don’t have parallel ports to spare, if the computers are too far apart for a parallel
link, or if you don’t have the required parallel cable handy.

To use DCC, both computers must have Dial-up Networking and Direct Cable
Connect installed. To find out if these are installed, go to Control Panel,
Add/Remove Programs, Windows Setup, Communications, Details. To add an
item, click the appropriate check box, then OK, and follow the instructions.

Establishing a Connection

To establish a Direct Cable Connection, click on the Start menu, Programs,
Accessories, Direct Cable Connection. At each computer, on-screen prompts
guide you through selecting a port and selecting host or guest. If the connection
fails, Windows Help includes a DCC Troubleshooter that helps resolve many
common problems.

The host must specify which resources it wants to share, and what type of sharing
to enable. You can choose to share individual files, folders, or drives. The shared
access can be read-only or full (read/write). To enable sharing, in My Computer,
right-click the file or drive to share and select Properties, Sharing (Figure 8-6).
Click on Shared As and enter a name, which can be the same as the drive or file
name, and select an Access Type. When a resource is shared, its icon changes to
include an outstretched hand, so the shared resources are easy to identify in a list.

Serial Port Complete

RS-232 Applications

Ms-dos_62 (C:) Properties ﬂm

General | Tools Sharing |Cnmpression| Noron |

 Not Shared

Share Name: IC

Comment. I

Access Type:
& Bead-Only
" Eull

" Depends on Password

| Passwords:

Read-Only Password; I

Full Access Password I

| oK I Cancel Anply

Figure 8-6: Use the Sharing Tab to specify drives that PCs can share under a
Direct Cable Connection.

When the DCC is established, the View Heost button on the DCC window enables
you to view and access the shared resources on the host. To select a folder, click
on it as usual.

Another way to view and access the host is to map a drive to an unused drive letter
on the guest. The host must have a name, which you specify in its Control Panel
under Network, Identification, Computer Name. In My Computer, click the Map
Network Drive icon. Select an unused drive letter, and type the path of the drive
you want to access. A double backslash (\\) preceding the path tells the system
that the path is on the remote system. Don’t add a colon (:) after the drive letter.
The drive then appears along with other system drives in My Computer.

Briefcase

If you use more than one computer to work on a set of files, Windows 95’s Brief-
case helps you maintain a single up-to-date version of each file. If Briefcase isn’t
installed, add it in Control Panel, Add/Remove Programs.

Serial Port Complete 183

Chapter 8

A common use for the Briefcase is when you use a portable computer and a desk-
top computer to work on the same files. You can use Briefcase to synchronize, or
maintain up-to-date copies, of files that reside on both computers. To use the
Briefcase, establish a Direct Cable Connection with the portable computer as
guest and the desktop computer as host. At the guest, use View Host to see the
shared resources. Copy the files you’ll want to synchronize to the guest’s Brief-
case. The Briefcase uses the syntax \Viostname\path\filename for the host’s files.
Now you can disconnect the DCC link and work with the files on the guest com-
puter.

When you want to synchronize the files, re-establish the DCC link. In the guest’s
Briefcase, under the Briefcase menu item, select Update All or Update Selection.
If the two versions of a file differ, Briefcase will display the filename and date and
time information and ask if you want to update the older file. If you answer yes,
both computers will have identical, up-to-date versions of the file. If both versions
have changed, Briefcase allows you to select which version to use, or skip the
update entirely. If you no longer want to update a file, select Split From Original,
and the Briefcase will no longer attempt to synchronize it.

(You can also use the Briefcase without DCC, to synchronize files on a hard disk
and a floppy.)

DOS Interink and Intersvr

184

For DOS users, MS-DOS version 6 added the ability to redirect disk and paral-
lel-port operations from one computer (the client) to another (the server), using a
simple serial or parallel connection between the computers. The client can read
and write to disks and LPT devices on the server.

DOS provides two programs for this purpose: Interlnk.exe and Intersvr.exe. You
also need either a null-modem serial cable, or a nibble-mode parallel cable. If only
one of the computers has the Interink and Intersvr files, you can use Interink to
copy files over a serial link, but not a parallel link.

Using Interink, the client can read, write to, copy, move, and delete files on the
server. MS-DOS’s online help has details on how to use these programs.

Serial Port Complete

Links and Networks with RS-485

Links and Networks
with RS-485

Chapter 8 showed how to use an RS-232 interface to link two computers. When
you need to transmit over longer distances or at higher speeds than RS-232 can
handle, RS-485 is a solution. Plus, RS-485 links aren’t limited to just two devices.
Depending on the distance, bit rate, and interface chips, you can connect as many
as 256 nodes along a single pair of wires.

This chapter introduces RS-485 signals and interfacing.

About RS-485

What most people call RS-485 is the interface described by a document titled
TIA/EIA-485. A similar standard is ISO/IEC 8482.1993. In this book, I bow to
convention and conciseness and call it RS-485.

RS-485 has several advantages over RS-232:

Low cost. The drivers and receivers are inexpensive and require just a single +5V
(or lower) supply to generate the required minimum 1.5V difference at the differ-
ential outputs. In contrast, RS-232’s minimum output of 5V requires dual sup-
plies or an expensive interface chip that can generate the supplies.

Serial Port Complete 185

Chapter 9

Networking ability. Instead of being limited to two devices, RS-485 is a multi-
drop interface that can have multiple drivers and receivers. With high-impedance
receivers, an RS-485 link can have as many as 256 nodes.

Long links. An RS-485 link can be as long as 4000 feet, compared to RS-232’s
typical limit of 50 to 100 feet.

Fast. The bit rate can be as high as 10 Megabits/second.

The cable length and bit rate are related. Lower bit rates allow longer cables.
Table 9-1 shows specifications for RS-485 and a related interface, RS-422, which
is limited to one driver and ten receivers, but allows a greater differential input
voltage.

In addition to its use in serial interfaces, RS-485 is also used in fast parallel inter-
faces such as differential SCSIL.

Balanced and Unbalanced Lines

The main reason why RS-485 can transmit over long distances is its use of bal-
anced lines. Each signal has a dedicated pair of wires, with the voltage on one
wire equal to the negative, or complement, of the voltage on the other. The
receiver responds to the difference between the voltages. Figure 9-1 illustrates. A

>

_T_GND

UNBALANCED (SINGLE-ENDED)
RECEIVER MEASURES
VIN TO GND

=
A
B
é BALANCED (DIFFERENTIAL) L GND

RECEIVER MEASURES
VA - VB

Figure 9-1: An unbalanced line uses one signal wire, while a balanced line uses
two.

186 Serial Port Complete

Links and Networks with RS-485

Table 9-1: Comparison of balanced interfaces

Specification TIA/EIA-422-B TIA/EIA-485
Transmission mode balanced balanced
Cable length @90 kbps, 4000 4000

max. (feet), approximate

Cable length @ 10 Mbps, 50 50

max. (feet), approximate

Data rate, max. (bits/sec) 10M 10M
Differential output (minimum, |+ 2 +1.5

volts)

Differential output (maximum, |+ 10 +6

volts)

Receiver sensitivity (volts) +0.2 +0.2

Driver load, minimum (ohms) |100 60
Maximum number of drivers 1 32 unit loads
Maximum number of receivers |10 32 unit loads

big advantage to balanced lines is their immunity to noise. Another term for this
type of transmission is differential signaling.

In contrast, RS-232 uses unbalanced, or single-ended lines, where the receiver
responds to the difference between a signal voltage and a common ground used by
all. An unbalanced interface may have multiple ground wires, but all of the signal
grounds connect together.

TIA/EIA-485 designates the two lines in a differential pair as A and B. At the
driver, a TTL logic-high input causes line A to be more positive than line B, while
a TTL logic-low input causes line B to be more positive than line A. At the
receiver, if input A is more positive than input B, the TTL output is logic high,
and if input B is more positive than input A, the TTL output is logic low.
Referenced to the receiver’s ground, each input must be within the range -7V to
+12V. This allows for differences in ground potential between the driver and
receiver. The maximum differential input (VA-VB) must be no greater than +6V.

Why Balanced Lines Are Quiet

Balanced lines are quiet because the two signal wires carry nearly equal, opposite
currents. This reduces received noise because most noise voltages are present
more or less equally on both wires. Any noise voltage that shows up on one line is
cancelled by an opposite voltage on the other. The source of noise may be signals
on other wires in the cable or signals that couple into the wires from outside the

Serial Port Complete 187

Chapter 9

188

cable. A balanced receiver sees only the transmitted signal, with noise eliminated
or very much reduced.

In contrast, in an unbalanced interface, the receiver detects the voltage difference
between the signal and ground wire. When multiple signals share a ground wire,
each of the return currents induces voltages on the ground shared by all. Parallel
interfaces may have eight or more lines switching constantly, and even serial links
often use two data lines and several handshaking signals. If the ground connects to
an earth ground, noise from other sources can affect the circuits as well.

Another advantage to balanced lines is that they are immune, within limits, to dif-
ferences in ground potential between the driver and receiver. In a long link, the
grounds at the driver and receiver may vary by many volts. On an unbalanced line,
ground differences can cause a receiver to misread an input. A balanced line
doesn’t care about mismatched grounds, because the receiver detects only the dif-
ference between the two transmitted signals.

In reality, RS-485 components withstand ground differences only up to the limit
specified in their data sheets. A way to eliminate or reduce ground-voltage prob-
lems is to isolate the link so that the driver’s and receiver’s ground potentials have
no effect on the link. Chapter 10 shows ways to ensure that a link’s ground poten-
tials are within acceptable limits.

The Circuits Inside

Figure 9-2 shows internal circuits of an RS-485 driver and receiver. You don’t
have to understand how the circuits work in order to use them, but I ve found that
taking a look inside a circuit helps to convert it from a mysterious black box to a
set of components with predictable behaviors. This in turn can prevent mistakes or
at least make it easier to know what to do when it’s time to debug.

The components shown are the same as the equivalent circuits in the data sheet for
Texas Instruments’ 75179B. Other RS-485 chips may differ in the details, but the
overall operation is the same.

The schematic shows the drivers’ outputs and the receivers’ input and output cir-
cuits, along with the path current takes when the link transmits a TTL logic 1. Not
shown are the circuits between the driver’s TTL inputs and the output transistors,
and between the RS-485 receiver circuits and the TTL outputs.

A logic high at the driver’s TTL input causes transistors Q7 and Q4 to switch on,
and Q2 and Q3 to switch off. The voltage on line A causes Q6 to switch on. Cur-
rent flows into Q6 and returns to the driver via the ground wire. In a similar way,
the low voltage on line B causes Q7 to switch on, and current flows from Q7 into
(04, returning to the receiver via the ground wire. Line A is more positive than line
B, and the result is a logic high at the receiver’s TTL output.

Serial Port Complete

Links and Networks with RS-485

+5V
+5V L S
.\ RS-485 ’7
—— ' LINK
‘ 05
o1 |
; ‘ 9600
LA | 168K
| o60n
X 06
1

DRIVER
CIRCUITS

+5V
TTL + +5Y ‘ CIRCUITS
IN ' TTL
| ‘ : QuUT
! Qa7 ‘
| a3 ‘ : ‘
. 96080
| |2 [|
:]lﬁ.SK
| | ' ‘ 9600 ‘
| 04 | f ‘ 08 ‘
L ; L

- RECEIVER

DRIVER .- > RECE | VER

e -

Figure 9-2: The circuits inside an RS-485 driver and receiver.

Each driver’s current forms a complete loop from driver to receiver, then back to
the driver. A ground wire or other ground connection provides a return path for
both signals. But because the two ground currents are equal and opposite, they
cancel each other and the actual current in the ground wire is near zero.

If the link has multiple receivers, each behaves like the one shown. If the link has
termination resistors, current flows in these as well.

For a logic 0, the situation is the reverse. 02, @3, 05, and Q8 switch on, the others
switch off, and the current in the wires flows in the reverse direction.

Serial Port Complete 189

Chapter 9

W]

2] e

2>

1DCh 1. 2 Volt 2.5 ms
2)Ch 2 2Volt 2.5ms

Figure 9-3: An RS-485 driver’s outputs, referenced to ground. Line B (bottom) is
the inverse of line A (top).

Voltage Requirements

190

RS-485 interfaces typically use a single 5V power supply, but the logic levels at
the drivers and receivers aren’t standard 5V TTL or CMOS logic voltages. For a
valid output, the difference between outputs A and B must be at least 1.5V.

The voltage between each output and signal ground isn’t defined, except that the
common-mode voltage must be within +7V. If the interface is perfectly balanced,
the outputs are offset equally from one-half the supply voltage. Any imbalance
raises or lowers the offset.

Figure 9-3 shows an RS-485 driver’s A and B outputs, each referenced to signal
ground. Each output is around 3V in amplitude, varying from +1V to +4V or -1V
to -4V referenced to ground. The driver’s power supply is +5V. Figure 9-4 shows
the same byte as the difference between line A and B. The peak-to-peak amplitude
of this differential signal is nearly 6V, or twice the peak-to-peak amplitude of the
individual signals.

If one output switches before the other, the combined differential output switches
more slowly, and this limits the maximum bit rate of the link. Skew is the time dif-
ference between the two outputs’ switching. RS-485 drivers are designed for min-
imum skew. For example, Linear Technology’s LTC1685 guarantees a maximum
skew of £3.5 ns.

At the RS-485 receiver, the difference between the A and B inputs needs to be just
0.2V. If A is at least 0.2V more positive than B, the receiver sees a logic 1, and if
B is at least 0.2V more positive than A, the receiver sees a logic 0. If the differ-
ence between A and B is less than 0.2V, the logic level is undefined.

Serial Port Complete

Links and Networks with RS-485

The difference between the requirements at the driver and receiver results in a
noise margin of 1.3V. The differential signal can attenuate or have noise spikes as
large as 1.3V, and the receiver will still see the correct logic level. The noise mar-
gin is less than on an RS-232 link, but don’t forget that RS-485’s differential sig-
nals cancel most noise to begin with.

Also, in most links, the difference between the drivers’ outputs is larger than the
minimum 1.5V, so the noise margin is larger. A driver powered at just 3V can also
easily provide 1.5V between the outputs.

TIA/EIA-485 defines logic 1 as the state where B > A, and logic 0 as A > B.
Using these definitions, RS-485 interface chips are inverters, because B > A on
the RS-485 side of the chip corresponds to a logic low on the TTL side, and A > B
on the RS-485 side corresponds to a logic high on the TTL side. In reality, the
polarities don’t matter as long as all nodes agree on a convention.

Current Requirements

The total current used by an RS-485 link varies with the impedances of the com-
ponents in the link, including the drivers, cable, receivers, and termination compo-
nents. A low output impedance at the driver and a low-impedance cable enables
fast switching and ensures that the receiver sees the largest signal possible. A high
impedance at the receiver decreases the current in the link and increases battery
life in battery-powered links.

The termination components, when used, have the greatest effect on the amount of
current used by the link. Many RS-485 links have a 120-ohm resistor across the

1) Math: 2 Volt 2.5 ms

Figure 9-4: An RS-485 driver’s differential output (LIne A-Line B). The
peak-to-peak amplitude of this signal is nearly 6V.

Serial Port Complete

191

Chapter 9

differential lines at each of the link’s two ends. The parallel combination of these
is 60 ohms. The terminations create a low-resistance path from the driver with a
logic-high output, through the terminations, and into the driver with a logic-low
output. On short, slow links, you may be able to eliminate the termination entirely
and greatly reduce power consumption. Chapter 10 shows how to select a termi-
nation.

When there is no termination, the receivers’ input impedance has the greatest
effect on the total series resistance. The total input impedance varies with the
number of enabled receivers and their input impedance.

An RS-485 driver can drive 32 unit loads. TIA/EIA-485 defines a unit load in
terms of required current. A receiver equal to one unit load draws no more than a
specified amount of current at the input-voltage extremes specified by the stan-
dard. When the received voltage is as much as +12V greater than the receiver’s
signal ground, a unit-load receiver draws no more than 1 milliampere. When the
received voltage is as much as 7V less than the receiver’s ground, a unit-load
receiver draws no more than -0.8 milliampere. To meet this requirement, a
receiver must have an input resistance of at least 12,000 ohms between each dif-
ferential input and the supply voltage or ground, depending on the direction of
current flow.

With one receiver equivalent to a unit load enabled, the resistance of each of the
two differential inputs is 12,000 ohms. (Again, this is the resistance from an input
to ground or the supply voltage, not the resistance between the two inputs.) Add a
second receiver, and the parallel resistance of the combination drops to 6000
ohms. With receivers equivalent to 32 unit loads, the parallel resistance of the
combined inputs is just 375 ohms, or slightly less due to leakage currents. Adding
two 120-ohm terminations reduces the combination to just 60 ohms. This
Visual-Basic code displays the total input resistance for links with receivers
equivalent to 2 to 32 unit loads:

Dim TotalInputResistance As Single

Dim UnitLoads as Integer

TotalInputResistance = 12000

For UnitLoads= 2 To 32

TotalInputResistance = _
(12000 * TotalInputResistance) / _
(12000 + TotalInputResistance)
Debug.Print UnitLoads, TotalInputResistance

Next UnitLoads
You can increase the receivers’ input resistance by using receivers that are a frac-
tion of a unit load. For example, the input resistance of a 1/8-unit-load receiver is
96,000 ohms, and the total parallel resistance of 32 of these is 3000 ohms. The

192 Serial Port Complete

Links and Networks with RS-485

CABLE LENGTH
(FEET)

BIT RATE (BITS/SECOND)

Figure 9-5: RS-485 supports transmissions up to 10 Mbps, but the higher bit rates
require shorter cables.

receivers that are a fraction of a unit load may be slower than other receivers,
though some, such as the 1/8-unit-load MAX3088, support rates up to 10Mbps.

Speed

An RS-485 link can be as fast as 10 Mbps or 4000 feet, but not both at the same
time. Longer cables require slower bit rates. Over long distances, the cable’s
capacitance slows the signal transitions. Figure 9-5 is a general guideline for
determining allowed bit rate for a cable length, as recommended by TIA/EIA/422.
At rates of up to 90 kbps, RS-485 and RS-422 support cable lengths of up to 4000
ft. At faster rates, the maximum allowed cable length drops, to around 400 feet at
IMbps, and 50 feet at 10Mbps. The graph assumes an AWG #24, unshielded, ter-
minated twisted pair.

Serial Port Complete 193

Chapter 9

O]

=

CI¢
MOC
oo

2.00"
COPYRIGHT 1997 BY RE. SMIT
. e
]
IN4 44,
oR1

©
3
® R7
-8
A
<

+5V REF
o5

MODEL LP24@
LOW POWER "aUTD" TX E
250

X

Figure 9-6: RS-485/RS-232 converters are available in many configurations.
(Images courtesy of R.E. Smith (LP24, left) and B & B Electronics (485PTBR,

right).

Adding an RS-485 Port

Although most PCs and microcontrollers have at least one serial port, few come
with an RS-485 interface built-in. However, RS-485 expansion cards are available
for PCs, a variety of interface chips make it easy to convert RS-232 or TTL logic
to RS-485 levels, and a few microcontroller boards have an RS-485 interface.

PC Expansion Cards

As with RS-232, you can add an RS-485 port on an expansion card. The port uses
one of the PC’s COM ports. Chapter 3’s tips and cautions about adding and con-
figuring RS-232 ports also apply to RS-485 cards.

The ports themselves can vary in many details. Some have one just pair of data
lines for half-duplex communications, while others have two pair for full duplex.
Some half-duplex cards include hardware support for automatically enabling the
driver at the appropriate time. This greatly simplifies the software required to con-
trol the port, as explained later in this chapter.

Converter Chips

194

It’s also possible to convert an existing RS-232 or 5V TTL port to RS-485. You
can buy converter modules (Figure 9-6) or make your own.

Converter chips are available for a variety of configuration options. Sources
include Linear Technology, Maxim Semiconductor, Motorola, National Semicon-

Serial Port Complete

Links and Networks with RS-485

+5V vov
SV TTL | 7 sV TTL
SERIAL | 2| I ‘;?J %”9 1%4]; < DI3__|SERIAL
IN T~r q ouT
ME 8la
SERIAL |_3[D ' 7le T rb lseriaL
ouT I>L7_| 129% r4a| " IN
14 a
75179 75179
- RS-485 DIFFERENTIAL
RO ORIVER/RECE TVER ~ DRI VER/RECE T VER

Figure 9-7: A full-duplex RS-485 link.

ductor, and Texas Instruments. Catalogs may list RS-485 chips under Linear,
Interface, or Special Purpose categories.

Converting TTL

As Chapter 5 explained, many microcontrollers have an asynchronous serial port
that uses 5V TTL or CMOS logic levels. There are many ways to convert SV logic
to RS-485.

Full Duplex

The RS-485 interface is designed for use in multi-point systems, with one or more
generators and receivers. Most RS-485 links are half-duplex, where multiple driv-
ers and receivers share a signal path. But you can also use RS-485 in a full-duplex
link, where each direction has its own signal path. Swapping an RS-232 link for a
full-duplex RS-485 link is completely transparent to the software or firmware that
uses the link. You can use the exact same programming for both, though RS-485
supports higher bit rates and the hardware allows longer links.

For this type of link, you can use Texas Instruments” SN75179B differential
driver and receiver. The package contains a driver that translates 5V TTL signals
to RS-485 and a receiver that translates RS-485 back to 5V TTL. Figure 9-7 illus-
trates.

This is a simple solution when you want to create a long-distance, full-duplex link
between microcontrollers. The RS-485 interface chips are also smaller, simpler,
and cheaper than converting to RS-232. You can also use RS-422 interface chips
for this type of link.

Serial Port Complete 195

Chapter 9

Figure 9-8 shows that it’s also possible to use full duplex with multiple drivers
and receivers. One arrangement is in a master/slave network, where a master node
(Node 0 in the figure) has control of the network and grants the others permission
to transmit. One pair of wires connects the master’s driver to all of the slaves’
receivers. In the other direction, another pair of wires connects all of the slaves’
drivers to the master’s receiver. All of the slaves must read messages from the
master to find out which node they’re intended for. The slave being addressed
replies on the opposite pair of wires. The advantage to this arrangement is that it
saves time for the slaves because they don’t have to read the other slaves’ replies.
If all nodes share one data path, the slaves have to read all of the network traffic to
watch for a message from the master.

Half Duplex

Many RS-485 links are half-duplex, with multiple drivers and receivers sharing a
signal path.

When a link has three or more nodes, it usually makes sense to have just one sig-
nal path and allow one node at a time to transmit. Having two data paths is conve-
nient when there are just two devices, because each can transmit at any time
without worrying about whose turn it is. But with more than one driver on the
same pair of wires, there’s no guarantee that the signal path will be free when a
driver wants to transmit, and figuring out when it’s OK to use each of two signal
paths just adds more complications (except in master/slave networks like the one
just described).

Even a link with just two devices may be half-duplex. On microcontrollers that
allow configuring a port bit as input or output, you can send and receive on a sin-
gle bit, reconfiguring the bit as needed. You might do this if you need to use the
fewest number of port bits possible. Or you might use half-duplex to save on
cabling. Over short distances, a couple of extra wires is no big deal, but if you're

NODE @ NODE 1 NODE 2 NODE 3

MAL IMA IMA MA

Figure 9-8: In this full-duplex, multi-node link, Node 0 transmits to all other nodes
on one path, and receives from all other nodes on the other path.

