
Этот файл скачен Вами с сайта http://www.pcports.ru

«Сопряжение компьютеров с внешними устройствами»

USB Mass Storage
Designing and Programming

Devices and Embedded Hosts

Jan Axelson

Lakeview Research LLC

Madison, WI

USB Mass Storage: Designing and Programming Devices and Embedded Hosts
by Jan Axelson

Copyright 2006 by Janet L. Axelson

All rights reserved. No part of the contents of this book, except the program code, may be
reproduced or transmitted in any form or by any means without the written permission of
the publisher. The program code may be stored and executed in a computer system and may
be incorporated into computer programs developed by the reader.

The information, computer programs, schematic diagrams, documentation, and other
material in this book are provided “as is,” without warranty of any kind, expressed or
implied, including without limitation any warranty concerning the accuracy, adequacy, or
completeness of the material or the results obtained from using the material. Neither the
publisher nor the author shall be responsible for any claims attributable to errors, omissions,
or other inaccuracies in the material in this book. In no event shall the publisher or author
be liable for direct, indirect, special, incidental, or consequential damages in connection
with, or arising out of, the construction, performance, or other use of the materials con-
tained herein.

Many of the products and company names mentioned herein are the trademarks of their
respective holders. MPLAB, PICDEM, PICmicro, and PICtail are registered trademarks of
Microchip Technology Inc. in the U.S.A. and other countries.

Certain materials contained herein are reprinted with the permission of Microchip Technol-
ogy Incorporated. No further reprints or reproductions may be made of said materials with-
out Microchip Technology Inc.’s prior written consent.

Published by Lakeview Research LLC, 5310 Chinook Ln., Madison WI 53704

On the web at www.Lvr.com

Distributed by Independent Publishers Group (www.ipgbook.com).

14 13 12 11 10 9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

ISBN13 978-1-931448-05-5
ISBN10 1-931448-05-1

www.Lvr.com
www.ipgbook.com

 iii

Contents

Acknowledgements xi
Introduction xiii

1 Mass Storage Basics 1
When to Use a Storage Device 1

Benefits 2
Other Considerations 3

Requirements 4
Devices 4
Embedded Hosts 5

Selecting a Media Type 7
Drive Mechanisms 8
Addressing Methods 10
Reading and Writing Considerations 10
Removable Media and Devices 12
Hardware Interfaces 12