196

Serial Port Complete

Links and Networks with RS-485

+
w
=

sV TTL ?LQR
SERIAL IN ;ﬁi 1209
CONTROL OUT o |
SERIAL OUT 3 A
- B
[75176
- R5-485
TRANSCE | VER
+5V
Q4
sV TTL L8
SERIAL IN lﬁE
CONTROL OUT 2
SERIAL OUT [3[oe Ale
4D e
5-———{f:¢i B|7
[75176
— R5-485
TRANSCE | VER
ADD I T1ONAL
NODES |
o
5V TTL |_8R
—]
SERIAL IN -
CONTROL OUT] 2EE
SERIAL OUT iD L ale
5———{jﬁ¢i B|7
1g_ 75176 Land

TRANSCE IVER
Figure 9-9: A half-duplex RS-485 link.

going half a mile, the cost of the wiring adds up. If you need to transmit in just one
direction (simplex), you of course need only one path.

Figure 9-9 shows a half-duplex interface that uses Texas Instruments’ SN75176B
differential bus transceiver.

The chip includes one driver that translates TTL logic to RS-485, one receiver that
translates RS-485 to TTL, and an enable input for each. Unlike the *179B, this
chip has just one pair of RS-485 pins, with the enable inputs determining whether
the driver or receiver is active.

Serial Port Complete 197

Chapter 9

+5V +5V

SOURCE
ON CURRENT OFF

OFF STNK ON
CURRENT

OUTPUT 1 OUTPUT 2

Figure 9-10: When two or more outputs are on at the same time, the resulting low
impedance path from +5V to ground draws high currents and makes the output
voltage unpredictable.

198

When the driver’s enable input is low, the driver’s output is high impedance, and
for all practical purposes the driver is removed from the circuit. When the
receiver’s enable input is high, the receiver’s output is high impedance and no
longer follows the RS-485 input.

Internal Protection Circuits

In a half-duplex link, only one driver in a link should be enabled at a time. But no
matter how carefully a network is designed, if it has multiple drivers, there’s a
chance that two or more drivers will be enabled at once.

When this occurs, if the drivers try to pull the lines to opposite states, the result is
unpredictable voltages and high currents. Figure 9-10 illustrates. When Output 1
is a logic high, the signal line has a low impedance to the supply voltage. If OQutput
2 switches on, there’s no problem if it’s also a logic high. But if it switches to
logic low, it has low impedance to ground. The result is a low-impedance path
from the power supply to ground. The components draw high currents, and the
voltage is likely to be an undefined logic level. This situation is called line conten-
tion.

All RS-485 interface chips include current limiting and thermal shutdown to pro-
tect the chips if more than one driver is enabled at once. The current-limiting
restricts the output current of the drivers. TIA/EIA-485 says that current must be
limited to 250 milliamperes. If an output continues to source or sink high currents,
the chip will heat up, and eventually the thermal shutdown circuits in the chip will

Serial Port Complete

Links and Networks with RS-485

2>

1Chl: 2Volt 2.5ms
2Ch2 2WVolt 2.5 ms

Figure 9-11: Trace #1 is the active-high driver-enable signal. Trace #2 is a
transmitted byte. The driver-enable must go high before the byte transmits, and
may return low any time after the transmission has completed.

switch the output to a high-impedance state. Of course, this makes the output
unusable until it cools down, but at least the components survive.

Enabling the Driver

The tricky part of using a half-duplex link is controlling when each driver is
enabled, or active. When a driver is transmitting, it must remain enabled until it
has finished transmitting, then switch to disabled before an answering node begins
its response. Figure 9-11 shows a transmitted byte and its driver-enable signal.

There are three ways to control the enable lines:

* In Figure 9-9, one bit controls both the driver and receiver on each chip.
Because the driver’s enable is active-high and the receiver’s is active-low, only
one will be enabled at a time. This setup is useful if a node doesn’t want or
need to receive its own transmissions.

* In many links, the receiver’s output can remain enabled at all times, so the
receiver’s enable can be tied to ground. The control bit connects only to the
driver-enable. Leaving the receiver enabled provides a simple way for a node
to detect when a transmission has completed by reading back the data sent.

« For the most flexible control, you can use a separate bit to control the driver’s
and receiver’s enables.

Serial Port Complete 199

Chapter 9

Chips
There are many other RS-485 interface chips, from a variety of manufacturers and
with different features and abilities. Table 9-2 lists some of the options.

Some chips have maximum bit rates lower than RS-485"s 10 Mbps maximum. As
Chapter 10 shows, the slower devices can result in better signal quality. Many
RS-485 links operate at 115,200 bps or less. If you don’t need high-speed perfor-
mance, the slower chips will do the job, and may avoid trouble.

Other chips are less than one unit load, to allow more nodes in a network.
Power-saving modes and lower supply voltages are useful for battery-operated
devices. Other features include enhanced ESD (electrostatic discharge) protection,
electrical isolation, an indicator pin for thermal shutdown, and failsafe circuits.

The table shows only a few of the many chips available. With a little searching,

chances are that you can find a chip that has whatever combination of features you
need for a particular link.

Converting RS-232

200

Because RS-232 is so popular, many RS-485 interfaces are created by converting
RS-232 signals to RS-485. If a PC has a free RS-232 port, adding an external con-
verter is cheaper and easier than buying and installing an RS-485 card. Some
microcontroller boards also have RS-232 interfaces built-in, though in these cases
it’s usually simpler to bypass RS-232 (by removing the interface chip) and wire
the RS-485 interface directly to the microcontroller’s port pins.

Converter modules are available from many sources, and it’s also fairly simple to
make your own.

Figure 9-12 shows one way to convert RS-232 to RS-485. The interface uses three
RS-232 lines: TD transmits data, RD receives data, and RTS controls direction. A
MAX?233 converts the RS-232 signals to TTL levels, and the TTL signals connect
to a 75176B that provides the RS-485 interface.

When RTS is low, the enable inputs of the *176 are high and TD can transmit to
the RS-485 link. When RTS is high, the enable inputs are low and RD can receive
data from the RS-485 link.

It’s likely that the cable from the RS-232 port to the converter will be no more
than a few feet long. In this case, you can use Chapter 6’s short-range transistor
circuit in place of the MAX233 or other converter chip.

In similar ways, you can create full-duplex RS-232-to-RS-485 interfaces using a
’179B or other 4-wire RS-485 chip.

Serial Port Complete

Links and Networks with RS-485

RS-232 +5V
(DTE) Q
CONNECTOR [z 8
25 (9)-PIN
RXDI3_(2) S| |2 1R
Txpl2_(3) al S I 2|RE
18] —4 N [3[oE
< | 4D L AlB RS-485
RTs[4_(7) 191 ~. 120 8l7 < DIFFERENTIAL
_ 8 i PAIR
7 (5) 13 15 5
SGND -
L 12 16 J_—
(7] 19 75176
14] RS-485
Nag TRANSCE I VER
MAX233
RS-232 INTERFACE
Figure 9-12: This circuit converts between RS-232 and TTL, and between TTL

and RS-485.

Short Links between Different Interfaces

Serial

Sometimes when you have two devices with different interfaces, all you want is to
link them as cheaply and simply as possible. Over short distances, you can use a
simple direct link to connect a full-duplex RS-485 or RS-422 interface with
RS-232.

RS-232 to RS-485

Figure 9-13 shows a simple RS-232 to RS-485 link. The RS-485’s B (inverted)
output connects to RS-232’s RD input. Referenced to signal ground, the B output
is near OV for a logic 1 and near +5V for a logic 0. As explained in Chapter 6,
these voltages don’t meet RS-232’s minimum specification, just about all RS-232
receivers will interpret them correctly. The A output is unused and left open.

In the other direction, a voltage divider ensures that the differential input voltage
doesn’t exceed RS-485’s maximum of +6V. The receiver’s A input is tied to
ground. The B input sees about 1/3 of the transmitted RS-232 voltage. If the
RS-232’s TD is £15V, the RS-485 receiver’s input sees a voltage of about £5V. If
the RS-232’s TD is just £5V, the RS-485 receiver’s input sees a voltage of about
+1.6V, which is well above the minimum requirement of +0.2V.

Port Complete 201

Chapter 9

This interface requires a full-duplex RS-485 or RS-422 interface. If the differen-
tial receiver can accept input voltages as large as the RS-232 driver’s outputs, you
don’t need the voltage divider and can connect the driver and receiver directly.
Both interfaces invert the signals, so a TTL logic 1 at one end translates to a TTL
logic 1 at the other end. This link works fine over short distances, at lower speeds.
If you don’t want to invert the signals, use the RS-485’s A lines.

PC to Macintosh

Apple’s Macintosh has an RS-422 port, which is similar to RS-485 except that it
allows a maximum of one transmitter and ten receivers. The port uses a
mini-DINS plug.

Table 9-3 shows the wiring for a Mac to RS-232 link. The interface works in the
same way as the RS-485-t0-RS-232 link above, and provides a solution for link-
ing a Mac to a PC or any device with an RS-232 port.

+5V
+5YV

B RD

B 3.6K D :::’ -

H >
ey

l.7K
3 Yy
RS-485 RS-232
DIFFERENTIAL SINGLE -ENDED
DRIVER & RECEIVER DRIVER & RECEIVER

Figure 9-13: Use this wiring for a short link between a device with an RS-485
interface and one with an RS-232 interface.

202

Serial Port Complete

Links and Networks with RS-485

Table 9-2: Selected RS-485 interface chips.

Source Part Number Features

Linear Technology LTC485 general-purpose half-duplex transceiver
Maxim Semiconductor |MAX485

National Semiconductor |DS3695

Texas Instruments SN75176B

Linear Technology LTC490 general-purpose full-duplex driver/receiver pair
Maxim Semiconductor |MAX490

Texas Instruments SN75179B

Linear Technology LTC491 full-duplex driver/receiver pair with enables
Texas Instruments SN75ALS180

Linear Technology LTCI1685 controlled propagation delay; 10 Mbps @400 ft.
Maxim Semiconductor |[MAX3088 Maximum speed 10 Mbps

National Semiconductor |[DS16F95 Maximum speed 5 Mbps

Maxim Semiconductor |MAX481 Maximum speed 2.5 Mbps

Maxim Semiconductor |MAX483 Maximum speed 250 kbps

Maxim Semiconductor |MAX3082 Maximum speed 115,200 bps

National Semiconductor |DS36C278T 1/2 unit load

Maxim Semiconductor |MAX487 1/4 unit load

National Semiconductor |DS36C278

Maxim Semiconductor |MAXI1483 1/8 unit load

Linear Technology LTC1481 low-power shutdown mode

Maxim Semiconductor |MAX481

National Semiconductor |DS36C279

Maxim Semiconductor |MAX485E high ESD protection

Linear Technology LTC1480 3V supply

Maxim Semiconductor |MAX3485

Maxim Semiconductor |MAXI1480A complete isolated interface

Maxim Semiconductor |MAX3085 short-circuit failsafe

National Semiconductor |DS36276

National Semiconductor |DS3696 thermal shutdown indicator

Serial Port Complete

203

Chapter 9

Table 9-3: Wiring for a short Macintosh-to-RS-232 link.

Macintosh RS-422 Mini8 DIN [Connection |RS-232 (DTE)

Description Signal |Pin Pin (DB-25) |Pin (DE-9) |Signal
Handshake Out | HSKo |1 [Optional 6or5 6or8 DSR or CTS
Handshake In |HSKi 2 |Optional 20 or4 4or7 DTR or RTS
Transmit - TD- 3 |Required 3 2 RD

Signal Ground |SG 4 |Required 7 5 SG

Receive - RD- 5 |Required 2 3 TD
Transmit + TD+ 6 |No connection |- - -

Unused - 7 |No connection |- - -

Receive + RD+ 8 |No connection |- - -

204 Serial Port Complete

RS-485 Cables & Interfacing

RS-485 Cables &
Interfacing

With RS-485, the choice of cable and related components can mean the difference
between a link that performs flawlessly or one that fails, either completely and
right away, or intermittently and unpredictably. This chapter shows how to select
and connect a cable for an RS-485 link, and how to select drivers, receivers, ter-
minations, and other components for the cable and bit rate.

Figure 10-1 has the essence of this chapter: six rules for wiring RS-485 links. To
get a link up and running quickly and without problems, follow these guidelines.
The rest of the chapter explains the reasons behind the rules. The details are
optional, and you may skim or skip them, or save them for later.

Long and Short Lines

RS-485 links come in many varieties. They may have 2, 32, or a couple of hun-
dred nodes. Bit rates may vary from 300 bps or less to 10 Mbps. The link may
extend a few feet or thousands of feet.

Over short distances at low bit rates, component and cable choices are less critical,
though even here the right choices can save power and reduce noise. Over long

Serial Port Complete 205

Chapter 10

Six Rules for Wiring RS-485 links

1. Use the slowest drivers possible for the bit rate.

2. Terminate long lines with their characteristic impedance.
3. Wire the nodes in a bus topology.

4. Bias inactive links.

5. Use twisted-pair cable.

6. Limit common-mode voltages.

Figure 10-1: Follow these guidelines for trouble-free RS-485 links.

distances and at high bit rates, selecting the proper cables, drivers, receivers, and
related components is essential.

The theory and math behind how digital signals behave in long-distance links is
complicated, and involves thinking about the signals differently than as simple
voltages that transfer instantly and perfectly from driver to receiver. The solu-
tions, fortunately, are usually simple and straightforward, and only require select-
ing components appropriate for the bit rate and distance.

When Is a Line Long?

206

An RS-485 link may be a long or short line. In this use, the terms long and short
refer not to physical length, but to the amount of time required for a signal to
propagate down the line to the receiver. The time varies with the physical length
of the wires, and also with the frequencies carried and how fast the signals travel.

When the wires are physically short and the frequencies low, the time required for
signals to propagate down the wires has little effect on signal quality. The circuit
is considered a lumped system, and the wires form a short line. In many cases, you
can think of short lines as perfect, zero-impedance conductors. When an output
switches state, you can assume that the input at the other end of the link instantly
sees an identical signal.

When the wires are physically long and the frequencies high, the time required for
a signal to propagate down the wires is significant. This type of circuit is consid-
ered a distributed system, and the wires form a long line. Another name for a long
line is transmission line. On a long line, the proper terminating components
ensure that the receiver sees a clean signal by reducing reflected voltages on the
line.

Serial Port Complete

RS-485 Cables & Interfacing

+VOUT

90% Q0%
10% 10%
-VOouUT
> < - &«
RISE TIME FALL TIME

Figure 10-2: Rise and fall times of a digital signal.

Understanding how long and short lines behave requires understanding the effects
of two parameters: rise time and cable delay.

Rise Time

Rise time is the time required for an output to switch from 10% to 90% of full
range (Figure 10-2). Its companion, fall time, is often the same, or nearly so, and
some sources use rise time to refer to transition time in general. Slew rate, which
indicates the rate of change of a signal, is a related parameter.

The rise time of a digital signal is an indication of the frequencies that make up the
signal. Faster rise times indicate higher frequencies. Rise time is distinct from the
bit rate, or number of bits transmitted per second, though the rise time limits the
maximum bit rate.

The data sheets for RS-485 drivers specify typical and maximum rise and fall
times. The values range from a few nanoseconds to nearly a microsecond. The
specifications assume a specific load, often 54 ohms and 50 or 100pF, with higher
capacitance requiring a longer switching time.

Rise time and bit rate are related because low bit rates can tolerate slower rise
times. In general, the bit width should be 5 to 10 times longer than the rise time to
ensure that the voltage has reached a valid logic level by the time the receiver
reads it. For example, an RS-485 driver rated for use at 2.5 Mhz may have a max-
imum rise time of 0.06 microsecond, which is 15% of the bit width at 2.5 Mhz.
The bit rate is also important because transmission-line effects such as ringing and
reflected voltages occur during and immediately after voltage transitions, while
receivers read logic levels near the middle of the bits. At a slower bit rate, the bits
are wider, and the voltages are likely to have settled by the time the receiver reads
them.

Why are rise and fall times a measure of frequency? To understand why, think of

the simplest digital signal, a square wave, which has alternating, equal-width high
and low voltages. Mathematically, a square wave is the sum of a sine wave of a

Serial Port Complete 207

Chapter 10

SQUARE WAVE | ‘

SINE WAVES

FUNDAMENTAL /\/\/\/\/\/

5TH HARMONIC

7TH HARMONIC

Figure 10-3: A square wave is the sum of a sine wave and its odd harmonics.

208

fundamental frequency and its odd harmonics. For example, a 100-Hz square
wave is the sum of a 100-Hz fundamental plus harmonics of 300, 500, 700 Hz and
so on up. Figure 10-3 illustrates.

A square wave containing an infinite number of harmonics has instant transitions
and rise and fall times of zero. In real-life components, the laws of physics limit
the high frequencies and result in measurable rise and fall times. A signal with a
low cutoff frequency and few harmonics will have more gradual transitions and
longer rise and fall times. As the number of harmonics increases, the edges
sharpen and the rise and fall times shorten.

Serial data is more complex than a simple square wave, but the basic principle is

the same: the higher the frequencies that make up the signal, the sharper the tran-
sitions.

Cable Delay

Another concept required for understanding long and short lines is cable delay.
One-way delay is the time required for a signal to travel the length of the cable. It
equals the cable’s physical length divided by the propagation rate, or speed, of
signals in the cable.

Serial Port Complete

RS-485 Cables & Interfacing

As you might guess, the propagation rates are extremely fast. Light in a vacuum
travels 300 million meters per second (186,000 miles per second, or 12 inches per
nanosecond). An electrical signal in copper wire travels at around 2/3 to 3/4 this
speed: between 200 million meters/sec (124,000 miles/second or 8 inches/nano-
second) and 225 million meters/sec (140,000 miles/sec. or 9 in./nsec.). Other
terms for propagation rate are propagation velocity and transmission velocity.

These are one-way delays for cables of different lengths:

Length (ft) 2 10 100 1000 4000
One-way delay (usecs, 0.003 0.015 0.15 1.5 15
@8in./ns)

Because the delays are small, they’re of no consequence at all when the cable is
short and the rise time slow. But as explained below, with long cables carrying
signals with fast transitions, the delays can be long enough to result in reflections
that affect the logic levels read by a receiver.

A final related term is propagation delay, or electrical length. This equals 1/Prop-
agationRate and is expressed as time per unit length. The propagation delay of
light in a vacuum is 85 picoseconds per inch. At 2/3 this speed, the propagation
delay of a signal in copper wire is about 125 picoseconds/inch. Another way to
find the one-way delay is to multiply propagation delay by cable length.

Calculating Line Length

As a general rule, a link is a long line if its signals’ rise time is less than four times
the one-way cable delay. Or to put it another way, it’s a long line if the cable’s
one-way delay is greater than 1/4 of the rise time. The dividing line is somewhat
arbitrary. Other sources use values from 1/2 to 1/6. RS-232 links are always short
lines, because of their limited cable length and slew rate.

Listing 10-1 has two Visual Basic functions for cable calculations. One deter-
mines whether a line is long from the propagation rate, the wires” physical length,
and the rise time. The other uses a propagation rate and rise time to calculate the
maximum length of a short line.

If the rise time is unknown, another way of deciding whether a line is long or short
is to compare the shortest expected bit width and the one-way cable delay. This
method must consider two factors: the reflections may bounce back and forth sev-
eral times before settling, and the bit rates of the transmitter and receiver may vary
slightly. As a general rule, if the bit width is 40 or more times greater than the
delay, any reflections will have settled by the time the receiver reads the bits.

Serial Port Complete 209

Chapter 10

Function fncIsTransmissionLine _
(PropagationRate_ PicosecsPerIn As Single,
CableLength Feet As Single, _
DriversRiseTime Nanosecs As Single)

As Boolean

'Calculates whether a line will behave

'as a transmission line.

If (PropagationRate_ PicosecsPerIn * CableLength_ Feet * 12) > _
(DriversRiseTime_Nanosecs * 1000 / 4) Then
fncIsTransmissionLine = True

Else
fncIsTransmissionlLine = False

End If

End Function

Function fncMaximumLengthOfShortLineInFeet _
(PropagationRate PicosecsPerIn As Single,
DriversRiseTime Nanosecs As Single)

As Single

'Returns the maximum cable length

'that will behave as a short line.

fncMaximumLengthOfShortLineInFeet = _
DriversRiseTime Nanosecs * 1000 / _
(PropagationRate PicosecsPerIn * 48)

End Function

Listing 10-1: Visual Basic functions for transmission-line calculations.

Line Terminations

If the calculations show that your link is a long line, the proper termination will
help to ensure that the receiver sees the intended logic level. Some short lines also
can make use of terminations.

Characteristic Impedance

Terminating a long line requires knowing one more piece of information: the
line’s characteristic impedance, which is the input impedance of an infinite, open
line. Every transmission line has a characteristic impedance. The value varies with
the wires’ diameter, their spacing in relation to other wires in the cable, and the
type of insulation on the wires. It doesn’t vary with the wires’ physical length, but
is constant for any length.

210 Serial Port Complete

RS-485 Cables & Interfacing

Characteristic impedance is important because a driver initially sees a transmis-
sion line as a load equal to the line’s characteristic impedance. The value deter-
mines how much current flows in a line when a voltage is first applied, as when an
output switches. When the receiver’s load matches the cable’s characteristic
impedance, the entire transmitted signal drops across the termination, with mini-
mal distortion due to reflections as the voltage and current settle to final,
steady-state values.

And this brings us to rule #1 for RS-485 links:
Terminate long lines with the line’s characteristic impedance.

Finding the Value

The simplest, and probably the most accurate, way to find a cable’s characteristic

impedance is to obtain the value from the cable’s manufacturer. Manufacturers

specify characteristic impedance for products that are likely to be used as trans-

mission lines. Many links use AWG #24 stranded, twisted pair cable, which has a

characteristic impedance of 100 to 150 ohms. But how do the manufacturers find

the values? There are several ways to determine it:

¢ Calculate it mathematically from the properties of the cable. This requires
knowing the wire’s diameter, length, the distance between the wires, and the
effective relative permittivity, which varies with insulation type.

¢ Calculate it from measured inductance and capacitance. Using an impedance
bridge, measure the line’s capacitance (C) with the far end of the cable open,
and measure the line’s inductance (L) with the far end shorted. The characteris-

tic impedance is /(L/C) . This calculation ignores the line’s series and parallel
resistance, which have little effect at high frequencies.

* Find the value empirically by applying a step function to the line and varying
the termination resistor until there are no reflections. A step function is a digi-
tal pulse with a very short rise time, which ensures that the pulse contains high
frequencies. Viewing the signal requires an oscilloscope with very high band-
width. When the waveform across the termination is identical to the transmit-
ted signal, the termination equals the characteristic impedance.

Adding a Termination

Once you’ve decided you need a termination, how do you add it? There are sev-
eral ways to terminate digital lines. Table 10-1 summarizes the options.

Serial Port Complete 211

Chapter 10

Table 10-1: Termination Options for RS-485 Links.

Termination Advantages Disadvantages

none simple, low power suitable only for short links with
slow drivers

parallel end simple high power

series low power suitable only for 2-node links

AC low power suitable only for low bit rates,
short links

parallel open-circuit ensures valid logic level when high power, requires 2 additional

biased open resistors/link

parallel open- and ensures valid logic level when requires 4 additional resistors/node

short-circuit biased open or shorted

Parallel End Termination

Most RS-485 links use an end termination consisting of a resistor equal to the
characteristic impedance connected across the differential lines at or just beyond
the farthest receiver. Figure 10-4 illustrates.

For a cable with a characteristic impedance of 120 ohms, the proper termination is
120 ohms across lines A and B, just beyond the A and B pins at the farthest
receiver.

When two or more drivers share a pair of wires, each end of the link has a termi-
nation resistor equal to the characteristic impedance. No matter how many nodes
are in the network, there should be no more than two termination resistors.

TIA/EIA-485 specifies that RS-485 drivers must be able to drive 32 unit loads
plus a parallel termination of 60 ohms. The total load, including the driver, receiv-
ers, and terminations, must be no less than 54 ohms. In a full-duplex link, each ter-
mination resistor has its own pair of wires, so each driver sees a resistance of 120
ohms. In a link with two termination resistors, the parallel combination of two
120-ohm resistors is 60 ohms. The input impedances of 32 unit-load receivers
decrease the total resistance of the link slightly, while the output resistance of the
driver and the series resistance of the lines increase it.

Effects of Terminations

212

You don’t have to understand why transmission lines behave as they do in order to
design a link that works. But for the curious, the following is an introduction to
transmission-line theory, without attempting mathematical proofs.

A transmission line has two wires: one to carry the current from the driver to
receiver, and another to provide a return path back to the driver. An RS-485 link is

Serial Port Complete

RS-485 Cables & Interfacing

a little more complicated because it has two signal wires that share a termination,
plus a ground return, but the basic principles are the same.

In one sense, there’s nothing different about how long and short lines behave. The
same laws of physics apply whether the driver is slow or fast and whether the sig-
nals travel a short or long distance. Both long and short lines may have voltage
and current reflections due to an impedance mismatch.

In all cases, the reflections happen very quickly, during and just after an output

switches. The difference is that on a long line, the reflections are more likely to

continue long enough to cause the receiver to misread logic levels. On short lines,

the reflections occur much sooner, and have no effect on the received logic levels.
1200

E“FI

— |
— —

1200

=
BN

T

ADD 1T 1 ONAL
NODES |

—>

1200 13> -
1200

FULL DUPLEX HALF DUPLEX

Figure 10-4: A parallel end termination requires a resistor across the differential
lines at or just beyond the last receiver. A two-way interface uses two resistors.

Serial Port Complete 213

Chapter 10

SERIES SERIES
RESISTANCE INDUCTANCE

[m PARALLEL PARALLEL
CAPACITANCE T CONDUCTANCE
o T T T I T I

Figure 10-5: (A) A pair of wires has several impedance sources. (B) One way to
find the characteristic impedance of a line is to think of the line as a series of short
segments.

Impedance Sources of a Line
A pair of wires has several sources of impedance (Figure 10-5A):

Series resistance varies with the wire’s diameter, length, and temperature.
Series inductance varies with diameter and the wire’s distance from a
ground plane.

Parallel capacitance is a measure of the electric field between the wires.
Parallel leakage resistance is a measure of the effectiveness of the wires’

insulation. The leakage resistance is typically a very high value, and is
often expressed as conductance (//R).

All of these sources together determine a line’s characteristic impedance.

One way to calculate the characteristic impedance is to think of a pair of wires as
a series of identical short segments, each having the impedance sources described
above (Figure 10-5B). To find the overall impedance of a long line, find the
impedance of a short segment and use this value to calculate the impedance of an
infinite series of identical segments strung together. For each added segment, the
existing line is in parallel with the new segment’s parallel impedance, and this
combined impedance is in series with the new segment’s series impedance.

As you increase the line’s length, each segment added has less and less effect on
the total impedance, which approaches a fixed value. This value is the impedance
of an infinite, open line, and is equal to the line’s characteristic impedance. The
value is constant for any length of wire. At frequencies greater than 100 kHz,
which make up most of the energy in digital pulses, the characteristic impedance
is mainly resistive, which means it varies little with frequency.

214 Serial Port Complete

RS-485 Cables & Interfacing

Initial and Final Currents

Characteristic impedance is important because when a voltage is first applied to a
pair of wires, the voltage source has no way of knowing what lies at the end of the
pair. It sees the load as an infinite, open line. The driver’s initial current is a func-
tion of its output impedance and the line’s characteristic impedance. The initial
current flows even in a pair of open wires, where you might naturally assume that
no current flows because the circuit is incomplete.

Shortly after the current reaches the end of the line, it settles to a final current,
which is the familiar value determined by the termination and other series resis-
tances in the link. If the initial and final currents vary, the line will see reflected
voltages as the current settles.

Each time a driver switches state, it goes through this transition from initial to
final currents.

Reflections

Figure 10-6 shows simplified examples of received voltages on lines with differ-
ent terminations. In each case, what happens when the initial current reaches the
end of the wires depends on what it finds there. An RS-485 driver has a low out-
put impedance, so in all cases, the impedance at the source, or driver, is less than
the line’s characteristic impedance. But the termination at the receiver may vary.

If the termination is greater than the characteristic impedance, the signal oscil-
lates, or rings, before settling to its final level. The same result occurs if a line has
no termination except the receiver.

The extreme case of a termination greater than the characteristic impedance is
when the wires are open at the far end. The open ends present a discontinuity to
the current, which can’t continue at all. The current has to go somewhere, so it
reflects, or turns around and goes back the way it came. As the current reverses,
its magnetic field collapses. This increases the electrical charge and induces a
voltage that results in the receiver’s seeing a higher voltage than what was trans-
mitted.

If the line has a termination, but its value is greater than the characteristic imped-
ance, the effect is similar, but less extreme. Some of the initial current flows in the
termination and the rest reflects.

The reflected current eventually returns to the driver. The driver absorbs part of
the reflection and bounces the rest back, resulting in a reduced voltage at the
receiver. The reflections may continue to bounce back and forth for a few rounds,
with each of lower amplitude than the previous one. Eventually, the current settles

Serial Port Complete 215

Chapter 10

(A)
TERMINATION
GREATER THAN
CHARACTERISTIC
IMPEDANCE

VOL TAGE
ACROSS
TERMINATION

(B)
TERMINATION
LESS THAN
CHARACTERISTIC
IMPEDANCE

VOLTAGE
ACROSS
TERMINATION

(C)
TERMINATION
EQUALS
CHARACTERISTIC
IMPEDANCE

VOLTAGE
ACROSS
TERMINATION

7T

T

|7 3T

7T

T=1-WAY CABLE DELAY
Figure 10-6: Initial voltages on lines with various terminations.

to a final value determined mainly by the termination, the driver’s output resis-
tance, and other series resistances.
If the termination is less than the characteristic impedance (and the source imped-
ance is less), the signal gradually rises to its final level.

The extreme case of a termination less than the characteristic impedance is when
the wires are shorted together at the far end. When the current reaches the end,
there is no load, so there can be no voltage drop at all. The entire transmitted volt-
age has to reflect back to the driver. The electric field collapses and the magnetic

field increases, inducing a current.

216

Serial Port Complete

RS-485 Cables & Interfacing

If the line has a termination, but its value is less than the characteristic impedance,
the effect is similar, but less extreme. Some of the initial voltage drops across the
termination and the rest reflects. Each time the driver re-reflects a portion of the
voltage, the voltage at the receiver rises, until it reaches its final value.

If the wires terminate in a resistance exactly equal to the characteristic impedance,
the current sees no discontinuity. Instead, it sees something that looks exactly like
the infinite line it had assumed when it started out. The initial and final currents
are equal, and after a single 1-way cable delay, the entire transmitted voltage
drops across the resistor, with no reflections at all.

Effects of Cable Length

The reflections happen very fast. The longer the physical length of the line, the
more time it takes for the reflections to travel back and forth, and the longer the
reflections last. Each reflection bounces from the receiver to the driver and back,
so each new reflected voltage arrives at the receiver after two one-way cable
delays. For example, a 10-ft cable might have a cable delay of 15 nanoseconds. A
series of four reflections would last 0.12 microsecond, plus the initial 15 nsec.
Increase the cable length to 1000 ft, and the same reflections last 12 psecs.

Effects of a Mismatch

If the reflected voltages are large enough and last long enough, they may have any
of several effects on a link. If the receiver sees a reduced voltage, its input may
drop below the threshold for the intended logic level, causing an error in the
received data. If the receiver sees a greater voltage, its input transistors may satu-
rate, slowing its response. A termination of up to 10% larger than the characteris-
tic impedance may improve the signal quality by increasing the initial received
voltage. In extreme cases, a mismatch can cause reflections so large that they
damage components in the link.

Of course, it’s impossible for the termination to match exactly at all times, for all
drivers and receivers in a link. But a value that’s reasonably close will reduce the
amplitude of the reflections and improve signal quality overall.

Effects of a Line’s Series Resistance

A line’s series resistance has little effect on the characteristic impedance at high
frequencies, but the series resistance can become significant for other reasons
when the wires are very long. The resistance of stranded AWG #24 wire is about
25 ohms/1000 feet. In a 4000-foot link, each wire has 100 ohms series resistance.

If the link has two 120-ohm termination resistors, a large part of the signal will
drop across the wires, and the receiver will see a much smaller differential volt-

Serial Port Complete 217

Chapter 10

218

age. But if the signals have the minimum 1.5V difference at the driver, only a
fraction of the signal needs to make it to the receiver for it to detect the minimum
required 0.2V difference. To decrease the series resistance, use wire with a lower
AWG value, which indicates a larger diameter.

Negative Effects of Parallel Terminations

Adding a termination is a tradeoff. Besides reducing reflections, terminating an
RS-485 link has negative effects, including increased power consumption, lower
noise margin, and overriding the receiver’s internal fail-safe circuits.

The higher power consumption is a result of the link’s lower series resistance.
Figure 10-7A and B show how adding a 120-ohm terminating resistor decreases
the parallel input impedance from 12,000 to 119 ohms. Assuming 30 ohms output
impedance for each driver, the current in the link increases from 0.4 to 28 milli-
amps.

The higher current also reduces the noise margin. The driver’s output impedance
absorbs a larger proportion of the output voltage, reducing the differential voltage
at the receivers. If the output impedance of each driver is 30 ohms, 1/3 of the volt-
age drops across the drivers’ output impedances, leaving only 3.3V across the ter-
mination. The received differential signal is still 3.1V greater than the receiver’s
input threshold, however.

Adding a second termination resistor exaggerates both of these effects.

One way to conserve power is to disable all drivers except when they are transmit-
ting. If the link is often idle, disabling the drivers will cut power consumption dra-
matically. If you want to use spare RS-232 signals as a power source for an
RS-232-t0-RS-485 converter, the link can’t use a resistive parallel termination,
because it requires too much current.

Figure 10-7C and D show how adding a termination defeats the fail-safe circuits
included in RS-485 receivers. The failsafe circuits ensure that the receiver sees a
defined logic level when the inputs are open. Without a termination, the internal
pullup and pulldown in many RS-485 receivers holds input A more positive than
input B. But adding a termination lowers the open-circuit differential voltage to
just a few millivolts. This chapter shows how to add circuits that replace the
fail-safe.

Series Terminations

Another type of termination used in some links is the series, or back, termination.
Instead of a parallel resistor across the lines at the end of the link, the resistor is at
the driver, in series with the line (Figure 10-8). The termination plus the driver’s
output impedance equal the line’s characteristic impedance.

Serial Port Complete

RS-485 Cables & Interfacing

+
(M) @.41mA

-@0.41mA

28mA

+5 A
300
300
=]
VA - VB = 4.
+5 A
300
300
- B

+5V

(c) LOGIC 1

2.501vV

UNDEF INED

2.499v

Figure 10-7: (A) and (B) show that a parallel termination increases power
consumption and decreases the noise margin. (C) and (D) show how the
termination defeats a receiver’'s internal open-circuit failsafe circuits.

When the output switches, half of the voltage drops across the output impedance
and termination, so the initial current is only half as large as the final current, and

== =

RS + DRIVER'S OUTPUT IMPEDANCE -=
CABLE S CHARACTERISTIC IMPEDANCE

Figure 10-8: Series termination on a differential line.

Serial Port Complete 219

Chapter 10

the receiver sees a voltage half as large as the final voltage. The receiver’s high
impedance causes most of the voltage to reflect back to the driver. Because the
driver and termination equal the characteristic impedance, they absorb the entire
reflection. This doubles the voltage and brings the voltage and current to their
final values after just one reflection.

This type of termination can be useful in full-duplex links between a single driver
and receiver. It uses much less current than a parallel termination. But it’s not rec-
ommended for links with multiple nodes, because the nodes at different locations
along the line will see varying reflections.

Terminations for Short Lines

220

If the calculations show that a line is electrically short, you may need no added
termination at all. The TIA/EIA-422 standard, which describes an interface simi-
lar to RS-485, says that no termination is required if the bit rate is 200 kbps or
less, or if the rise time is more than four times the one-way cable delay. In these
cases, the voltage reflections are very small or die out long before the receiver
reads the bits.

However, on some short lines with fast rise times, the components may form a
resonant circuit that results in ringing voltages when an output switches. In these
cases, a termination can again ensure good signal quality at the receiver.

The amplitude of the ringing varies with the driver’s output resistance, the wires’
inductance, the load’s capacitance, and the frequencies carried by the wires. As
with other mismatched terminations, if the ringing voltages are large enough, the
receiver may misread transmitted bits.

A simple way to reduce ringing is to use a driver with a slower rise time. There’s
no reason to use a driver capable of 10 Mbps when you’re transmitting at 9600
bps. If you can’t change the hardware, using a low bit rate with a fast driver at
least gives the ringing more time to settle before the receiver reads the input.

You can also reduce ringing by reducing the circuit’s Q, which is a measurement
of its ability to resonate. To do this, decrease the wires’ inductance or increase the
load’s capacitance. To decrease the inductance, use larger diameter wires, or
wires that are twisted more tightly. To increase capacitance, use an AC termina-
tion like those described next.

AC Terminations

An AC, or active, termination can reduce power consumption of idle links, and
may also reduce ringing voltages. However, it also reduces the maximum cable
length and bit rate. Figure 10-9 shows two examples.

Serial Port Complete

RS-485 Cables & Interfacing

v = R

RT = CHARACTERISTIC IMPEDANCE
2(1-WAY CABLE DELAY)

CT »= T
]
MAXIMUM BIT RATE = m
A
B

RTZRT

CT:l:

RT = CHARACTERISTIC IMPEDANCE
CT CHARGES TO ©.5 (A-B)

Figure 10-9: An AC termination can conserve power on some links.

In Figure 10-9A, a resistor and capacitor connect in series across the differential
lines. The capacitor prevents ringing by absorbing the high frequencies that make
up the ringing voltages. It also reduces power consumption, because the current
on the lines will be near zero when the capacitor has charged after each transition.
The added capacitance also lowers the maximum bit rate and cable length, so this
termination is limited to shorter, low-speed links.

TIA/EIA-422 gives this formula to select the capacitor’s value:

CT (pF) < 2 * (one-way cable delay (ps)) / (characteristic impedance (ohms))
Assuming a propagation rate of 125 ps/in. and a characteristic impedance of 120
ohms, a 10-ft. cable should use a capacitor of 250 pF or less. A 100-ft. cable can
use up to 2500 pF.

In addition, the product of the terminating resistance and capacitance should be no
more than 1/10 the width of a bit. For example, with 120 ohms and 2500 pF, the
minimum bit width is 3 microseconds, for a maximum bit rate of 330 khz.

Serial Port Complete 221

Chapter 10

Unlike a purely resistive parallel termination, this termination doesn’t defeat the
receiver’s internal biasing circuits. When all drivers are off, the capacitor remains
charged and the receiver’s internal pull-up and pull-down hold input A > B.

In Figure 10-9B, two termination resistors share a capacitor that connects to
ground. When idle, this termination draws half the current of a single parallel
resistor termination. The capacitor charges to half the differential voltage.

Choosing a Driver Chip

222

Two ways to reduce the effect of reflected voltages are to decrease the cable
length or increase the rise time. There’s usually not much you can do about the
physical length of a cable required for a particular application, but you can control
the rise time with the choice of drivers.

A link should be designed to work at the driver’s minimum and maximum rise
times. For 2.5Mhz drivers, typical rise time is 10 to 15 nanoseconds, and the max-
imum, 60 nanoseconds. Some data sheets also specify a minimum, which may be
as short as 3 nanoseconds. Also remember that rise time varies with the load.

The maximum rise time limits the bit rate. Rise time should be no more than 20%
of the bit width.

The minimum rise time determines whether or not a line is long and requires a ter-
mination. As Table 10-2 shows, with a rise time of 3 nanoseconds and a propaga-
tion rate of 125 picoseconds per inch, a cable just 6 inches long behaves like a
long line.

In contrast, the MAX3080 is very slow, with a minimum rise time of 667 nanosec-
onds. This increases the maximum length of a short line in the above example to
111 feet. The chip is rated for use at up to 115,200 bps, which is fast enough for
many PC and microcontroller applications. If your link doesn’t require fast bit
rates, using slower drivers is a simple, no-cost way to improve signal quality.

In addition to reduced transmission-line effects, slower chips reduce the emanated
EMI (electromagnetic interference). And as explained above, a slow driver can
reduce ringing on short links.

This brings us to rule #2 for RS-485 links, whether long or short:
Use the slowest drivers possible for your bit rate.

Serial Port Complete

RS-485 Cables & Interfacing

Table 10-2: Maximum length of a cable that does not behave as a transmission
line. Assumes a propagation rate of 125 ps/in.

Chip Maximum Bit Rate Rise Time Maximum Length of
(kHz) (nanoseconds) Short Line (feet)

Max3080 115 667 (min.) 111

Max483 250 250 (min.) 41

Max3083 500 200 (min.) 33

Max485 2,500 15 (typical) 2.5

Max3490 10,000 3 (min.) 0.5

Network Topologies

When there are more than two devices in a link, how the nodes are wired together
can also affect signal quality. Figure 10-10 shows several network topologies, or
wiring configurations. RS-485 drivers and receivers are designed for use in a bus,
or linear, topology. This means that the network cable begins at one node, con-
nects in sequence to each of the others, ending at the last node. This enables the
use of terminations at each end of the bus, and brings us to rule #3 for RS-485
links:

Wire the nodes in a bus topology.

A stub is the wires that connect a node to the network cable. Stubs should be as
short as possible. Many sources recommend limiting stub length so that its
one-way delay is 1/4 to 1/2 of the signals’ rise time.

But what if connecting the nodes along a bus isn’t convenient? Sometimes, as in
wiring throughout a house, it would be simpler to branch cables from one or more
central locations, in a star, or hub-and-spoke, topology. An advantage to this
arrangement is that if a connection should open at one of the nodes, communica-
tions among the others can continue normally.

In this case, there are several options:

¢ Use slow drivers to increase the rise time and allow longer lines. With the
Max3080°s minimum rise time of 667ns, a stub of 1/3 the rise time is 150 ft.

« Wire the nodes as a bus, even if this means that each node has a pair of wires
running out to it, then doubling back before going on to the next node. The link
uses twice as much wire, but without compromising performance. If you use a
cable that contains two pairs of wires, you can use a pair for each direction.

Serial Port Complete 223

Chapter 10

* Add a repeater circuit to regenerate the RS-485 signals at a juncture where a
stub connects to the main bus. The regenerated signals begin a new RS-485
link. A complication is the need to control the direction of the repeater. This
requires either an added wire to act as a direction-control signal, or circuits that

(A)
BUS

| NODE 1 [NODE 2 NODE 3 [NODE 4| | NODE 5|

NODE 3
NODE 2 NODE | [NODE 4

®)
HUB
AND

SPOKE
li
NODE 5

NODE 1

NODE 5 NODE 2

(C)
RING

NODE 4 NODE 3

Figure 10-10: Network topologies. RS-485 networks use a bus topology.

224 Serial Port Complete

RS-485 Cables & Interfacing

control the direction automatically. (This chapter has more on repeater cir-

cuits.)
Another topology used by some networks is the ring, which is similar to a bus,
except that the last node connects back to the first, and each node transmits only to
its neighbor. The distance around a ring is unlimited in theory, but the more nodes
you have, the longer it will take to pass a message all the way around. An RS-485
network can use a ring topology if each node has two ports, and each link between
two nodes is a separate RS-485 link.

Open and Short-circuit Biasing

In a half-duplex RS-485 link, there are times when no driver is enabled. Even a
full-duplex link may disable its drivers to save power whenever possible. In these
cases, it’s important that all receivers see a valid logic 1, indicating an idle state. It
can also be useful to ensure a logic 1 input if the RS-485 lines accidentally short
together. This brings us to rule #4:

Bias inactive links.

There are several ways to accomplish this, using additional terminating compo-
nents or chips with fail-safe circuits built-in.

Open-circuit Protection

An RS-485 network should be designed so that only one driver at a time is
enabled. In order to achieve this, each node must wait for the previous driver to
finish transmitting before it enables its driver. In between, there will almost cer-
tainly be times when no driver is enabled.

If no driver is enabled, the signal level at a receiver’s inputs may be undefined. If
the receiver detects a logic 0, it will think it’s received a Start bit and will try to
read a byte. The same situation exists if one or both wires in the link accidentally
open.

Most RS-485 chips include a fail-safe feature that holds input A more positive
than input B when no signal is applied to the receiver. The fail-safe works fine on
links that don’t use a terminating resistor.

But as Figure 10-7 showed, the fail-safe is defeated on lines with terminations.
Figure 10-11 shows a solution. It adds two 470-ohm resistors: one from input A to
+5V and the other from input B to ground. This configuration holds terminal A

Serial Port Complete 225

Chapter 10

+5V
B 4700
i 2.65V
1200 0.3V
2 35V
RS-485
TRANSCE I VER 4700
ALL DRIVER
ENABLES
LOW
(OFF) i
RS-485
TRANSCE I VER
ADD I TIONAL
NODES — 4

: ?IZ@Q

RS-485
TRANSCEITVER

Figure 10-11: Open-circuit biasing for RS-485.

226

about 0.3 more positive than terminal B when no drivers are enabled. The
receiver’s TTL outputs are high, while still allowing any driver to pull line A low.

One pair of resistors at one end of the link biases the entire network. In a mas-
ter/slave network, the biasing resistors are usually at the master. If a node
becomes disconnected from the network, or if a network wire opens, its internal
fail-safe circuits hold the inputs at logic 1.

The external fail-safe components have a small effect on an active link’s current.
When a driver is enabled and A is more positive than B, the output current is in
the same direction as the bias current, so the two currents add. When the driver
brings B more positive than A, the bias current is in the opposite direction, and
subtracts from the signal current. But because the drive current is much larger, the
opposing bias current doesn’t affect the logic level seen by the receiver.

Serial Port Complete

RS-485 Cables & Interfacing

The biasing resistors and the parallel combination of the terminating resistors and
the receivers’ inputs form a voltage divider. The 470-ohm biasing resistors will
work with any 5V link that has two 120-ohm terminations and up to 32 unit loads.
Smaller biasing resistors will increase the noise margin but also increase power
consumption. With larger terminations, the biasing resistors can be a little larger.
For example, a network with 150-ohm terminations can use bias resistors of 560
ohms. A 3V supply requires smaller values.

For an exact match, slightly increase the value of the termination at the node with
the biasing resistors. At this node, the terminating resistance equals the terminat-
ing resistor in parallel with the series combination of the biasing resistors:
TerminationResistance =
(TerminatingResistor * 2 * BiasResistor) / _
(TerminatingResistor + (2 * BiasResistor))
This combined resistance is typically 10 to 30 ohms less than the termination. So
for a more exact match, use a slightly large terminating resistor at the biasing
node. For example, in Figure 10-11, the combined resistance is just 106 ohms,
while increasing the termination to 140 ohms results in a better match of 122
ohms.
Listing 10-2 is a Visual Basic function that returns a bias-resistor value for any
supply voltage, termination, number of unit loads, and noise margin (the desired
difference between A and B on an open line).

Figure 10-11’s circuit differs from RS-232’s convention that an idle link should
be in a marking, or logic 1 state. TIA/EIA-485 defines logic 1 as the state where B
> A, but the biasing holds A > B.

One situation where this can cause confusion is when using an RS-485 interface
with a Basic Stamp II. The Stamp’s host software assumes a direct connection to
an RS-232 interface, where Sin is low, or negative, when idle. But Figure 10-11’s
biasing would result in Sin being high. A solution is to add a 74HC14 or similar
inverter between Sin and the interface chip’s TTL output and between Sout and
the interface chip’s TTL input. If you’re not using the host software, but want to
use Sin and Sout to communicate with other software on a PC, you can invert the
signals with the baudmode parameter of the Stamp’s SerIn and SerOut state-
ments.

An emergency way to invert RS-485 signals is to swap the A and B lines. Con-
necting a transceiver’s A pin to the cable’s B line and the B pin to the A line has
the effect of inverting the signals in both directions. But this technique is likely to
be more trouble than its worth, when you return months or years later to modify or
troubleshoot the link and have long forgotten that the miswiring was deliberate.

Serial Port Complete 227

Chapter 10

Function fncFindBiasResistor _
(Termination As Single, _
NumberOfUnitLoads As Single,
SupplyVoltage As Single,
BiasVoltage As Single)
As Integer
"Calculates the value of fail-safe bias resistors
'"for an RS-485 link.
Dim Count As Integer
Dim TotalTermination As Single
Dim Current As Single
'First find the parallel resistance of the termination resistors
'and the receivers.
'Assume two Terminations in parallel.
TotalTermination = Termination * 2 / (Termination * 2)
'One unit load is 12,000 ohms.
For Count = 1 To NumberOfUnitLoads
TotalTermination = _
TotalTermination * 12000 / (TotalTermination + 12000)
Next Count
'Find the current in the bias network.
Current = BiasVoltage / TotalTermination
'"Each bias resistor equals
"input B's open-circuit voltage divided by the current.
fncFindBiasResistor = _
CInt (((SupplyVoltage / 2) - (BiasVoltage / 2)) / Current)
End Function

Listing 10-2: Use this function to find the value of bias resistors.

Also, the chips’ internal (and possibly external) biasing brings A high and B low,

and swapping the lines conflicts with this.

Short-circuit Protection

Another concern in RS-485 links is ensuring a logic 1 input if the network wires
accidentally short together, or if two drivers are enabled at the same time and hold

the differential voltage near OV.

A simple solution is to use Maxim’s MAX3080. TIA/EIA-485 says that receivers
must recognize valid logic levels when the difference between inputs A and B is at
least 200mV. The MAX3080’s receivers comply with the standard but expand the
definition for logic 1 to include the range where input A is between 50mV less

228 Serial Port Complete

RS-485 Cables & Interfacing

than, and 200mV greater than, input B. In other words, the only undefined range is
when one input is 50 to 200 mV less than the other.

With these definitions, the receiver sees a logic 1 if the difference between input
A and B is zero, which will occur if the RS-485 wires short together. The shorted
lines can have up to 50mV of noise, and the voltage will remain a logic 1.

Another approach shown in Figure 10-12 uses 75ALS180B or MAX491
driver/receivers with a resistor network to provide the fail-safe. These are
full-duplex driver/receiver pairs, similar to the *179 introduced in Chapter 9, but
with an enable line for each direction. Figure 10-12’s circuit is half-duplex, with
the 2-wire interface created by tying the driver and receiver pairs together.

Resistors R/ and R2 bias the line to a logic 1 if no driver is active, and R3 and R4
protect the receiver and ensure that the input remains biased even if the line is
shorted. Only the two end nodes have termination resistor R5, but each node has
its own set of R1-R4.

This termination reduces the noise margin, because R3 and R4 each drop a few
tenths of a volt. If the network has fewer than 32 unit loads, you can increase the
noise margin slightly by reducing the values of R/-R4. Multiply each value by
half the total number of unit loads in the network. To calculate the resistor values

in ohms, use:
R1 = NumberOfUnitLoads * 1100
R2 = R1
R2 = NumberOfUnitLoads * 55
R4 = R3
+5V
+5V
R1 R3
1 36K 1. 8K
75ALS 180
. All2 R4 RS UP TO 32
TTL DATA IN|—2R 811 1. 8K 1200 |NODES TOTAL
— R2
DIRECTION |, 3|RE 36K
NTR
Co oL 4loe L
‘ | Y19
TTL DATA ouT |30 I>L 1o
Jﬂ ADD R1-R4 AT EACH NODE.

— ADD R5 AT TWO END NODES ONLY.

RS-485 DI#FERENTIAL
DRIVER/RECEIVER

Figure 10-12: RS-485 interface with open- and failsafe biasing.

Serial Port Complete 229

Chapter 10

Figure 10-13: A twisted pair cable containing two twisted pairs.

For example, with just two unit-load nodes, R/ and R2 would be 2.2K and R3 and
R4 would be 110 ohms.

Biasing Receiver Outputs

In some half-duplex links, including those with one control signal for the driver
and receiver enable, the receiver is disabled at times, causing the receiver’s TTL
output to be undefined. To ensure that the output remains high, add a 10k pullup
resistor from the output to +5V. You don’t need the pull-up if the output connects
to a microcontroller pin with an internal pull-up (as on the 8051), or if the receiver
drives an input to a MAX232 or other RS-232 interface chip, because these also
have internal pullups.

Cable Types

230

TIA/EIA-485 doesn’t recommend a specific cable type, but twisted pair cable is
inexpensive and performs well in RS-485 links (Figure 10-13). A twisted pair
consists of two insulated conductors that spiral around each other forming a dou-
ble helix. The twists are typically one or two per inch. Catalogs may list this type
of cable as network wire or alarm wire. The simple act of twisting the wires
together causes noise that couples into the wires to cancel.

Another option is triaxial cable, which is like coaxial cable except that it has two
conductors, rather than one, surrounded by a shield. Triaxial cable is expensive,
however, compared to twisted pair.

Serial Port Complete

RS-485 Cables & Interfacing

This results in rule #5 for RS-485 links:
Use twisted-pair cable.

How a Wire Picks Up Noise

To understand how a twisted pair cancels noise requires understanding something
about how noise couples into a wire. Noise is any signal you don’t want in a cir-
cuit. The noise can enter a wire in many ways, including by conductive, com-
mon-impedance, magnetic, capacitive, or electromagnetic coupling.

Conductive and common-impedance coupling require direct contact between the
signal wire and the wire carrying the noise. Conductive coupling occurs when a
wire brings noise from another source, such as a noisy power-supply line, into a
circuit. Common-impedance coupling occurs when two circuits share a wire, such
as a common ground return. In RS-485, the differential signals cancel much of
this type of noise.

The other types of coupling result from interactions between the electric and mag-
netic fields that emanate from the wires themselves, or that couple onto the wires
from outside sources.

Capacitive and inductive coupling are a source of crosstalk, where voltages in one
wire couple into another. When two wires carry charges at different potentials, an
electric field exists between the wires. The strength of the field varies with the dis-
tance between the wires. This electric field is the source of capacitive, or electric,
coupling. Current in a wire causes the wire to emanate a magnetic field. Inductive,
or magnetic, coupling occurs when magnetic fields of two wires overlap, causing
the energy in one wire’s field to induce a current in the other wire.

When wires are greater than 1/6 wavelength apart (1/4 mile at 10 Mhz), the effects
of the capacitive and inductive fields are considered together, as electromagnetic
coupling. An example of electromagnetic coupling is when a wire acts as a receiv-
ing antenna for radio waves.

Twisted-pair Cable

Twisted pairs are effective at canceling low-frequency noise caused by magnetic
coupling. In a twisted pair, each twist of the cable swaps the physical positions of
the wires, and any noise that magnetically couples into one wire is canceled in the
next twist by an equal, opposite noise in the other wire.

If the twisting isn’t perfectly uniform, the canceling will be less than 100 percent,
but the noise will be much reduced. The twisting is most effective in reducing

Serial Port Complete 231

Chapter 10

magnetic coupling of low-frequency signals, such as 60-Hz power-line noise. For
a similar reason, twisted pairs also reduce the electromagnetic radiation emitted
by a pair.

The magnetic field emanating from a circuit is proportional to the area between
the conductors. Twisting the wires tightly reduces this area, and thus the size of
the magnetic field and the amount of noise that couples into it.

With cable containing two twisted pairs, you can use one pair for the RS-485 sig-
nals and the other for a ground connection. (Connect both wires in the pair to
ground.)

Selecting Cable

232

Both IBM and the EIA have published specifications for cable types. This makes
it easy to buy cables of known quality. Each type has a defined characteristic
impedance and maximum bit rate. The propagation velocity may be specified as
well. Manufacturers also publish specifications for cables designed for use in data
links.

Many RS-485 links use 120-ohm cable, but higher values are also fine. IBM’s
Type 1 cable contains unshielded twisted pairs, is rated for use at up to 100
Mbits/sec., and has a characteristic impedance of 150 ohms.

Some cable intended for data links, including EIA/TIA-568’s Category 3, 4, and 5
cable, uses 100-ohm, unshielded twisted pairs. This is fine for 1-way or
full-duplex RS-485 or RS-422 links. RS-422 allows just one driver and often uses
100-ohm cable with a single 100-ohm termination. But a 2-way, half-duplex
RS-485 link would need two 100-ohm resistors in parallel, which brings the paral-
lel combination to just 50 ohms. This is less than TIA/EIA-485’s specified mini-
mum. Most RS-485 drivers can source and sink 60 milliamperes, however, so
they will work with 100 ohm cable and terminations. But a cable with 120-ohm or
greater characteristic impedance is a better choice for most RS-485 links.

Shielding
Metal shielding is effective at blocking noise due to capacitive, electromagnetic,
and high-frequency magnetic coupling. The shielding is typically grounded at one
end only. If the link has a single power source, the shield ground is at this node.
Many RS-485 links successfully use unshielded cable, however.

Connectors

Unlike RS-232, the RS-485 standard doesn’t specify a connector, signal func-
tions, or pin assignments, so these are left for you to designate. Many links use

Serial Port Complete

RS-485 Cables & Interfacing

RJ-type modular connectors (described in Chapter 7). On any connector, keep the
two signal wires (A and B) next to each other.

The two differential lines for each signal should of course be in the same twisted
pair. Also be careful not to transpose the wires: all of the drivers’ and receivers’ A
pins should connect to one wire, and all of the B pins, to the other.

Grounds in a Differential Link

An RS-485 link forms a single circuit, though it may extend over thousands of
feet. Because the differential drivers cause equal and opposite return currents that
essentially cancel each other out, it may seem that RS-485 has no need for a
ground connection at all. With few exceptions, however, the entire link should
share a ground connection, though the link itself may be isolated from the circuits
it connects to. Chapter 7 introduced the topics of power supplies, grounding, and
isolation. This section looks at grounding and isolation as it relates to RS-485
links, which may extend much farther than RS-232.

Ensuring a Common Ground

The currents in RS-485 balanced lines are nearly, but not exactly, equal. They will
differ slightly due to imbalances between the components and noise that isn’t
exactly equal in both wires. The current in the ground wire may be very small, but
it’s not zero. If there is no ground connection, the energy in the return current has
to dissipate somehow, possibly as radiated energy that shows up as EMI.

In some RS-485 links, all of the nodes and the link itself share a common ground.
In others, the link is isolated from the nodes it connects to. In either case, all of the
link’s drivers and receivers should share a ground connection, which may have
any of several sources. Most obviously, the RS-485 cable may include a wire that
connects to signal ground at each node. Or the nodes’ power supplies may share a
common ground, either through electrical wiring or via an earth ground. In a very
short link, multiple nodes may share a power supply.

The specifications for RS-485 chips limit the permitted difference in ground
potentials. Isolating the link is sometimes easier than ensuring that earth grounds
at distant nodes are within the required limits.

Common-mode Voltages

Common-mode voltage is a measure of the difference between a ground voltage
and signal voltages at one location in a circuit. The common-mode voltage at a

Serial Port Complete 233

Chapter 10

234

receiver is the mean, or average, of the voltages on the two differential lines, ref-
erenced to the receiver’s signal ground. To comply with TIA/EIA-485, compo-
nents must work properly with common-mode voltages from -7V to +12V. In
addition, each of the receiver’s inputs must also be in the range of -7V to +12V,
referenced to the receiver’s ground.

To remain within the standard’s common-mode limit, the ground potentials at the
driver and receiver may vary as much as +7V with differential signals as large as
+5V. The data sheets for interface chips specify a common-mode limit, which is
often larger than the minimum requirement. A link should be designed so that it
doesn’t exceed the limit of its components.

This brings us to the rule #6 for RS-485 links:
Limit common-mode voltages.

If the ground potentials of the driver and receiver are equal, the common-mode
voltage at the receiver is the mean of the two inputs, or +2.5V with a 5V supply.
The common-mode voltages also remain within the limits when the ground poten-
tials of two nodes vary by +7V. For example, if the driver’s outputs are +5V and
OV relative to the driver’s ground, and the driver’s ground is 7V higher than the
receiver’s, the receiver’s inputs, relative to the receiver’s ground, will be +12V
and +7V (assuming no losses in the differential lines). The common-mode voltage
at the receiver’s inputs is:

((DriverOutputA - DriverOutputB) / 2) + _

DriverGroundVoltage - ReceiverGroundVoltage
or

((+5 - 0) / 2) + 7 = +9.5

which is within the +12V limit.

In the other direction, if the driver’s outputs are +5V and OV and the driver’s
ground is 7V lower than the receiver’s, the receiver’s inputs relative to the
receiver’s ground will be +2V and -7V. The common-mode voltage is:

((+5 - 0) / 2) -7 = -4.5
which is also within the -7V limit.
If the receiver’s inputs are within their specified limit, the only time the com-
mon-mode voltage approaches its limit is when the received signal is very small
and has a large offset. For example, if the receiver sees inputs of +11.8V and
+12V, the common-mode voltage is +11.9V.
The difference in grounds is a result both of any DC differences in the ground
potentials plus any AC oscillations or spikes in the ground connection. Some

Serial Port Complete

RS-485 Cables & Interfacing

OUTPUT ON OUTPUT OFF
DRIVER Y DRIVER 7
T T S
| o] s> | D2 BLOCKS | |

1 SUBSTRATE
| | | CURRENT |
= | o |
| | |
B R ‘
)
| quesrinre GRSZND' RO Y |
Y Y| couwwz |z Z

Figure 10-14: Schottky diodes in RS-485 drivers block large substrate currents
between an active driver and disabled drivers.

chips, such as National’s DS26LS32A, allow common-mode voltages as high as
+25V.

Why a Common-mode Voltage Limit?

Why do the chips have the common-mode limit? To understand what’s happening
requires looking inside the chips. Figure 10-14 shows the internal circuits for a
portion of a two-way, half-duplex link. The components are as presented in
National Semiconductor’s application note AN-409. A signal wire connects the
two drivers’ outputs. The receivers, termination, and the rest of the drivers’ cir-
cuits aren’t shown, and a complete link would include a similar circuit for the
other differential signal.

A wire connects the grounds of the two nodes. Each driver also has a parasitic
diode connection between the chip’s grounded substrate (base material) and the
collector of the output transistor. The parasitic diode is a result of the physics of
the semiconductor material that makes up the chip. The chip’s ground pin also
connects to the substrate.

Schottky diodes DI and D2 prevent damaging substrate currents from flowing
when one of the drivers is on and the other is off.

For example, if Node Y’s ground potential is 5V less than Node Z’s, if DI and D2
were replaced by a direct connection, current could flow in a loop through D4,
QI, and back to D4. Series resistors in the ground wire would limit the current,
but driver Y’s output voltage would clamp at -0.7V due to the voltage drop across

Serial Port Complete 235

Chapter 10

D4. Diode D2 blocks this substrate current and allows the active driver to co-exist
with disabled drivers.

The protection is guaranteed only when the common-mode voltages are within the
chip’s specified limits. RS-422 interface chips don’t have the protection diodes.
This is why RS-422 allows only one driver per link.

Adding a Ground Wire

A simple way to ensure that a ground path exists between nodes is to include a
ground wire in the link (Figure 10-15). TIA/EIA-485 recommends connecting a
1/2-Watt, 100-ohm resistor in series between each node’s signal ground and the
ground wire. The resistors protect the components by limiting current in the
ground wire if the ground voltages do vary. It doesn’t hurt to use resistors with
higher power ratings, especially if you expect large ground variations. For exam-
ple, with a 20V difference in grounds, 100 milliamps will flow in each of two
resistors (one at each node), dissipating 1 Watt in each resistor.

Don’t assume that adding a ground wire brings the ground voltages closer
together. An added wire may lower the impedance between the grounds, but if the
ground potentials vary, the voltage difference drops across the resistors.

Isolated Links

236

RS-485 links can be much longer than RS-232, and over long links, the nodes’
grounds may vary by many volts. Chapter 7 introduced galvanic isolation as a
way of making a circuit immune to ground noise in other circuits.

As with RS-232, if the nodes in an RS-485 link have a common earth ground and
a ground wire, ground currents from all sources will choose the path of least resis-
tance. If the power supplies of all nodes use the same electrical system and their
ground wires connect at an earth ground, the ground connection may be quiet.
Even here, though, motors, switches, and other electrically noisy equipment can
induce ground noise. If the nodes are in different buildings, using different power
systems, the earth ground is likely to have higher impedance, and ground currents
from other sources may find their way into the link’s ground wire. Isolating the
link can reduce or eliminate these problems.

TIA/EIA-485 specifies that RS-485 links must have a common ground, either via
a wire or an earth ground. If you can’t guarantee that the earth grounds of the
nodes will be within the components’ common-mode limits, or if you just don’t
want to worry about earth-ground noise, galvanic isolation is a solution.

Figure 10-16 shows four ways to isolate an RS-485 link.

Serial Port Complete

RS-485 Cables & Interfacing

GND A B

NODE

tﬁileeo

NODE

:E_ 100Q

ALL GROUND NODE
RESISTORS

1/2 WATT + PR .
OR GREATER 1000

e

NODE

i 1000

NODE

:E_ 1000

L

Figure 10-15: A 100-ohm resistor between each node and the link’s ground wire
limits the current in the ground wire when two nodes’ grounds vary.

Figure 10-16A has full isolation. Each node’s interface has an isolated power sup-
ply and an optoisolated data link. The link’s ground wire has no connection to any
node’s signal ground or earth ground. This arrangement protects the link from
noisy earth grounds and from variations in ground voltage at different nodes. It
also protects the nodes from noise picked up by the link’s ground wire. The nodes
themselves may or may not share an earth ground.

To isolate a link, you can use discrete components or a chip designed for this pur-
pose. Maxim’s MAX1480 is a complete, isolated RS-485 interface that contains a

Serial Port Complete 237

Chapter 10

TO ADDITIONAL NODES

Zz [RS-485 g RS-485 | <5
NODE = | INTERFACE [GD INTERFACE | 2o NODE
1 D - I 1
+5V GND +5V_ GND GND +5V GND +5V
GROUNDED 3“% FLOATING FLOATING 3‘% GROUNDED
SUPPLY SUPPLY SUPPLY SUPPLY
(A) FULL ISOLATION
TO ADDITIONAL NODES
RS-485 RS-485
NODE INTERFACE [GRD INTERFACE NODE
[——Fr— 1] [=—=—F—]
b 1 1 h
+5V GND GND +5V
FLOATING FLOATING
SUPPLY SUPPLY

(B) FULL EARTH-GROUND [SOLATION, FLOATING SUPPLIES
TO ADDITIONAL NODES
zo [Rs-485 RS-485 | ==
NODE > | INTERFACE [Go INTERFACE | Zo NODE
<z ==
[———t— 1] [——F— 1]
1 1 1 1
TSV O GND +5V
GROUNDED GROUNDED
SUPPLY SUPPLY

ﬂi‘]ﬁ_-

1

(C) DATA [ISOLATION, COMMON GROUND
TO ADDITIONAL NODES
2> [Rs-485 g RS-485
NODE 2> | NTERFACE [Go INTERFACE NODE
T — T 1 [T]
Y5V GND 5V GND T
GROUNDED FLOATING GROUNDED
SUPPLY SUPPLY SUPPLY
(D) PARTIAL ISOLATION, ONE GROUNDED INTERFACE j
Ze
z>= OPTOISOLATED TRANSFORMER EARTH = S IGNAL
% LINK 3”% I SOLAT [ON GROUND = GROUNDS

Figure 10-16: Four ways to isolate an RS-485 link.

238

Serial Port Complete

RS-485 Cables & Interfacing

tiny transformer that isolates the link’s power supply, plus optical isolators for the
signal lines.

Partial isolation can be cheaper or more convenient than full isolation, and in
some cases is enough.

In Figure 10-16B, the nodes and the link are isolated from earth ground, but the
RS-485 link isn’t isolated from the nodes it connects to. The power supplies may
be batteries or floating AC supplies. This arrangement is useful if the nodes’ cir-
cuits are relatively quiet but you want to isolate the nodes and link from variations
in earth ground. A system where each node is battery-powered has this type of
isolation.

In Figure 10-16C, the signals wires are isolated, but the grounds aren’t. This par-
tial isolation offers some protection to the nodes if a voltage surge hits the link.
Because the link shares its ground with the nodes, the grounds must be within the
common-mode limit of the components. If for some reason the link can have only
two wires, the link may use a common earth ground instead of a ground wire as
the return path.

Figure 10-16D shows another partially isolated link. The link shares its ground
with just one node, while all of the other nodes are isolated from the link. Because
the link has a single ground connection, the common-mode voltage is small.

Extending a Link with Repeaters

TIA/EIA-485 specifies that a link may have up to 32 unit loads, or driver/receiver
pairs, but what can you do if you need more than this? Often, the simplest solution
is to use interface chips that are less than a unit load. The downsides are that each
node adds a small amount of capacitance to the line, and some frac-
tion-of-a-unit-load chips don’t support fast bit rates.

Another option is a repeater circuit, which regenerates the RS-485 signals and
allows you to add up to 32 more nodes. You can also use a repeater to extend the
length of a network or to add a spoke to a bus.

Figure 10-17 shows a network with a repeater circuit containing one 75177 and
one 75178 repeater chip. As with transceivers, the repeaters each have a control
input that determines the direction of signal flow through the chip. The *177’s
input is active-high, and the "178’s is active-low.

In a half-duplex link, the link must control the repeater’s direction. For example,
the repeater might match the direction of a master node. To do so, you can use the
same signal to control both the master node and the repeater. If the repeater is far

Serial Port Complete 239

Chapter 10

REPEATER
DIRECTION-
CONTROL

5176 75176
DATA QUT T T DATA IN
R5-485 R5-485
DIRECTION DIRECT ON
CONTROL Pfﬂ“ PTUR CONTROL
DATA [N . . DATA OQUT
RS-485
RS ase LINE REPEATER
L L
UP TO 32 NODES UP TO 32 ADDITIONAL
ON THIS RS-485 NODES ON THIS
FAIR RS-485 PAIR

Figure 10-17: Repeater circuit for RS-485.

from the master node, however, you may have to wire the direction-control signal
as another RS-485 signal, as Figure 10-17 shows.

A microcontroller-based repeater may require no control signal at all. Some
designs are similar to the automatic enable control described in Chapter 11. When
the repeater detects a Start bit from either side, it enables the appropriate driver
and uses timing circuits to calculate the width of a byte. After allowing enough
time for the byte to transmit, plus a margin of error, the repeater disables the
driver, unless another Start bit has been detected. A more sophisticated automatic
repeater detects the Start bit as well as the data bits that follow, and disables the
driver precisely on the Stop bit.

240 Serial Port Complete

Network Programming

Network Programming

Programming serial links becomes more complicated when three or more devices
share a communications path. Each node needs to know when it’s OK to transmit
and which received messages are intended for it. Chapter 2 described techniques
to help ensure that each receiver sees all of the data intended for it, and that the
data contains no errors. This chapter introduces issues and options related to
ensuring reliable, efficient communications in a network.

Managing Traffic

One of the first things to decide is how the network will manage its traffic. There
are many types of networks, and many ways of programming them, but most have
all of the following features:

» Each node can both send and receive.
* Only one node transmits at a time.

¢ Each node recognizes and responds to the messages intended for it, and
ignores all others.

¢ The transmitting node detects when a node doesn’t receive a transmission or
doesn’t understand what it has received, and takes appropriate action.

Serial Port Complete 241

Chapter 11

In a full-duplex link, you usually don’t have to worry about whose turn it is to
transmit. Each driver has its own pair of wires and can transmit whenever it wants.
In a network, you have multiple nodes sharing a single path, and the nodes need a
way to decide when it’s OK to transmit.

Steps in Exchanging a Message

242

Even in the simplest network, it’s important to ensure that all messages get to their
intended destinations without errors, and that each node responds only to those
messages intended for it.

For example, assume that Node 1 wants to send a message to Node 2, telling it to
set an output port to a value and send back the value of another port. All of the fol-
lowing must take place:

Node | must:

Enable its network driver.

Send the address of the node it wants to talk to.

Send the message.

Disable its network driver and wait for a response.
Then Node 2 must:

Read incoming data.

Recognize its address.

Read the message that follows.

Recognize when the message has ended.

Take the requested actions.

Prepare its response.

Enable its network driver.

Send the response.

Disable its driver.
Node 1 then must:

Read the incoming response.

Take any required action.

Enable its driver in preparation for polling the next node.
And at the same time, all of the other nodes must:

Read all incoming data.

Recognize that the messages are not for them.

Serial Port Complete

Network Programming

Protocols

There are several options in the form of protocols, or sets of rules, for handling the
task. Three of these are master/slave, token passing, and collision detecting.

Master/Slave

Master/slave is the simplest protocol to implement, and it’s what I use in Chapter
12’s example network. One node is designated the master and is in charge of con-
trolling all network traffic. To ensure that each node has a chance to speak, the
master typically polls, or sends a message to, each of the slaves in sequence. Each
poll requests a response, which may be a simple acknowledgment, or it may
include requested data, an error message, or other information. A slave may trans-
mit only after the master requests a response. Any message from one slave to
another has to pass through the master.

The main disadvantage is the delays that occur because each node has to wait to
be polled before it can transmit. Depending on the network’s purpose and speed,
the delays may be no problem at all, or much too long to be practical.

For example, imagine a network with a master (Node 1) and nine slaves (Nodes
2-10). The master polls each node in sequence, and each poll takes 10 seconds. If
Node 2 detects an emergency condition and needs to tell the master to take action,
it may have to wait as long as 90 seconds before the master gets around to polling
it.

Token-passing

A token-passing protocol gets rid of the single master and allows any node to have
control of the network. The node in control is said to have the token. Only one
node at a time can have the token.

The network protocol must define how a node knows if it has the token as well as
how to pass it to another node. The token may be just a designated bit or variable
in each node that is set or cleared to indicate whether or not the node has the
token.

When a node wants to pass the token to another node, it gives up the token it has
(by clearing its token bit, for example), and sends a message telling another node
that it now has the token. This node then takes whatever action it wants and passes
the token on.

This protocol enables any node that has the token to talk directly to another. But it
still doesn’t allow a node to interrupt with an emergency message, unless the node
happens to have the token when the emergency occurs.

Serial Port Complete 243

Chapter 11

244

Collision Detecting

A collision-detecting protocol allows any node to transmit whenever the transmis-
sion path is free. If two or more nodes try to transmit at the same time, the nodes,
or all nodes but one, must detect the collision, stop transmitting, and try again
after a delay. This protocol is useful when any node has to be able to transmit
when it wants, with minimal delay, and when the overall traffic on the network is
light, so collisions will be few.

But the programming required to detect collisions isn’t always feasible. And the
network’s hardware has to withstand multiple drivers being enabled at once, if
only briefly.

One way to detect a collision is for the sending node to attempt to read back what
it sends. As long as the reads match the writes, it assumes there is no collision and
the transmission can continue. If the read doesn’t match what was written, the
node assumes that another node is trying to transmit. The node waits a bit, then
tries again.

How well the protocol works depends on the setting of the delay times after a col-
lision. Different nodes should use different delay times, either by assigning each a
different, fixed delay or by using random values. Otherwise, the nodes will all
retry at the same time and no one will ever get through.

The receiving nodes also have to be able to recognize and ignore failed attempts at
transmitting. These attempts should be brief, however, just long enough for the
node to detect the collision.

There are a couple of reasons why RS-485 isn’t suited for collision-detecting pro-
tocols. RS-485 drivers are intended for use in links where only one driver is
enabled at a time. If two or more drivers are enabled, the chips have protection cir-
cuits that limit the current and eventually disable the outputs, but the currents can
be as high as 250 milliamperes. The safety features are intended only for use dur-
ing occasional malfunctions. High currents stress the circuits, and a network pro-
tocol shouldn’t cause this, if only briefly.

Plus, with the asynchronous transmissions used by most RS-485 links, the soft-
ware or firmware usually has no way of examining each bit as it’s received, so
bit-by-bit collision detecting isn’t possible.

In contrast, open-collector and open-drain logic used in synchronous links are
capable of use with multiple drivers enabled, and the software or firmware is often
capable of bit-by-bit monitoring. Chapter 5 described the Basic Stamp’s open
baudmode, which uses open-drain outputs.

I2C is an example of a network interface that uses open-drain outputs and has a
bit-by-bit collision-detecting protocol. In an I>C link, any low output brings the

Serial Port Complete

Network Programming

data line low. When two nodes try to transmit at the same time, the node that wins
is the one sending a message with the most consecutive logic lows, beginning
with the first bit. Each transmitting node checks the data line after writing a
logic-high, to find out if the logic level matches what was sent. If it doesn’t match,
it means that another node has pulled the line low, and the node with the
logic-high output must stop sending data, hold its output high, and delay before
retrying the transmission from the beginning.

I2C’s clock line is also open-drain, and multiple masters may generate the clock.
The hardware handles multiple clocks automatically by going low when any clock
goes low, and going high only when all outputs are logic highs.

Addressing

The network programming also has to manage addressing. Each node has an
assigned address. Each message should include the address of the recipient, to
enable the nodes to detect whether or not a message is intended for it. Here again,
there are several options.

Assigning

An obvious way of handling node addresses is to assign each node a numeric
address. The address may be a byte, or a portion of a byte. The byte may represent
an ASCII character (41h for node A, 42h for node B), or it may be any unique
value (0 through FFh).

If there are fewer than 128 nodes, you don’t need a complete byte to specify the
node, and you can get the most use out of the transmitted byte by assigning extra
bits to other uses. For example, in a 32-node network, bits 0 through 4 can specify
the node number, with bits 5 through 7 giving a command or other information.

Detecting

One challenge in sending addresses is that the nodes have to distinguish between
bytes that are addresses and bytes that contain other information. For example,
imagine a network where each transmitted message begins with the address of the
node the message is intended for. When a node recognizes its address, it knows
that the bytes that follow are intended for it. Only the addressed node has to read
and act on the bytes in the message. The others should ignore it.

Serial Port Complete 245

Chapter 11

246

But how do the nodes know when the message is finished? If the byte following
an address has the value 5, how does Node 5 know whether this is part of a mes-
sage meant for another node, or the beginning of a message meant for it?

There are several solutions:

¢ The addresses may reserve a set of values that the messages never use.

* The network may use a defined message format that lets all nodes know when
a message is finished.

¢ The transmissions may use a 9th bit to indicate whether a byte holds data or an
address.

Reserving Address Values

One way to distinguish between addresses and message data is to reserve a set of
values to be used only for addresses. This makes it very easy for receivers to dis-
tinguish addresses from data, but with the obvious problem that it limits what the
messages can contain. A byte that represents binary data, such as a sensor reading,
may consist of any value from 0 to FFh, and a format that prohibits sending of
some values would be worthless.

A way to get around this limitation is to send all binary data in ASCII Hex format,
as described in Chapter 2. This format can represent any numeric value using only
the ASCII codes 30h through 39h (for 0 through 9) and 41h to 46h (A through F).

Because ASCII Hex can represent any binary value using just 16 codes, there are
plenty of codes left for addressing, commands, or other uses. For example, a net-
work with 32 nodes may use 80h to 9Fh for addresses, and it may define a set of
commands from AOh to AFh.

This method has two drawbacks: it requires more time both to process the data
and to send it. Each transmitting node must convert all binary values to ASCII
Hex, and the receiving node has to convert back. And a binary byte represented in
ASCII Hex uses two bytes, one for each digit, so transmissions take twice as long.

But the simplicity of being able to distinguish so easily between addresses, data,
and commands makes this method popular for networks that can afford the extra
time to send and convert the data.

Defining the Message Format

Another approach is to use a defined message format, with the address and other
information in assigned locations in the message.

For example, an 8-byte message might consist of an address byte followed by
seven message bytes. When a node receives a byte, it examines it to see if the
address matches its own. If yes, it reads and acts on the seven bytes that follow,

Serial Port Complete

Network Programming

then waits for another address byte to examine. If the address doesn’t match, the
node counts, but otherwise ignores, the seven bytes that follow before watching
for the next byte.

The complication with this method is that every node has to detect every byte
sent, if only to know when the message is finished. If a node misses a byte for any
reason, it will be lost and won’t know when its address comes up.

A way around this is to dedicate bytes to indicate Start of Transmission and End of
Transmission. Conventional values for this are 2 (Control+B) for Start of Trans-
mission and 3 (Control+C) for End of Transmission. In Visual Basic, MSComm’s
comEvEof event detects a received end-of-data code (usually 1Ah, Control+Z)).
But using dedicated bytes again results in values being unavailable for other uses.

9-bit Format

The final option for distinguishing between addresses and data is an elegant
method that uses a 9-bit format that lets the hardware do much of the work. The
ninth bit (data bit 8 if you count from 0) indicates whether the byte contains data
(0) or an address (1).

Some microcontrollers have a built-in ability to use the ninth bit to detect an
address. Intel’s 80C51FX series of microcontrollers supports 9-bit communica-
tions. The serial port sends and receives 11-bit words, including Start, 8 data bits,
a 9th bit, and Stop. One way to use the 9th bit is to set it to 1 to indicate an
address, and O to indicate data. Special-function registers can store two addresses.
One is intended as a given address specific to the node, and the other is a broad-
cast address common to all in the network.

The microcontroller monitors all received serial data, ignoring all words whose
ninth bit is 0. When the ninth bit equals 1, the microcontroller compares data bits
0 through 7 with the stored addresses. If it detects a match, the microcontroller
jumps to a routine that reads and acts on the data that follows.

Once the addressing and configuring are set up, all of this is done automatically.
All the firmware has to do is handle the communications addressed to that node.

PCs’ UARTS don’t have full hardware support for 9-bit networks, but you can use
Mark or Space parity in a software-assisted 9-bit protocol. Configure MSComm’s
Settings property for 8 data bits and Space parity. Set MSComm’s Parity-
Replace property to "" to disable parity replacing, which overwrites received
bytes that have parity errors.

When a byte with the parity bit set to 1 reaches the top of the FIFO (meaning that
it’s the next to be read), the UART (and MSComm in Visual Basic) triggers a par-
ity error. The routine that executes on comEventRxParity should compare the
received byte to the node’s address. If it’s not a match, the routine should take no

Serial Port Complete 247

Chapter 11

action. If it does match, the routine should read the data that follows, until the next
parity error indicates a new address. Each time a transmitting node needs to
switch between sending an address and data, it must close the port, change the
parity, then reopen the port.

Not all UARTSs and programming languages allow sending 8 data bits plus a par-
ity bit. A link that sends only ASCII text can use the same technique with seven
data bits and a parity bit.

Cimetrics Technology specializes in 9-bit networking and offers software for PCs
and many other CPUs.

Other Information in Messages

Besides the node address and data intended for the recipient, a message may con-
tain other types of information:

« If messages don’t have a fixed length, each message may include the message
length.

* For error-checking, the message may contain a checksum or other value used
for error detection.

* The message may include the address of the sending node.

¢ Other information may describe the type of data in the file (binary or ASCII,
for example), time and date information, or anything else the receiver needs to
know about the message itself.

This type of information often resides in a header, a block of data at the beginning
of the message. The header typically has a defined size, with each piece of infor-
mation in a defined location.

Using Existing Protocols

248

One quick way to get network programming up and running is to use an existing
protocol. Some data-acquisition devices have an RS-485 interface and respond to
a simple ASCII command set. Other, more complex protocols are defined by vari-
ous standards documents. Some of the standards also describe a hardware inter-
face. A fieldbus is a digital link designed for use by monitoring and control
systems. These are some examples of standard fieldbuses used with RS-485 net-
works:

¢ BAChnet. For building automation and other monitoring and control applica-
tions. From the American Society of Heating, Refrigerating, and Air-Condi-
tioning Engineers (ASHRAE).

Serial Port Complete

Network Programming

* DIN 66348 Measurement Bus. For industrial test and measurement. From the
Association of Measurement Bus Users.

« IEEE-1118. General-purpose master/slave protocol. Began life as Intel’s BIT-
Bus.

* Profibus (Process Fieldbus). For use in manufacturing, process control, and
building automation. From Profibus International.

+ SAE J1708. For vehicle applications. From the Society of Automotive Engi-
neers.

Transmitter Enable Timing

In a half-duplex link, only one driver can be enabled at a time. When two nodes

exchange data, to ensure that two drivers aren’t enabled at once, the nodes must

do two things:

* After sending data, disable the driver as quickly as possible, to enable the
receiver to enable its driver for a reply.

* After receiving data, delay before re-enabling the driver, to allow the sender
time to disable its driver.

The two are related. How long to wait before enabling a driver depends on how
quickly the last node to transmit disables its driver.

The delay is needed because in most cases, a program writes the serial data to a
hardware or software buffer. Often, a combination of the system hardware, port
drivers, and the operating system handles the details of feeding the bytes from the
buffers to the UART. Even if the data goes directly to the UART’s buffer, the
UART must send the bits out one by one, and the driver must remain enabled until
the last Stop bit has gone out.

On microcontrollers, the delays are usually very predictable. On a PC, the trans-
mitting time can vary, due to delays in writing data to the port’s transmit buffer or
other operating-system delays.

With the Basic Stamp, you don’t have to worry about this at all. A Stamp program
won’t jump to the next line until all of a SerOut statement’s bits have transmit-
ted. So a Stamp program can disable the driver immediately after a SerOut state-
ment.

When necessary, there are several ways to control the timings and delays in hard-
ware or software.

Serial Port Complete 249

Chapter 11

250

Software Methods

Ways to time delays in software include calculating the expected time to transmit
and reading back the data after it transmits.

Calculated Delay. Calculating a delay doesn’t require any special hardware con-
figuration, so the method is available to any system. The downside is that it isn’t
the quickest, most efficient method, because of the need to add enough of a safety
margin to handle the longest delays expected.

The program calculates how long the system will need to send the data. It enables
the driver, sends the data, and waits the calculated time before disabling the
driver. For short messages, at minimum, the delay should equal the time required
to transmit a byte multiplied by the number of bytes, plus a safety margin of one
byte. The time required to transmit a byte is 10/BitRate, assuming 8 data bits,
no parity, and 1 Stop bit. Chapter 4 has a routine for calculating these delays.

When transmitting large files, the safety margin should be larger, and may require
some experimenting with the values. If the amount of data is larger than the port’s
software transmit buffer, the program should wait until the buffer has filled for the
last time before timing a delay equal to the buffer’s size.

When the transmitter uses a calculated delay to disable the driver, the receiving
node needs to allow a generous delay, greater than the transmitter’s delay, before
enabling its driver to send a reply.

Read-back Delay. Another way to ensure that all data has transmitted is for the
transmitting node to read the data back after it transmits. This method requires the
receiver to be enabled when transmitting, so it won’t work if a transceiver’s two
enable inputs are tied together.

This method is quicker than using a generous calculated delay. It also detects
many problems that prevent the data from transmitting, such as a disconnected
transceiver or another driver being enabled at the same time.

To use this method, the program enables the driver, sends the data, and waits to
receive the data just transmitted. The transmitting node may just count the bytes
received, or it may compare their values with those transmitted. If the data doesn’t
arrive within a specified time, or if the values don’t match, the program should
handle the problem, perhaps by retrying or by giving up and displaying an error
message.

With this method, the receiving node can enable its driver almost immediately
after receiving an expected amount of data. It only needs to ensure that the trans-
mitter has had enough time to read the data and disable its driver. For example, if
operating-system delays may make the transmitting node slower to read the data
than the receiving node, the receiving node should allow for this.

Serial Port Complete

Network Programming

cT A
L, BRI T
70 12
T1 T2
TO 75176, PIN 3
4l p ole- L OR OTHER RS-485
s Jo3sE DRIVER ENABLE
1-SHOT
DIRECTION 7 s |7
CONTROL L >gs O —
o PULSE WIDTH = (RT)(CT)
J; SUGGESTED VALUES
BIT RATE _ CT RT
5V 300 0.1uF S60K
1200 0 1uF 120K
2400 0 1uF 62K
9600 0 1uF 16K

Figure 11-1: This retriggerable 1-shot can automatically enable an RS-485 driver.
A Start bit or logic 0 results in a pulse of 1.5 word widths.

Hardware Methods

It’s also possible to use hardware to control the driver’s enable line. A hardware
solution frees the software from having to control the enable line, though it may
still have to ensure delays before sending data, to allow other nodes to disable
their transmitters. If you don’t want to design and build your own hardware, con-
verters and boards with hardware control built-in are available from several
sources.

Figure 11-1 shows hardware enable control using a retriggerable 1-shot multivi-
brator. The 1-shot automatically enables the driver whenever the node is transmit-
ting.

The 1-shot uses the Start bit to detect when a byte begins to transmit. Each byte
begins with a falling edge that signifies the Start bit. Capacitor CT and resistor RT
set the width of the 1-shot’s output pulse to slightly longer than the time to trans-
mit one byte.

On the falling edge of the Start bit, the one-shot’s output goes high for at least one
delay time. Because the 1-shot is retriggerable, if another byte begins to transmit
before the 1-shot times out, the new byte’s Start bit will hold the output high until
that byte has finished transmitting. If another byte doesn’t arrive, soon after the
last byte’s transmission is complete, the one-shot’s output goes low and the driver
is disabled.

Because the 1-shot retriggers on every falling edge, the time that its output
remains high will vary depending on the data sent. If bit 6 is 1 and bit 7 is 0, the

Serial Port Complete 251

Chapter 11

252

falling edge at the transition to zero will retrigger the 1-shot and result in a longer
pulse. (remember that the data transmits least-significant-bit first.) But if the byte
is all 1’s (FFh) or all zeros, the 1-shot triggers only on the falling edge of the start
bit, and the pulse will be shorter.

The biggest inconvenience about this method is the need to set a jumper or switch
to match the delay time to the bit rate. The other option is to set the delay for the
slowest expected bit rate, but this will result in much longer than needed delays at
higher speeds.

The answering node must wait long enough for the 1-shot to time out. After
receiving all of the expected data, the receiving node needs to wait one byte width,
plus a safety margin, before enabling its driver to reply.

A more elegant way to generate the delays in hardware is to dedicate a microcon-
troller to the task. The microcontroller can be programmed to enable the RS-485
driver on detecting a Start bit. A timing routine can then calculate the time
required to transmit one byte and disable the driver after the delay. A microcon-
troller can time the delays precisely, eliminating the need to wait an entire byte
width after transmitting any 0.

In fact, because the line is biased to an idle state when all drivers are disabled, the
driver can be disabled any time after the Stop bit’s rising edge. Because the Stop
bit is the same logic level as the idle state (A > B), when the driver is disabled, the
line remains in the idle state.

If the microcontroller detects the Stop bit in the middle of the bit and disables the
driver, the driver is guaranteed to be disabled when the receiving node replies.
The receiving node doesn’t have to add any delay at all before enabling its driver.
Several sources offer RS-485 adapters with this type of automatic enable control
built-in.

Serial Port Complete

Two Networks

Two Networks

This chapter presents circuits and programming for two networks for monitoring
and control jobs. Both are generic, general-purpose examples that show what’s
involved in putting together and programming this type of a network.

The first example is an RS-485 network for PCs and Basic Stamps. The second
example is a simple, short-distance Stamp-only network using open baudmode.

An RS-485 Network

The RS-485 network uses the master/slave protocol described in Chapter 11. The
master node communicates with up to seven slave nodes. Each node connects to
the network via an RS-485 interface. The master is a personal computer running
Visual Basic, and the slaves may be other PCs or Basic Stamps. Each slave
detects, reads, and responds to messages directed to it.

You can use the network as a base for designing your own projects using personal

computers or microcontrollers of any type, in any combination, and any program-
ming language.

Serial Port Complete 253

Chapter 12

w. Serial Port Complete !Elm
Setup
— Transfer
—Interval |
| Start
| Seconds =
| 3 " Single
| A S | T ' Continuous
i " Hours Stop
MNode # Data out Data in Status Last Access
1 17 28 B0 B2 OK 2/24798,10:23:40 AM
2 17 2B 18 02 0K 2/24798,10:23:43 AM
3 17 2D 18 00 0K 2/24798,10:23:45 AM
] 17 30 No Ack 2/24798,10:23:48 AM

Figure 12-1: The main window for the RS-485 network enables users to select an
interval for polling the network, to start and stop polling, and to view the latest
results.

The Protocol

The network uses a communications protocol designed for simplicity and reliabil-
ity in exchanging short messages. A master polls each slave in turn.

Byte Definitions

The network uses the following conventions:

« All data is sent in ASCII Hex format, using the characters 0 through 9 (30h
through 39h) and A through F (41h through 46h). A pair of ASCII Hex bytes
represents one binary value.

* Node addresses use ASCII codes for the characters g to n (67h through 6Eh).

¢ Messages are a defined length. Each message contains four ASCII Hex data
bytes.

Polling the Nodes

Figure 12-1 shows the main window for the program. It uses Chapter 4’s template
file as a base. The user can do a single poll of the network, or select an interval for
continuous polling. A Rich Text box displays the results, including the nodes
polled, data sent and received, and time of the last transfer.

254 Serial Port Complete

Two Networks

& serial PortComplote _____________EEE]

—MNode — CPU Address Acﬁve—l

0 PC 67 ~| | Master

i | [rc v |[6s___~||F

Z Stamp 4 69 | | ¥

3 Stamp v BA ~| |~

4 | [pc ~||lee ~||F

RS #lllsc =T

i | [pc vl +||C

7| |Pc =l =T OK

Figure 12-2: The Nodes window enables users to select an address and CPU type
for each node, and to indicate whether or not the node is in use.

The Setup menu includes three selections. Two were introduced in Chapter 4. The
Port Settings form allows selecting a port and bit rate. The Data File form allows
saving of transferred data in a file. A new form is Nodes (Figure 12-2), which dis-
plays the eight nodes by number, CPU type, address, and whether or not the node
is active (currently in use). All of these are user-selectable, except the master’s
node type and Active check box.

The master polls each slave in turn, using the following procedure:

The master sends a slave address, disables its transmitter and waits for a reply.
All slaves read the address and compare it to their own address.

The slave that recognizes its address responds by enabling its transmitter,
sending its address back to the master as an acknowledgment, then disabling
its transmitter and waiting for data.

When the master receives the acknowledgment, it knows that the slave is wait-
ing for a message. The master sends the message, consisting of four ASCII
Hex bytes. It then disables its transmitter and waits for a reply.

When the slave receives the message, it stores the data, enables its transmitter,
and sends five bytes back to the master: its address, plus four ASCII Hex
bytes. It then disables its transmitter and takes any action requested by the
master’s message.

The master stores the reply from the slave, re-enables its transmitter, and is
then free to poll another slave.

The other nodes may read the addresses and messages, but take no action because
none of the bytes match their addresses.

Serial Port Complete 255

Chapter 12

Messages

The data bytes in the messages can represent anything at all. The master may send
a command to tell the slave to read a sensor, followed by an ASCII Hex value that
indicates which sensor to read. Or the master may send a a byte that selects a
motor to control, and another that selects a speed and direction for the motor. In
reply, a node may send data about switch states, sensor readings, alarm condi-
tions, time and date information, or any digital outputs or logic levels. The slaves
also transmit their address with each message to assure the master that the correct
node is replying.

Customizing

You can change and adapt this format to fit a particular use. For example, the link
may transfer more or fewer data bytes, and it may allow more or fewer nodes.
Table 12-1 shows the defined uses for each of the 256 byte values. Many values
are undefined, and you can assign meanings to these and use them as needed. For
example, FOh through FFh may each indicate a command.

The Link

256

Figure 12-3 is shows an example of wiring you can use for this network. This is
just one possibility. The network may use any appropriate components for a
half-duplex link, including high-speed, low-speed, low-voltage, short-distance,
and isolated components. A PC may also use an expansion card with an RS-485
interface, allowing higher speeds and eliminating the need to convert RS-232.
Each node uses a 75176B RS-485 transceiver to interface to the network. At the
master, the receiver is always enabled, and RTS controls the driver enable. At the
slaves, the driver and receiver enables are tied together and controlled with one
port bit.

At the master node, a MAX232A converts the PC’s RS-232 voltages to TTL volt-
ages. The MAX232A also re-inverts the signals: at its TTL inputs and outputs, a
high voltage represents a logic 1 and a low voltage represents a logic 0. The TTL
voltages interface to the 75176 transceiver.

At the PC, the RTS line determines the direction of the 75176. For the microcon-
trollers, any output port pin can perform this function.

The first and last nodes on the bus each have a 120-ohm termination resistor. Two
470-ohm biasing resistors at one end hold the inputs high when no drivers are
enabled on the network. If your link is short line as defined in Chapter 10, you
don’t need the 120-ohm terminations or the 470-ohm biasing resistors.

Serial Port Complete

Two Networks

NODE @ +5V
MASTER
EECE'EER ALWAYS s 0. 1uF
NABL
27T~

1 max232a |21+
0. 1uF]
RS-232
oc T—i INTERFACE G_\LQ_ | uF Eglzgg
RS-232 0. IuF [. +5y _ TRANSCE[VER
PORT K
25091 -pin LS} E
rpl3_(2) 14 — 11 1R +5V
RTsl_(7) 13 E; 12 —2ARE
L 30E 4700
Topf g = ?a = io a8
<l S [t:i g8 1200
GND 7 (5) 315 ._I'_l.._ L@en
= = 4700
+5y)
?——————il?.]gF
16
NODE 1 0.1 [MAX232A 2 T+
RS-232
o T3l intereace éil?_lpp 751768
4 -
R$-232 0. 1uF TRANSCE [VER
PORT L T 5V
25(9)-pIN LS} = { s
Rpl3L2) 14 <7 11 1R
4 (7) 13 — 12 2|RE
RTS > 4o
Tol2_3) 8 = 9 3 Als
P 0) u
7 1 1o L a
=~J 5 L B|7
Gnp 3! 315 = 1224
751768
RS-485
NODE 2 oy +5y TRANSCEIVER
BASIC STAMP ||
4
OPTIONAL PWR -
pEsuG [oNDRS— R
INTERFACE RESEE?Z = 2|RE
TO PC +5yjed 3o
= P15 D) L als
P14 B 5 Bl7
v, r-————————::j 1920
PO-P12 ARE P12ll6 PORT PIN %= Vs
GENERAL - bl olL5 NETWORK -
PURPOSE boIla INTERFACE ADDITIONAL
PORT BITS a3 NODES MAY
T0 BUS 1
o 3 g8
vy TRANSCEIVER
SIN/SOUT
NE TWORK
INTERFACE
él2@0
1020
PO-Pl4 ARE
GENERAL -
PURPOSE
PORT BITS

74HCT 14

Figure 12-3: Example wiring you can use for the RS-485 network.

Serial Port Complete 257

Chapter 12

Table 12-1: Uses for the 256 byte values

Range (hex) Characters Use

30-39,41-46 0-9, A-F ASCII Hex characters
67-6E g-n Node addresses
00-2F, 3A-40, 47-60, 6F-FF Various Unused

The serial cable to the PC has to have at least four wires. A standard 9-wire cable
will have the needed connections. Master and slave PC nodes use identical cir-
cuits except that the slave’s driver and receiver enable lines are tied together. In
the example slave software, the slaves don’t read back their transmissions.

For a microcontroller link, I chose Basic Stamps, mainly for their ease of use for
debugging, because they can run the network program while maintaining commu-
nications with another host PC.

The Basic Stamp connects directly to its 75176 transceiver. You can use any of
the Stamp’s 16 port bits for the serial link. Node 2 in the schematic shows bit 15
as the receive input, bit 14 as the transmit output, and bit 13 as the direction-con-
trol output. This leaves 13 bits for other uses.

If you want to reserve two more bits for other uses, use Node 4’s wiring for the
Stamps. This configuration uses Sin and Sout for the network interface, and uses
only one of the 16 port bits, for direction control. This wiring prevents the use of
Sin and Sout for debugging with the Stamp’s editor software on a PC. The sim-
plest approach is to use port pins for developing and debugging. When all is work-
ing, if desired, change the pin assignments for Sin and Sout, load the program into
the Stamp, then power down, disconnect the PC, connect the RS-485 transceiver,
and power back up.

Sin and Sout use external inverters to reinvert the signals so that A > B on the
RS-485 line corresponds to the idle state. This is necessary because Sout gets its
logic-low (or negative) voltage from Sin. Sin must be low when the link is idle.
But on the RS-485 link, the idle state is A > B, which results in a logic high at pin
1 of the *176. The inverter converts this to the required logic low. The second
inverter just ensures that both signals use the same polarity.

For the network wires, unshielded twisted pair works well. Include the ground
wire to each node unless you’re sure that all nodes already have a common sig-
nal-ground connection.

258 Serial Port Complete

Two Networks

The Master’s Programming

Listing 12-1 is Visual-Basic program code for the master node. Many parts of the
code are similar or identical to Chapter 8’s 2-device link. Both applications
exchange data with remote computers, but this time there are multiple nodes to
deal with.

The master reads back all data it sends. When the transmitted data has been read
back, the master knows that it’s safe to disable its transmitter. Reading back the
data also provides error-checking. If another node has mistakenly enabled its
transmitter, or if Windows’ timeout delay expires, the master’s data won’t trans-
mit and won’t be read back. After receiving data, the master delays before
re-enabling its transmitter, to give the sending node time to disable its transmitter.

Selecting Nodes

Listing 12-2 is the code for the Nodes window that enables users to select which
nodes are active, and what type of CPU the node contains.

Slave Programming

Listing 12-3 is the program stored in each Basic Stamp when using port bits for
serial communications. Each node must have a unique address. The program disk
also includes Stamp code for using Sin and Sout for communications and Quick-
Basic code for a slave node on a DOS PC.

A Simple Stamp Network

The second network is example is a very simple one. It connects multiple Basic
Stamp II’s using open-baud mode. Chapter 5 showed the circuits for open-baud
mode. The programming uses non-inverted communications, so the data line uses
a pull-up resistor to +5V.

The programming is again a master/slave network. Listing 12-4 is the master’s
program, and Listing 12-5 is the slave’s. For use in debugging, the code reads and
sets I/0 bits on each Stamp.

This network is suitable for as many as eight Stamps, over a total distance of
about 15 feet. With more nodes and over longer distances, proceed at your own
risk!

The network traffic is half-duplex and uses just one port bit.

Serial Port Complete 259

Chapter 12

Option Explicit

‘A master node communicates with up to 7 slave nodes

‘over a half-duplex RS-485 interface.

‘Each node has an address.

‘Each message consists of the receiver’s address, followed by
‘4 ASCII Hex bytes representing 2 binary values.

‘Each reply consists of the sender’s address,

‘followed by 4 ASCII Hex bytes representing 2 binary values.
Option Base 0

‘Delay (milliseconds) to ensure RTS has toggled (Windows delay) :
Const RTSDelay = 200

‘Delay (milliseconds) before enabling transmitter,

‘to allow the slave to disable its transmitter.

Const EnableDelay = 500

‘Delay (milliseconds) to wait for a reply from a slave.
Const ReplyDelay = 3000

*‘Node 0 is the master; other nodes are slaves.

Const HighestNodeNumber = 7

‘With each message, the master sends and receives

‘4 ASCII Hex bytes.

Const NumberOfDataBytesOut = 4

Const NumberOfDataBytesIn = 4

Private Type typNodes
Address (0 To HighestNodeNumber) As Byte
DataOutl (0 To HighestNodeNumber) As Byte
DataOut2 (0 To HighestNodeNumber) As Byte
DataInl (0 To HighestNodeNumber) As Byte
DataIn2 (0 To HighestNodeNumber) As Byte
Status (0 To HighestNodeNumber) As String
Cpu (0 To HighestNodeNumber) As String
Active (0 To HighestNodeNumber) As Integer
LastAccess (0 To HighestNodeNumber) As String

End Type

Private Type typDataTransferFormat
SingleOrContinuous As String
IntervalUnits As String
IntervalValue As Single

End Type

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 1 of 16)

260 Serial Port Complete

Two Networks

Dim SelectedNode As Integer

Dim PollInterval As Integer

Dim DataOut (NumberOfDataBytesOut - 1) As Byte
Dim DatalIn (NumberOfDataBytesIn - 1) As Byte
Dim DataTransferFormat As typDataTransferFormat
Dim PreviousTime As Date

Dim TimeOfTransfer As String

Dim TransferInProgress As Boolean

Dim Nodes As typNodes

Private Function fncConfirmTransmittedData _
(Buffer As Variant)
As Integer
‘Ensure that all data has transmitted by reading it back.
‘Receiver must be enabled!
‘Returned values:
‘-1 = Data read back successfully
‘0 = Data didn’t match
‘1l = Timeout
Dim DataReadBack As String
‘Estimate the time to transmit the data:
tmrTimeout.Interval = OneByteDelay * LenB(Buffer) + 500
tmrTimeout.Enabled = True
TimedOut = False
Do
DoEvents
Loop Until MSComml.InBufferCount >= Len(Buffer) Or TimedOut = True
DataReadBack = MSComml.Input

If StrComp (DataReadBack, Buffer, vbBinaryCompare) = 0 Then
fncConfirmTransmittedData = -1
Else
If TimedOut = False Then
frncConfirmTransmittedData = 0
Else
fncConfirmTransmittedData = 1
End If
End If

tmrTimeout.Enabled = False
TimedOut = False
End Function

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 2 of 16)

Serial Port Complete 261

Chapter 12

Private Function fncCreateMessage _
(NodeNumber As Integer)
As String
‘A message consists of four bytes in ASCII Hex format.
‘Each ASCII Hex pair represents the value of a byte.
Dim MessageLength As Integer
Dim MessageToSend As String
MessageLength = NumberOfDataBytesOut - 1
Call GetDataToSend (NodeNumber)
‘Create the message, consisting of
‘4 bytes that contain the 2 data bytes in ASCII Hex format.
‘Each byte represents 1 hex digit (4 bits).
‘Convert the 2 data bytes to ASCII Hex
‘and store in the Message string.
MessageToSend = _
fncByteToAsciiHex (Nodes.DataOutl (NodeNumber)) & _
fncByteToAsciiHex (Nodes.DataOut2 (NodeNumber))
fncCreateMessage = MessageToSend
End Function

Private Function fncDisplayDateAndTime () As String
‘Date and time formatting.
fncDisplayDateAndTime = _
CStr (Format (Date, "“General Date”)) & “, “ &
(Format (Time, “Long Time”))
End Function

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 3 of 16)

262 Serial Port Complete

Two Networks

Private Function fncWaitForAck (NodeNumber As Integer) As Boolean
‘End on receiving Acknowledge from the slave or timeout.
Dim Ack As Boolean
Dim NodeAddress As String
Dim ReceivedData As String
‘The Acknowledge is the node address.
NodeAddress = Chr (Nodes.Address (NodeNumber))
Ack = False
tmrTimeout.Interval = ReplyDelay
‘Disable the transmitter until Ack is received or timeout.
Call DisableTransmitter
‘Wait for Acknowledge.
Do
tmrTimeout.Enabled = True
TimedOut = False
Do
DoEvents
Loop Until (MSComml.InBufferCount == 1) Or (TimedOut
If TimedOut = False Then
tmrTimeout .Enabled = False
‘Read the byte & compare to what was sent.
ReceivedData = MSComml.Input
If StrComp _
(ReceivedData, NodeAddress, vbBinaryCompare)
Ack = True
Nodes.DataInl (NodeNumber) = Asc(ReceivedData)
Else

True)

0 Then

‘if the Ack doesn’t match the node address:
Ack = False
Call SaveResults (NodeNumber, 0, 0, “Ack Error”)
End If
Else
Ack = False
Call SaveResults (NodeNumber, 0, 0, "“No Ack”)
End If
Loop Until Ack = True Or TimedOut = True
tmrTimeout .Enabled = False
fncWaitForAck = Ack
TimedOut = False
Call EnableTransmitter (EnableDelay)
End Function

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 4 of 16)

Serial Port Complete 263

Chapter 12

Private Function fncWaitForReply _
(NodeNumber As Integer)
As Boolean
‘From the slave, read the node address & 4 ASCII Hex bytes.
Dim Ack As Boolean
Dim Reply As Boolean
Dim ReceivedData As String
Ack = False
Reply = False
TimedOut = False
tmrTimeout .Interval = ReplyDelay
‘Disable the transmitter until bytes are received or timeout.
Call DisableTransmitter
tmrTimeout.Enabled = True
Do
‘Wait for reply
TimedOut = False
Do
DoEvents
Loop Until (MSComml.InBufferCount > 4) Or (TimedOut = True)
If TimedOut = False Then
tmrTimeout .Enabled = False
ReceivedData = MSComml.Input
Reply = True
If StrComp (Asc(Left (ReceivedData, 1)), _
Nodes .Address (NodeNumber), vbBinaryCompare)
‘If the first byte equals the slave’s address,
‘get the numeric value of each pair of ASCII Hex bytes.
Call SaveResults _
(NodeNumber, _
Val (“&h” & Mid(ReceivedData, 2, 2)),
Val(“&h” & Mid(ReceivedData, 4, 2)),

0 Then

“OK")
Else
‘If the first byte doesn’t equal the node address:
Call SaveResults (NodeNumber, 0, 0, “Data Error”)
End If
Else

‘If the wait for a reply times out:
Call SaveResults (NodeNumber, 0, 0, “Reply Timeout”)
End If
Loop Until Reply = True Or TimedOut = True
tmrTimeout.Enabled = False
Call EnableTransmitter (EnableDelay)
fncWaitForReply = Reply
End Function

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 5 of 16)

264 Serial Port Complete

Two Networks

Private Sub cbolntervalValue Click()
‘Store the selected interval for data transfers.
DataTransferFormat.IntervalValue = Val (cboIntervalValue.Text)
‘With shorter intervals, check elapsed time more often.
Select Case DataTransferFormat.IntervalUnits
Case “seconds”
tmrTransferInterval.Interval = 100

Case “minutes”, “hours”
tmrTransferInterval.Interval = 1000
End Select
End Sub

Private Sub cmdStart Click()
‘Initiate data transfer.
Select Case DataTransferFormat.SingleOrContinuous
Case “single”
‘Transfer data once.
‘Disable the Start button until polling is finished.
cmdStart.Enabled = False
Call PollSlave
cmdStart.Enabled = True
Case “continuous”
‘Do one transfer immediately, then let the timer take over.
cmdStart.Enabled = False
cmdStop.Enabled = True
cmdStop.SetFocus
PreviousTime = Now
tmrTransferInterval.Enabled = True
Call PollSlave
Case Else
End Select
End Sub

Private Sub cmdStop Click()

‘Stop transferring data.
tmrTransferInterval .Enabled = False
cmdStop.Enabled = False
cmdStart.Enabled = True

Call DisableTransmitter

End Sub

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 6 of 16)

Serial Port Complete 265

Chapter 12

Private Sub DisableTransmitter ()

‘Set RTS true (high) to disable the RS485 transmitter
‘by bringing its chip-enable low.

‘Assumes that a second RS-232 receiver inverts RTS.
MSComml .RTSEnable = True

End Sub

Private Sub EnableTransmitter (EnableDelay As Single)
‘Set RTS false (low) to enable the RS485 transmitter.
‘Assumes that a second RS-232 receiver has inverted RTS.
‘Delay in milliseconds allows remote node

‘to disable its transmitter.

Call Delay (EnableDelay)

MSComml .RTSEnable = False

‘Windows delay:

Call Delay(RTSDelay)

End Sub

Private Sub Form Load()

Show

Call GetSettings

Call Startup

Load frmPortSettings

Load frmNodes

TransferInProgress = False
tmrTimeout.Interval = ReplyDelay
tmrTransferInterval .Enabled = False
tmrTimeout.Enabled = False

TimedOut = False

Call InitializeDisplayElements
SaveDataInFile = False

Call InitializeNodes

Call GetNewNodeSettings

*The master’s transmitter is enabled,
‘except when receiving replies.
Call EnableTransmitter (0)

End Sub

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 7 of 16)

266 Serial Port Complete

Two Networks

Private Sub Form Unload(Cancel As Integer)
Call ShutDown

Unload frmNodes

Unload frmDataFile

Unload frmPortSettings

Close #2

End

End Sub

Private Sub GetDataToSend (NodeNumber As Integer)
‘Dummy data for testing: the current hour and minute.
Dim CurrentTime As String

CurrentTime = CStr (Format (Time, “nnss”))

Nodes.DataOutl (NodeNumber) = Val (Left (CurrentTime, 2))
Nodes .DataOut2 (NodeNumber) = Val (Right (CurrentTime, 2))
End Sub

Public Sub GetNewNodeSettings()
*Store user changes made on the Nodes form.
Dim Count As Integer
Nodes .Address (0)
For Count = 1 To 7
Nodes.Cpu (Count) = frmNodes.cboCPU(Count) .Text
Nodes .Address (Count) = _
CInt (“&h"” & frmNodes.cboAddress (Count) .Text)
Nodes.Active (Count) = frmNodes.chkNodeActive (Count) .Value
Next Count
End Sub

CInt (“&h"” & frmNodes.cboAddress (0) .Text)

Private Sub InitializeDisplayElements ()
optSingleOrContinuous (0) .Value = True
optIntervalUnits(0) .Value = True
cboIntervalValue.ListIndex = 0
rtxStatus.Locked = True

rtxStatus.Text = "
DataTransferFormat.IntervalValue = 1
cmdStop.Enabled = False

End Sub

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 8 of 16)

Serial Port Complete 267

Chapter 12

Private Sub InitializeNodes ()

Dim Count As Integer

For Count = 0 To HighestNodeNumber
Nodes.DataInl (Count) = 0
Nodes.DataIn2 (Count) = 0
Nodes.Status (Count) = ““
Nodes.LastAccess (Count) = ““
Nodes.Cpu(Count) = ““

Next Count

Call UpdateDisplay

End Sub

Private Sub mnuDataFile Click(Index As Integer)
frmDataFile.Show
End Sub

Private Sub mnuNodes Click(Index As Integer)
frmNodes.Show
End Sub

Private Sub mnuPortSettings Click(Index As Integer)
frmPortSettings.Show
End Sub

Private Sub optIntervalUnits_Click(Index As Integer)
‘Set the interval combo box to match the units selected.
Dim Maximum As Integer

Dim Count As Integer

Select Case Index

Case 0
Maximum = 59
DataTransferFormat.IntervalUnits = “seconds”
Case 1
Maximum = 59
DataTransferFormat.IntervalUnits = “minutes”
Case 2
Maximum = 24
DataTransferFormat.IntervalUnits = “hours”
End Select

cboIntervalValue.Clear

For Count = 1 To Maximum
cboIntervalValue.AddItem CStr (Count)

Next Count

cboIntervalValue.ListIndex = 0

End Sub

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 9 of 16)

268 Serial Port Complete

Two Networks

Private Sub optPollUnits_Click(Index As Integer)
‘Set the combo box items to match the units selected.
Dim Maximum As Integer
Dim Count as Integer
Select Case Index
Case 0, 1
‘seconds, minutes
Maximum = 59
Case 2
‘hours
Maximum
End Select
End Sub

24

Private Sub optSingleOrContinuous Click (Index As Integer)
Select Case Index
Case 0
DataTransferFormat.SingleOrContinuous = “single”
‘Disable interval selection:
optIntervalUnits(0) .Enabled False
optIntervalUnits(1l) .Enabled = False

optIntervalUnits(2) .Enabled = False

Case 1
DataTransferFormat.SingleOrContinuous = “continuous”
‘Enable interval selection:
optIntervalUnits (0) .Enabled = True

optIntervalUnits (1) .Enabled = True
optIntervalUnits(2) .Enabled True
End Select
End Sub

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 10 of 16)

Serial Port Complete

269

Chapter 12

Private Sub PollSlave ()
‘Send the node address & wait for Acknowledge.
‘If Ack received, send data, wait for reply.
‘Store the results.
Dim AckReceived As Boolean
Dim AttemptNumber As Integer
Dim Buffer As Variant
Dim Count As Integer
Dim LastNode As Integer
Dim MessageToSend As Variant
Dim NumberOfTries As Integer
Dim ReplyReceived As Boolean
Dim TransmitFinished As Boolean
TransferInProgress = True
For Count = 1 To HighestNodeNumber
‘Skip the node if it isn’t selected (Active) on the Nodes form.
If Nodes.Active(Count) = 1 Then
‘Clear the transmit and receive buffers
MSComml .OutBufferCount = 0
If MSComml.InBufferCount > 0 Then
Buffer = MSComml.Input
EndIf
‘Create the message from the stored wvalues.
MessageToSend = fncCreateMessage (Count)
‘Store the time of the poll.
Nodes.LastAccess (Count) = fncDisplayDateAndTime
‘Send the node address as a text character.
Buffer = Chr (Nodes.Address (Count))
‘For Stamp and other slaves without input buffers,
‘poll more than once if needed.
Select Case Nodes.Cpu(Count)

Case “PC”
NumberOfTries = 1
Case “Stamp”
NumberOfTries = 2
End Select

AttemptNumber = 0

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 11 of 16)

270 Serial Port Complete

Two Networks

Do
MSComml.OQutput = Buffer
‘Wait for the data to transmit
Select Case fncConfirmTransmittedData (Buffer)
Case -1
‘If success, wait for Acknowledge.
AckReceived = fncWaitForAck (Count)

Case 0
Nodes.Status (Count) = “Transmit error”
Case 1
Nodes.Status (Count) = “Ack Timeout”
End Select

AttemptNumber = AttemptNumber + 1
Loop Until AckReceived = True Or _
AttemptNumber = NumberOfTries
If AckReceived = True Then
MSComml.Qutput = MessageToSend
‘Delay to let the data transmit
Select Case fncConfirmTransmittedData (MessageToSend)
Case -1
‘Data has transmitted.
‘Wait for the slave’s reply.
ReplyReceived = fncWaitForReply (Count)
Case Else
Nodes.Status (Count) = “Transmit error”
End Select
End If
Call UpdateDisplay
End If
Next Count
If SaveDataInFile = True Then
Call WriteResultsToFile
End If
TransferInProgress = False
End Sub

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 12 of 16)

Serial Port Complete 271

Chapter 12

Private Sub SaveResults _
(NodeNumber As Integer,
Datal As Byte,

Dataz As Byte,
ResultStatus As String)

Nodes.DataInl (NodeNumber) = Datal
Nodes.DataIn2 (NodeNumber) = DataZ2
Nodes.Status (NodeNumber) = ResultStatus

End Sub

Private Sub WriteResultsToFile()
‘Save received data and time in a file.
Dim Count As Integer
For Count = 1 To HighestNodeNumber
‘Skip if the node isn’t selected (active) on the Nodes form.
If Nodes.Active(Count) = 1 Then
Write #2,
Count, _
Nodes.LastAccess (Count) ,
Nodes.DataOutl (Count) ,
Nodes.DataOut2 (Count) ,
Nodes.DatalInl (Count),
Nodes.DatalIn2 (Count),
Nodes.Status (Count)
End If
Next Count
End Sub

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 13 of 16)

272 Serial Port Complete

Two Networks

Private Sub tmrTransferInterval Timer ()

‘See if it’s time to do a transfer.

Dim CurrentTime As Date

Dim Units As String

CurrentTime = Now

Select Case DataTransferFormat.IntervalUnits
Case “seconds”

Units = “g”
Case “minutes”
Units = “n”
Case “hours”
Units = “h”
End Select

‘If elapsed time since the last transfer is more than
‘the selected interval, do a data transfer.
If DateDiff (Units, PreviousTime, CurrentTime) >=
DataTransferFormat.IntervalValue Then
PreviousTime = CurrentTime
‘But don’t start a new transfer if one is in progress.
If TransferInProgress = False Then
Call PollSlave
End If
End If
End Sub

Private Sub tmrTimeout Timer ()
tmrTimeout .Enabled = False
TimedOut = True

End Sub

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 14 of 16)

Serial Port Complete 273

Chapter 12

Private Sub UpdateDisplay ()
‘Show the latest information for all nodes
Dim Column As Integer
Dim DataInlDisplay As String
Dim DataIn2Display As String
Dim Count As Integer
‘Set up 5 columns
With rtxStatus
.SelTabCount = 5
For Column = 0 To .SelTabCount - 1

.SelTabs (Column) = 1000 * Column
Next Column
End With
rtxStatus.Text = “Node #” & Chr(vbKeyTab)

& “Data out” & Chr (vbKeyTab)
& "“Data in” & Chr (vbKeyTab)
& “Status” & Chr (vbKeyTab)
& “Last Access” & vbCrLf
For Count = 1 To HighestNodeNumber
‘Skip if the node isn’t selected (active) on the Nodes form.
If Nodes.Active(Count) = 1 Then
Select Case Nodes.Status (Count)
Case "“OK”
DataInlDisplay = _
fncByteToAsciiHex (Nodes.DataInl (Count))
DataIn2Display = _
fncByteToAsciiHex (Nodes.DataIn2 (Count))
Case Else
DataInlDisplay = ““
DataIn2Display = ““
End Select
rtxStatus.SelStart = Len(rtxStatus.Text)
rtxStatus.SelText = _
Hex$ (Count) & Chr (vbKeyTab) _
fncByteToAsciiHex (Nodes.DataOutl (Count)) & " "

&
& fncByteToAsciiHex (Nodes.DataOut2 (Count))
& Chr (vbKeyTab)
& DataInlDisplay & ™ " & DataIn2Display _
& Chr (vbKeyTab) _
& Nodes.Status (Count) & Chr (vbKeyTab)
& Nodes.LastAccess (Count) & vbCrLf
End If
Next Count
End Sub

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 15 of 16)

274 Serial Port Complete

Two Networks

Public Function fncInitializeComPort _

(BitRate As Long, PortNumber As Integer) As Boolean
‘BitRate and PortNumber are passed to this routine.
‘All other properties are set explicitly in the code.
Dim ComSettings As String
If MSComml.PortOpen = True Then

MSComml .PortOpen = False
End If
ComSettings = CStr (BitRate) & “,N,8,1"
MSComml . CommPort = PortNumber
‘ bit rate, no parity, 8 data, and 1 stop bit.
MSComml.Settings = ComSettings
‘Set to 0 to read entire buffer on Input
MSComml. InputLen = 0
MSComml.InBufferSize = 256
‘Input and output data are text.

MSComml . InputMode = comInputModeText
‘MSComm does no handshaking.

MSComml .Handshaking = comNone
MSComml.OutBufferSize = 256

MSComml .EOFEnable = False

'‘No OnComm event on received data.
MSComml .RThreshold = 0

‘No OnComm transmit event.

MSComml .SThreshold = 0
MSComml . PortOpen = True
OneByteDelay = fncOneByteDelay (BitRate)
End Function

Listing 12-1: Code for the RS-485 network’s main window. (Sheet 16 of 16)

Debugging Tips

Networks can be a minefield to troubleshoot, because the multiple nodes multiply
the possibilities for trouble. A gradual and deliberate approach to putting together
a network can save many hours of debugging later. This section includes sugges-
tions that I've found useful for network developing and debugging.

Start with two nodes. Keep it simple at first. In a master/slave network, connect
the master to one slave and get that working first. If possible, start with a
full-duplex RS-232 or RS-485 interface. This way, you don’t even have to worry
about enabling and disabling the drivers at appropriate times.

Serial Port Complete 275

Chapter 12

Option Explicit
‘Enables the user to specify the type & address of remote nodes.

Private Sub cmdOK Click()

Call frmMain.GetNewNodeSettings
Hide

End Sub

Private Sub Form Load/()

Call InitializeNodeCpuComboBoxes
Call InitializeNodeAddressComboBoxes
Call InitializeNodeActiveCheckBoxes
Call GetSettings

Call frmMain.GetNewNodeSettings

End Sub

Private Sub Form Unload (Cancel As Integer)
Call SaveSettings
End Sub

Private Sub GetSettings/()
Dim Count As Integer
cboAddress (Count) .ListIndex = GetSetting _
(ProjectName, “Startup”, "“NodeAddress” & CStr(0), 0)
For Count = 1 To 7
cboCPU (Count) .ListIndex = GetSetting _

(ProjectName, “Startup”, “NodeCPU” & CStr(Count), 0)
cboAddress (Count) .ListIndex = GetSetting _
(ProjectName, “Startup”, “NodeAddress” & CStr(Count), 0)
chkNodeActive (Count) .Value = GetSetting _
(ProjectName, “Startup”, "“NodeActive” & CStr(Count), 1)
Next Count

End Sub

Private Sub InitializeNodeActiveCheckBoxes ()

Dim Count As Integer

For Count = 1 To 7
chkNodeActive (Count) .Value = 1

Next Count

End Sub

Listing 12-2: Code for the Nodes window, which enables users to select and
configure nodes in the network. (Sheet 1 of 2)

276 Serial Port Complete

Two Networks

Private Sub InitializeNodeAddressComboBoxes ()

Dim Count As Integer

Dim Address As Integer

‘Address range is 67h to 6Eh

For Count = 0 To 7
For Address = &H67 To &HEE

cboAddress (Count) .AddItem Hex$ (Address)

Next Address

Next Count

For Count = 0 To 7
cboAddress (Count) .ListIndex = Count

Next Count

End Sub

Private Sub InitializeNodeCpuComboBoxes ()
Dim Count As Integer
For Count = 1 To 7
cboCPU (Count) .AddItem “PC”
cboCPU (Count) .AddItem “Stamp”
Next Count
End Sub

Private Sub SaveSettings()
Dim Count As Integer
SaveSetting ProjectName, “Startup”, _
“"NodeAddress” & CStr(0), cboAddress(0).ListIndex
For Count = 1 To 7
SaveSetting ProjectName, “Startup”, _
“"NodeCPU” & CStr (Count), cboCPU(Count) .ListIndex
SaveSetting ProjectName, “Startup”, _
“"NodeAddress” & CStr (Count), cboAddress (Count) .ListIndex
SaveSetting ProjectName, “Startup”, _
“"NodeActive” & CStr(Count), chkNodeActive (Count) .Value
Next Count
End Sub

Listing 12-2: Code for the Nodes window, which enables users to select and
configure nodes in the network. (Sheet 2 of 2)

Keep the distance short. If possible, make it easy on yourself and place the nodes
side-by-side, all in one room, until things are working.

Use a slow bit rate. This is especially useful if your debugging tools are limited.
At 300 bps, you can see the LEDs flicker on a breakout box when a node trans-
mits.

Serial Port Complete 277

Chapter 12

'Basic Stamp II RS-485 network node.

‘The Stamp periodically waits for serial input.

‘If it receives a byte that matches its node number,

‘it sends an Acknowledge, waits for a message, and

‘sends a message 1in reply.

‘If the received byte doesn’t match, or if the wait times out,
‘the Stamp takes no action at the serial port

‘and continues on with its other activities.

‘All debug statements are for testing & may be removed.

‘The RS-485 transmit and receive uses 3 port bits.
‘One port bit is direction control.

‘Each node must have a unigue address!
‘Allowed addresses are 68h through 6Eh.
NodeAddress con S$S6A

Constants:
‘Serial-port settings: 2400 bps, non-inverted, 8-N-1
BaudMode con 396

‘Serial transmit output
SerialOutput con 14
‘Serial receive input
SerialInput con 13
‘Direction-control output:
TRControl con 15

‘Delay (milliseconds) before enabling transmitter.
‘Allows previous node to disable its transmitter.
EnableTransmitterDelay con 500

‘Time to wait for incoming data before giving up.
timeout con 2000

‘Variables:

DataInl var byte
DataIn2 var byte
DataOutl var byte
DataOut2 var byte

Listing 12-3: Code for a Basic Stamp Il node. (Sheet 1 of 3)

278 Serial Port Complete

Two Networks

‘Configure I/0 bits as input or output.

dirl3=0

dirld=1

‘Direction control:

dirls=1

‘For debugging, bits 0-3 are outputs, 4-7 are inputs.
dira=%1111

dirb=%0000

‘Bits 8-12 are unused.

‘Initialize the output high.
high SerialOutput

‘main loop:
debug “RS-485 network”,cr

Begin:

‘Enable the receiver, disable the transmitter (default state):
low TRControl

gosub NodeActivities

‘Wait until a byte is received or timeout.

‘If a byte is received, store it in Datalnl.

‘If timeout, give up.

serin serialinput, baudmode, timeout, NoData, [DatalInl]

debug “received: “,hex2 Datalnl,cr
if DataInl=NodeAddress then GetMessage
NoData:
goto begin

Listing 12-3: Code for a Basic Stamp Il node. (Sheet 2 of 3)

Serial Port Complete 279

Chapter 12

GetMessage:

pause EnableTransmitterDelay

‘Enable the driver, disable the receiver

high TRControl

‘Send NodeAddress

serout SerialOutput,Baudmode, [NodeAddress]
debug “sending: “,hex2 NodeAddress,cr

‘Enable the receiver, disable the driver

low TRControl

‘Read 4 ASCII Hex bytes & store as binary values.

Serin Seriallnput, baudmode, timeout, NoMessage, [hex2 Datalnl, hex?2
DatalIn2]

‘Reply with the node address and 4 ASCII Hex bytes

‘representing 2 binary values.

gosub ProcessReceivedData

‘Wait to be sure the master’s transmitter is disabled.

pause EnableTransmitterDelay

‘*Enable the driver, disable the receiver

high TRControl

Serout SerialOutput,baudmode, [NodeAddress,hex2 DataOutl, hex2
DataOut2]

goto Begin

NodeActivities:

‘Use for any activities the node is responsible
‘for on its own.

return

NoMessage:
debug “no data received”,cr
goto Begin

ProcessReceivedData:
‘Some test values and actions for debugging.

debug “received: “,hex2 DatalInl, “ “, hex2 Dataln2,cr
‘*Set output bits 0-3 to match bits 0-3 of Dataln2:
outa=Dataln2.lownib
‘First byte to send is received byte + 1:
DataCutl=DataInl+1l
‘Second byte to send contains the values of input bits 4-7:
DataOut2=inb

debug “sending: “,hex2 NodeAddress, “ “, hex2 DataOQutl, “ %,
hex2 DataOut2, cr
return

Listing 12-3: Code for a Basic Stamp Il node. (Sheet 3 of 3)

280 Serial Port Complete

Two Networks

‘Stamp II network example using open-baud mode.

‘Master node

‘The master sends a byte to each of up to 7 Stamps.

‘In response, the receiving Stamp sends a byte to the master.
'‘Bits 5-7 identify the node the byte is addressed to.

‘Bits 0-4 may contain data, commands, or other information.

‘In this example, the receiving Stamp sets its port bit 0
‘to match the received bit 4. Bits 0-3 are unused.

‘When the master receives a reply, 1t sets its port bit
‘corresponding to the node number to match bit 4 of the
‘received byte. Bits 5-7 of the reply identify the master
‘as the recipient (node 8). Bits 0-3 are undefined.

Node wvar nib

DataOut var byte(7)

DataIn var byte(7)

InputBits wvar byte

OutputBits var byte

NodeNumber wvar nib

temp var byte

‘2400 bps, not inverted, open-baud mode
baudmode con 36081

‘Pin used for serial I/0:
ComBit con 7

inputs:
diro=
dirl=
dir2=
dir3=
dird=
dirs=
diré=
‘This pin is input except during Serout
dir7 = 0

o o o o o oo

Listing 12-4: Code for an open-baudmode network’s master node. (Sheet 1 of 3)

Serial Port Complete 281

Chapter 12

‘outputs:
dirg= 1
dir9o= 1
dirlo=
dirll=
dirla=
dirl3=
dirla=

N

‘Bit 15 is unused.

begin:

GoSub DoPortIO
GoSub PollTheStamps
goto begin

PollTheStamps:
‘Send and receive a byte from each Stamp.
For Node = 0 to 6
‘Send the appropriate DataOut byte.
serout ComBit, baudmode, [DataCut (Node)]
debug “Node=",6hex node, “ Output=",6hex Dataout (node), cr
‘Wait for reply; skip if no response.
serin ComBit, baudmode, 500,NextNode, [Dataln (Node)]
debug “ Input=",6hex DatalIn(Node),cr
NextNode:
‘Pause for Stamps to catch up.
pause 500
Next
return

DoPortIO:

‘Read and write to port bits.

‘Read port bits 0-7.

InputBits=InL

‘Store the bit values as bit 4

‘in the appropriate bytes in the DataCut array.
‘(Bit 7 is unused.)

outputbits=0

Listing 12-4: Code for an open-baudmode network’s master node. (Sheet 2 of 3)

282 Serial Port Complete

Two Networks

For Node=0 to 6
‘Store bit 0 of InputBits as bit 4 of DataOut (Node)
DataOut (Node) = (Node * $20) + (InputBits.Bit0 * $10)
‘Shift Inputs right to position the next bit as bit 0.
InputBits=InputBits >> 1
‘Write to port bits 8-14.
‘Store bit 4 of the received byte as bit 7 of PortOutputs.
‘Use Temp variable to get value of bit4 from array byte

Temp=Dataln (Node)
OutputBits.bit7 = Temp.bit4

‘Shift PortOutputs right to position a new bit as bit 7.
OutputBits=OutputBits >> 1

‘debug dec nodenumber, “ rec: “,hex datain.bit4 (nodenumber*8),
“out: “,bin outputbits,cr

‘debug hex dataout (nodenumber) ,cr

Next

‘debug “output: “,hex outputbits,cr

‘Set port bits 8-14 to match PortOutputs.

OutH=0OutputBits

return

Listing 12-4: Code for an open-baudmode network’s master node. (Sheet 3 of 3)

Use microcontrollers that allow a separate terminal interface for debugging.
You can leave a Basic Stamp connected to a PC and add whatever debug state-
ments you want to monitor what the Stamp is doing, while the network communi-
cations take place on their own pair of wires. Of course, this does require a spare
PC, or at least a Windows PC with two ports. When the network is debugged, you
can remove the debug statements and the PC connection.

You can do the same with any microcontroller that has two serial ports. To keep
costs down in a commercial product, use 2-port chips for development and switch
to 1-port chips for the final design. If a separate debugging interface isn’t an
option, at least add a few LEDs on port bits and code to toggle them on or off at
appropriate times to indicate what the program is doing.

Monitor the network traffic. On a PC, the programming language’s debugging
features do much of the work for you. Set breakpoints and watch variables. In
Visual Basic, debug.print statements are another way to get a quick look at
values. You can do much of the same with a Basic Stamp, by hooking it to a PC
and using debug statements.

As with RS-232, a digital oscilloscope or logic analyzer can help by showing
exactly what’s happening in the link. Many scopes have a math function that
enables you to view a differential voltage as Channel 1 — Channel 2.

Serial Port Complete 283

Chapter 12

‘Stamp II network example using open-baud mode.
‘Slave node

‘When the slave receives a byte, it sets its bit 0
‘to match bit 4 of the received byte.

‘Bits 5-7 identify the node. Bits 0-3 are unused.

‘2400 bps, not inverted, open-baud mode
baudmode con 36081

‘Pin used for serial I/0:
ComBit con 7

‘Each slave node has a unigque number, 0-6.
‘The master is node 7.
Node con 0

DataOut var byte
DataIn var byte
Address var nib

inputs:
dir0= 0
‘Bit 7 is input except during Serout
dir7= 0

‘outputs:
dirl= 1

‘Bits 2-6, 8-15 are unused.

‘Set bits 5-7 to the master’s address.
DataOut = SEO

begin:

gosub NodeActivities

‘Watch for incoming data; quit if no activity.
‘debug “watching”

serin ComBit, baudmode, 1000, begin, [Dataln]
‘debug hex datain,cr

‘If bits 5-7 match the node number, take action.
Address=DataIn >> 5

debug “Address: “,dec address,cr
if Address = Node then Respond
goto begin

Listing 12-5: Code for an open-baudmode network’s slave node. (Sheet 1 of 2)

284 Serial Port Complete

Two Networks

Respond:
‘Set bit 1 to match bit 4 of Dataln

Outl=Dataln.bit4
‘Read bit0 and set bit 4 of DataOut equal to it.

DataQut=SE0 + ($10 * in0)
debug hex dataout,cr

‘Send the reply
serout ComBit, baudmode, [dataout]

goto begin

NodeActivities:
‘Place other node activities here.

return

Listing 12-5: Code for an open-baudmode network’s slave node. (Sheet 2 of 2)

Lacking these, you can do a lot with simple LEDs and switches. On a microcon-
troller node, connect LEDs to spare output bits and have the program toggle the
bits as progress indicators. For example, turn on an LED when the node recog-
nizes its address, and turn on another when it receives a message. Connect toggle
or slide switches to spare input bits and have the program send the values of the

bits in its messages.

Serial Port Complete 285

Chapter 12

286

Serial Port Complete

Resources

Appendix A

Resources

This appendix lists resources that you may find useful in serial-port explorations.
For additions and updates to this list, visit Lakeview Research on the World Wide
Web at http://www.lvr.com, where I host a page devoted to the latest serial-port
information and products.

TIA/EIA Standards

TIA/EIA is the source for the standard documents that describe the RS-232,
RS-485, and related interfaces.

TIA/EIA-232-F: Interface between Data Terminal Equipment and Data Cir-
cuit-Termination Equipment Employing Serial Binary Data Interchange.
(RS-232)

TIA/EIA-422-B: Electrical Characteristics of Balanced Voltage Digital Interface
Circuits. (RS-422)

TIA/EIA-423-B: Electrical Characteristics of Unbalanced Voltage Digital Inter-
face Circuits. (RS-423)

TIA/EIA-485: Standard for Electrical Characteristics of Generators and Receiv-
ers for Use in Balanced Digital Multipoint Systems. (RS-485)

Parallel Port Complete 287

Appendix A

ETA/TIA-530-A: High Speed 25-Position Interface for Data Terminal Equipment
and Data Circuit-Terminating Equipment, Including Alternative 26-Position Con-
nector.

EIA/TIA-561: Simple 8-Position Non-Synchronous Interface between Data Ter-
minal Equipment and Data Circuit-Terminating Equipment Employing Serial
Binary Data Interchange.

EIA/TIA-562: Electrical Characteristics for an Unbalanced Digital Interface
Circuits.

EIA/TIA-574: 9-Position Non-Synchronous Interface between Data Terminal
Equipment and Data Circuit-Terminating Equipment Employing Serial Binary
Data Interchange.

All TIA/EIA standards are available from:

Global Engineering Documents
15 Inverness Way East
Englewood, CO 80112

Phone: 303-397-7956

Fax: 303-397-2740

Email: global @ihs.com
WWW: http://global@ihs.com

Chips

The Internet is the quickest way to get detailed information about serial-interface
chips. Many manufacturers also publish applications notes that show how to use
the chips offered. These are some of the most useful sources for serial-port inter-
face chips and information:

Company

Web address (http:/)

Products

Dallas Semiconductor

Harris Semiconductor

www.dalsemi.com

www.harris.com

Low power RS-232 interface chips.
RS-232 interface chips.

Linear Technology

www linear.com/

Many interface chips.

Maxim Semiconductor

National Semiconductor

Texas Instruments

WWW.maxim-ic.com

www .national.com/

wWww.tl.com

Dozens of interface chips, plus application
notes.

Many chips & excellent application notes.
Many chips & application notes.

288

Parallel Port Complete

Product Vendors

Resources

There are many sources for electronic components and serial-port cards, switches,
and related devices. The following is a selected list of vendors with good selec-

tions.

Company

Web address (http://)

Products

B & B Electronics
Manufacturing Company

www.bb-elec.com

If it relates to serial communications, B & B
probably has it.

Black Box Corporation

www.blackbox.com

Many products related to RS-232 and
RS-485.

Blue Earth Research

WWW,
blueearthresearch.com/

Microcontroller modules with RS-232 and
RS-485 interfaces.

Cimetrics Technology

www.cimetrics.com/

9-bit network specialists

Digi-Key

www.digikey.com

Chips and other electronic components.

Jameco Electronics

WWW.jameco.com

Chips, components, and serial-port cards,
switch boxes, and extenders.

JDR Microdevices www.jdr.com Chips, components, and serial-port cards,
switch boxes, and extenders.

Micromint www.micromint.com Source for the 80C52-Basic chip and Dom-
ino microcontroller.

Parallax www.parallaxinc.com Source for Basic Stamps.

R.E. Smith www.rs485.com Extensive series of RS-485/RS-232 adapt-
Crs.

Sealevel Corp. www.sealevel.com RS-232 and RS-485 expansion cards.

Scott Edwards WWWw.seetron.com Basic Stamp add-ons and PIC Source Book

Electronics

Other Useful Books

I hope you’ve found Serial Port Complete to be useful. But I know that one book
can’t cover everything. The following is a selected list of recommended books on

related topics:

The Art of Electronics, Second Edition, by Paul Horowitz and Winfield Hill. 1989,
Cambridge University Press, 1125 pages. An essential, complete introduction to
electronic circuits of all types.

Communications Programming for Windows 95, by Charles A. Mirho and Andre
Terrisse. 1996, Microsoft Press, 306 pages. Covers Windows API calls for
serial-port access. Program code in C.

Parallel Port Complete

289

Appendix A

290

The Embedded PC’s ISA Bus: Firmware, Gadgets, and Practical Tricks, by Ed
Nisley. 1997, Peer-to-Peer Communications, 344. An outstanding, detailed
resource on the internal workings of PCs, expecially as they relate to their use as
embedded controllers.

High-Speed Digital Design: A Handbook of Black Magic, by Howard W. Johnson
and Martin Graham. 1993, Prentice Hall, 447 pages. A technical but readable
guide to a difficult topic. Covers cable and interface design.

The Personal Computer from the Inside Out, Third Edition by Murray Sargent III
and Richard L Shoemaker. 1995, Addison-Wesley, 800 pages. A classic, detailed
reference to the PC’s hardware. Also includes a primer on assembly language, an
introduction to digital logic, a chapter on computer control and monitoring, and
even project construction tips.

Visual Basic Programmer’s Guide to Serial Communications, by Richard Grier.
1997, Mabry Software, 302 pages. Much good information about accessing serial
ports for all purposes.

Visual Basic 5.0 Programming Guide to the Win32 API, by Daniel Appleman.
1998, Ziff-Davis Press, 585 pages. An excellent reference for using the Windows
API in 32-bit Visual-Basic programs. Contain many insights and tips beyond sim-
ply documenting the APIL.

Visual Basic Programmer’s Guide to the Windows API, by Daniel Appleman.
1993, Ziff-Davis Press, 1020 pages. Same as the previous listing, but for Win-
dows 3.1 programming.

And don’t forget...

Parallel Port Complete, by Jan Axelson. 1996, Lakeview Research, 343 pages.
The companion volume to this book has all you need to know about the PC’s par-
allel port, including high-speed IEEE-1284 PS/2, EPP and ECP modes.

ISBN 0-9650819-1-5

The Microcontroller Idea Book, by Jan Axelson. 1994, Lakeview Research, 277
pages. An introduction to circuit design and programming with microcontrollers.
ISBN 0-9650819-0-7

Making Printed Circuit Boards, by Jan Axelson. 1993. TAB/McGraw Hill, 327
pages. Prototyping and PC-board making in small quantities.
ISBN 0-8306-3951-9

Parallel Port Complete

RS-232 Signals

Appendix B

RS-232 Signals

The following page has the names and functions for each of RS-232s 25 pins, as
defined by the standard document TIA/EIA-232-F. Only nine of the signals are in
popular use on PCs.

A PC is normally a DTE; a modem or other peripheral is a DCE.

Serial Port Complete 291

Appendix B

Pin Functions as defined by TIA/EIA-232-F

Pin # Circuit Popular Source Type Description
Name Name

1 Shield - - -

2% 'BA D 'DTE data ‘transmitted data

3% BB RD DCE data received data

4% CA/CJ RTS DTE control request to send/ready to
receive

5% CB CTS DCE control clear to send

6* cC DSR 'DCE control 'DCE (data set) ready

7 AB SG - common signal common

8% CF CD DCE control received line signal detector
(carrier detect)

9 - - reserved for testing

10 - - reserved for testi ng

11 - - unassigned

12 SCF/CI DCE control secondary received line
signal detector/data signal rate
selector

13 SCB DCE control secondary clear to send

14 SBA DTE data secondary transmitted data

15 DB 'DCE timing transmitter signal element
timing

16 SBB DCE data secondary received data

17 DD DCE timing receiver signal element timing

18 LL DTE control local loopback

19 'SCA 'DTE control .secondary request to send

20% CD DTR DTE control DTE ready

21 RL/CG DTE/DCE |control remote loopback/
signal quality detector

22% CE/CK RI DCE control ring indicator/received
energy present

23 CH/CI DTE/DCE |control data signal rate selector

24 DA 'DTE timing transmit signal element timing

25 ™ DCE control test mode

*Signals included in PC interface.

292

Serial Port Complete

Number Systems

Appendix C

Number Systems

Many serial-port applications use number systems other than the familiar decimal
system. Hexadecimal numbers offer an easy-to-read, concise way of expressing
byte values. For applications that assign functions to individual bits, numbers
expressed as binary values are convenient because they show each bit’s value.
This appendix is a review of number systems and related topics.

About Number Systems

A number system is a way to express quantitative information. Each of the num-
ber systems described below has a different base: 10, 2, or 16. The base deter-
mines how many characters are needed to express a given quantity.

Decimal Numbers

The decimal number system used in everyday (non-computer) life has ten digits
(0-9). Each digit in a number represents a value raised to a power of 10.

Serial Port Complete 293

Appendix C

This table shows the value of each digit in the decimal number 760:

Decimal digit 7 6 0
Digit multiplier 102 10! 100
Dlgit value 70 60 0

Binary Numbers

In the binary number system, each 0 or 1 represents a value raised to a power of 2.
The numbers use only 0 and 1 of the ten decimal digits.

Binary representations are useful when you need to see the value of each bit in a
byte. For example, you might want to set, clear, toggle, or read a bit in one of the
parallel port’s registers. Visual Basic’s logical operators offer a way to control
and display individual bit values.

This table shows the value of each digit in the binary representation of the decimal

number 760:
Binary bit 1 0 1 1 1 1 1 0 0 0
Bit multiplier 29 28 27 26 25 24 93 92 21 20
Bit value (decimal) 512 0 128 64 32 16 8 0 0 0

Hexadecimal Numbers

In the hexadecimal, or hex, number system, each character represents a value
raised to a power of 16. There are 16 characters, with the letters A through F rep-
resenting the decimal values 10 through 15.

Each character in a hex number represents 4 bits. This makes hex numbers a con-
venient, concise way to express 8- or 16-bit numbers. In Visual Basic, a leading
&h indicates a hex value:
&h2F8
Other common ways of indicating hex values are with a trailing h:
2F8h
with a leading 0x:
0x2F8
or with a leading $:
S2F8
Visual Basic’s Hex$ operator displays a value in hexadecimal:
debug.print Hex$ (760)
2F8

294 Serial Port Complete

Number Systems

This table shows the value of each character in 2F8h, which is the hexadecimal
representation of the decimal number 760:

Hex character 2 F 8
Character multiplier (decimal) 162 16! 16°
Character value (decimal) 512 240 8

Another form of Hex numbers is ASCII Hex, which expresses values as ASCII
codes representing Hex characters. Chapter 2 has more on this format.

Kilobytes and Megabytes

Two common and sometimes confusing terms for dealing with quantities in the
computer world are kilobyte (k) and Megabyte (M).

In the metric system of measurement, kilo means 1000, but in the computer world,
it commonly refers to a multiplier of 1024, which is 2'°, or 400h. An 8k RAM chip
actually stores 8192 bytes, not 8000.

In a similar way, in the metric system, Mega means a million, but in the computer
world, it commonly refers to 1,048,576 (2%, or 1000h). One Megabyte equals
1024 kilobytes.

Multipliers

And finally, here’s a list of the prefixes often used to express component values
and other quantities in electronics and computers:

Prefix Description Multiplier
G Giga- 1x 102

M Mega- 1,000,000

k kilo- 1,000

m milli- 1/1000

18 micro- 1/1,000,000
n nano- /107

p pico- 1/10°12

Serial Port Complete 295

Appendix C

296

Serial Port Complete

Index

Symbols

$ prefix (Basic Stamp) 109
% prefix (Basic Stamp) 109
&h prefix 48

16450 UART 27
16550 UART 27
upgrade 35
16-bit operating system 87
16C56/7 microcontroller 102
1-shot 251
32-bit operating system 87
4000-series logic 125
5V logic 125
60-Hz noise 232
6402 UART 180
74HC, T4HCT logic 125
75176B 197, 256
75177/8 239
751798 188, 195
75ALS180 229
8051 microcontroller 91-93
8052-Basic 93—101
autobaud routine 18
PC link 177-179
80C320 High-Speed Microcontroller 94
80C51FX 247
8250 UART 26
9-bit format 247248

Serial Port Complete

A

AC termination 220
acknowledging 22
active termination 220
adapter, connector 142—146
adding a port 31
address
network 245—-248
port 28
Alt A connector 140
ANSI text 19, 89
API functions
declarations 60
for accessing ports 80—85
API, defined 45
applications
ideas 7
RS-232 157184
RS-485 253-285
Asc (Basic-32) 100
ASCII Hex 19-20, 48
Basic-52 and 100
in addressing 246
ASCII hex
Basic-52 and 97
ASCII text 19
asserted, control signal 121
asynchronous format 13—14
ATN 104
autobaud 17
Auto-CTS/RTS handshake 27
autodetecting a port 77

Index

297

Index

back termination 218
balanced line 186—189
base address 40
Basic Stamp 102—-115
driver enable and 249
example network, in 258
open baudmode network 259
RS-232 link 173-177
Basic Stamp IC 103
Basic Stamp II 102
handshaking 122
inverted signals and 227
serial interface 131-133
Basic-52
See 8052-Basic
battery power, and isolation 239
baud rate 14
baudmode 106
biasing, RS-485 225-230
Bin (Basic Stamp) 109
binary data
defined 18
transferring 46, 48—49
binary numbers 294
BIOS data area 29, 33
BIOS interrupt 90
bit rate
defined 14
rise time, and 207
RS-232 124-125
setting in UART 42
Blue Earth Research 94
bps 14
Break event 52
break interrupt 42
Break property 47
break signal 123
for controlling TD 181
breakout box 155
Briefcase 183
buffer
purpose 21
size 46

298

UART 27
buffer full event 53
bus topology 223
byte array 48
Byte variable 48

C

cable
Basic Stamp 104
impedance sources 214
RS-232 146—148
RS-485 205-211
types 230232
capacitance, cable 146
capacitive coupling 231
carrier detect
See CD
Category 3, 4, 5 cable 232
CD 122
CD event 52
CDHolding property 47
Centronics interface 7
ceramic resonator 17
character, transmitted, defined 14
characteristic impedance 210-211
charge pump 127
checksum 23, 248
chip manufacturers 288
clock
for serial links 11
UART 16
CMOS logic 125
CMOS setup screen, system 31
collision detecting 244
COM port
hardware 25—44
programming, See Visual Basic
RS-485 and 194
CommEvent property 46, 51-53
CommlID property 46
Common Dialog box 77
common-impedance coupling 231
common-mode voltage 233—-236
CommPort property 46

Serial Port Complete

communications control
See MSComm 45
conductive coupling 231
connector
RS-232 139-146
RS-485 232
control codes 247
Basic-52 95-101
Control Panel
See Windows 95, Windows 3.x
converter

RS-232 125-135
RS-485 194-202
CPU, defined 2
CRC 23
crosstalk 231
crystal, timing 17
CTS event 52
CTS/RTS handshaking 53—54
CTSHolding property 47
current
initial and final 215
limiting 198
RS-232 133
RS-485 191-192
cyclic redundancy code 23

D

Dallas Semiconductor
high-speed microcontroller 94
RS-232 chips 127
Data Circuit-terminating Equipment 120
Data Terminal Equipment 120
data, saving in a file 77
DB-25 140
DBCS text 19, 89
DCB
editing 83
fields 83
DCB error 53
DCC 182
DCE 120
DE-9 140
debugging

Serial Port Complete

Index

tips 275
tools 155—-156
Dec (Basic Stamp) 108
decimal numbers 293
delay
Basic Stamp 109
cable 208-210
programming 74—75
propagation 209
See also, timer
differential signal 187—189
grounds and 233
diode, parasitic 235
Direct Cable Connection 182
direct port I/O 85-87
discontinuity, in cable 215
distributed system 206
divisor latches 42
DLAB 40
Domino 94
DOS
Basic and 89
finding ports 29, 33
Interlink, Intersvr 184
driver
choosing, RS-485 222
enable timing 249252
DSR
Basic Stamp and 103—104
DSRHolding property 47
D-sub connector 139-140
DTE 120
DTR event 52
DTR/DSR handshake 121
DTREnable property 47

E

earth ground 150
EIA 119
See also, TIA
standards 287
EIA/TIA-423 135
EIA/TIA-530 136
EIA/TIA-561 142

299

Index

EIA/TIA-562 135
EIA-485
See TIA/EIA-485, RS-485

electric coupling 231

electromagnetic coupling 231
electromagnetic interference. See EMI
embedded controller

defined 2
See also, microcontroller
embedded PC 2
EMI 222, 233
enable
driver, timing 249252
RS-485 driver 199
Eof character 52
EOFEnable property 46
error, data 53
error-checking
methods 23
Ethernet 6
even parity 13
event-driven programming 22
events
See MSComm 51
external vs. internal device 36

F

False, control signal 121
fiber optics 148, 154
FIFO 27

detecting 35

enabling in UART 44
file, reading and writing to 77
final current 215
finding ports 28
Firewire 6
firmware, defined 3
format

message 11-23

time and date 76
fpin 106
frame event 53
framing interrupt 42
frequency

300

See also, bit rate 207
frequency, rise time, and 207
full duplex

defined 26

RS-485 195

G

galvanic isolation 148

gas-discharge tube 154

Get (Basic-52) 98

GPIB 7

ground
balanced lines and 188—189
explained 149—153
RS-485 and 233-239
shield 232

ground loop 150

H

half duplex
defined 26
RS-485 196—199
handshaking
Auto-CTS/RTS 27
Basic Stamp 106
Basic Stamp and 103—104, 110
controlling directly 179
defined 4
events 52
null modem and 144
options 53—54
purpose 20—21
RS-232 121

See also
CTS/RTS, DTR/DSR, fpin 53

Handshaking property 47
harmonics 208

header 248

Hex (Basic Stamp) 109
Hex$ 48

hexadecimal numbers 294
HyperTerminal 93, 120

Serial Port Complete

I/O, direct 179-180
12C 5

collision detecting and 244
IBM PC, defined 2
IBM Type | cable 232
IEEE-1284 7
IEEE-1384 6
IEEE-488 7
IER 42
IIR 42
impedance

characteristic 210-211

sources, wire 214
InBufferCount property 46, 50
InBufferSize property 46, 50
Index property 47
inductive coupling 231
initial current 215
Inp function 85
INPUT (Basic-52) 9899
Input property 46, 50
InputData (Basic Stamp) 108
InputLen property 46
InputMode property 46
Intel Hex format 23
interface chip

See converter
Interlnk, Intersvr 184
internal vs. external device 36
interrupt

circuit 37
Interrupt Enable register 42
Interrupt Identify register 42
interrupt, serial-port

general 21-22

See also, IRQ
interrupt-service routine 37
inverting signals (Basic Stamp) 107
IrDA 5

in UART 27
IRQ

assigning 28

conflict 36

Serial Port Complete

recommended settings 34
shared 39—40

ISA bus 34

isolation
RS-232 148—154
RS-485 236239

ISR 37

K

Kermit 23
kernel-mode driver 85
kilobyte 295

L

LCR 43

LED, for debugging 285
legacy ports 31

length, electrical 209
Line Control register 43
link

defined 1

physical 5§

See also, network
logic, positive and negative 123
long line 205-209
loopback mode 43
LSB 13
lumped system 206

Macintosh, RS-422 port 202
magnetic coupling 231
Mark (RS-232) 124
mark parity 13
master/slave 243

in example network 253
MAXO080 228
MAX1480 237
MAX232 125-127
MAX3080 222
Max3100 UART 113-115
MAX491 229
MAX667 regulator 134

Index

301

Index

MAX770 134
Maxim Semiconductor 125—-127
See also, Max* part numbers
MC1488/9 127
MCLR 104
MCR 43
Megabyte 295
message
format 4
properties 3
Micro-440e, Micro-485 94
Microchip 102
microcontroller
control of driver enable 252
defined 2
RS-485, adding 200
serial ports and 91-115
Micromint 94
Microwire §
UART 113
MIDI §
Modem Control register 43
Modem Status register 43
modular connector 141-142
mouse, on COM port 38
MSComm
about 45—54
interrupt enabling and 39
See also, Visual Basic
msd.exe 34
MSR 43
multidrop 186
multivibrator 251

N

Name property 47

negative logic 123

network
defined 1
protocol 243—245
requirements, general 3
See also, link

NMOS 125

node

302

defined 1
noise

coupling methods 231

termination and 218, 229
noise margin 124
non-synchronous format 13
null modem 144
NullDiscard property 46
number systems 293—295

O

Object property 47
odd parity 13
Off, control signal 121
On, control signal 121
OnComm
using 51-53
open baudmode 108, 110—113
example 259
open collector/open drain
collision detecting and 244
See also, open baudmode
open-circuit biasing 225-228
optoisolator 148, 153—154
oscilloscope, for troubleshooting 156
Out routine 85
OUT2 37, 39, 43
OutBufferCount 49
OutBufferCount property 47
OutBufferSize property 46, 49, 52
Output property 47, 49
OutputData (Basic Stamp) 108
overrun event 53
overrun interrupt 42

P

Parallax 102
parallel interface 6
Parallel Technologies 182
parallel termination 211-218
Parent property 47
parity

Basic Stamp 107

Serial Port Complete

defined 13

event 53

interrupt 42
ParityReplace property 46
PBasic 103

See also, Basic Stamp
PC

expansion card 194
linking 181-184
RS-232 interface 119-122
RS-232 link 157-173
PC 98 25, 34
PCI bus 34
personal computer, See PC
PHO., PH1. 96
photodiode, phototransistor 153
PIC microcontroller 102
PIC Source Book 106
plabel 108
polling 22, 39
in Visual Basic 49-50
port
adding 34
finding 60, 77
opening 46, 60
power from 133
port resources
viewing 34
PortOpen property 46
ports, multiple
PC 38
positive logic 123
power
conserving, RS-485 218
effect of termination 218
low 127
power supply
from port 133—135
Print (Basic-52) 96
printer port 7
printer, serial 146
procedural programming 22
propagation delay 209
propagation rate 208—209

Serial Port Complete

Index

properties, MSComm 46
protection, in RS-485 chips 198
protective ground 123
protocol
defined 4
message 11-23
network 243—-245
pullup resistor
and open baudmode 112
receiver biasing 230

Q

QuickBasic 89

R

reading data 46
receiver

biasing 230

See also, RS-232, RS-485
receiving

in Visual Basic 50, 51
redundant data 23
reflection

voltage 213-218
registers, UART 40—44
registry

port addresses 31

Regedit 31
repeater, RS-485 224, 239-240
Reset (Basic Stamp) 104
resistance

cable 217
resistor

biasing 225-230

ground wire 236

terminating 212, 221
resources, port 28
RI 122
Ring event 52
ring topology 225
ringing 220
rise time 207

driver 222

reducing ringing with 220

303

Index

RJ connector 141, 233
rpin 106
RS-232
8052-Basic link 177-179
Basic Stamp link 173—177
cable 146—148
compared to other interfaces 5
connector 139-146
converters 125—-135
converting RS-485 200-202
description 118—125
Macintosh link 202
PC-PC link 157-173
See also, TIA/EIA-232
signals 291
RS-422 186
RS-423 135
RS-485
adding a port 194
cable 205-211
compared to other interfaces 5
converter 194—-202
description 185—192
example network 253—259
ground 233-239
repeater 239240
See also, TIA/EIA-485
RThreshold property 46, 51
RTS
Basic Stamp and 103—104
See also, CTS/RTS 53
RTS/CTS handshake 122
RTSEnable property 47
rules for wiring RS-485 205

S

safety ground 149
scratch pad 27
scratch register 44
semiconductor manufacturers 288
sending
in Visual Basic 49—50
See transmitting
sensor, types 7

304

series termination 218
Serin

Basic Stamp I and 1I 105
Serln, Serout

syntax 106—109
settings

user 76
Settings property 46
settings, port 28
setup screen, system 31
sharing files 182
shield 123

cable length and 147
shielding 232
short line 206
short line, terminating 220
short-circuit protection 228—230
shutdown

thermal 198
signal ground 149
simplex, defined 26
single-ended line 118
Skip (Basic Stamp) 109
slew rate 124
Space (RS-232) 124
space parity 13

in 9-bit network 247
SPI 5
SPI UART 113
square wave 208
S-Record format 23
ST16C50A UART 27
Stamp [

serial port 110

Serin 105
standards 287
Start bit

biasing, and 225

use 13—-14
step function 211
SThreshold property 46, 51
stick parity 13
Stop bit

use 13—-14

Serial Port Complete

String
Basic-52 97
string variable
and Visual Basic 88
finding value of (Basic-52) 100
stub 223
surge protection 154
synchronous interface 5, 11
controlling from RS-232 port 181
Systronix 94, 95

T

Tag property 47
template application 55—80
terminal emulation 120
termination 210—222

current used by 191
text data

defined 19

transferring 46, 47—48
thermal shutdown 198
threshold

setting 46
TIA 119

See also, EIA

standards 287
TIA/EIA-232 119

See also, RS-232
TIA/EIA-422 186
TIA/EIA-485 185

See also, RS-485
time and date format 76
timeGetTime function 75
timeout (Basic Stamp) 105, 108
timeout, Comm 75-76
Timer function 75
timing

driver enable 249-252

routines 74—76

See also, delay
timing reference 17

for serial links 11
TL16C750 UART 27

Serial Port Complete

token passing 243

topology, network 223-225

tpin (Basic Stamp) 106
transceiver 197

transformer, for isolation 148, 151
transmission line 206

TransmitCommChar 85
transmitter

See driver
transmitting

in Visual Basic 49-51
programming 241252
See also, RS-232, RS-485
tristate 111
troubleshooting
See debugging
True, control signal 121
TTL logic 125
converting to RS-485 195-200
RS-232 and 129
TVS diode 154
twisted pair cable 230232
Type 1 cable 232

U

UART
Basic Stamp 105
description 15—17
external, adding 113—115
for parallel I/O control 180
in PC 2544
new types 27
upgrade 34

unbalanced line, defined 118

Unicode 19, 89

unit load 192, 212

Universal Serial Bus
See USB

unsynchronous format 13
USART 15
USB 6
converters 26
user settings 76

Index

305

Index

vV

Val operator 48

Visual Basic
serial communication and 45—87
versions 45, 88

voltage
common mode 233—-236
reflection 213—218
RS-232 123
RS-485 190—191

voltage margin 124

voltmeter, for troubleshooting 155

w
wait

See delay
Wait (Basic Stamp) 109
win32api.txt 60, 82
Windows

registry, See registry

See also, API functions, specific Windows

version
Windows 3.x
and Visual Basic 88

306

Control Panel 28
Windows 95

Briefcase 183

Control Panel 28, 31

Direct Cable Connection 182

Hyperterminal 93

Regedit 31
Windows NT

and kernal-mode driver 85
word, transmitted, defined 14
writing data 47

X

XModem 23
Xon/Xoff handshaking 54

Y

YModem 23

y 4

ZModem 23

Serial Port Complete

Y ou download this file from web-site: http://www.pcports.ru

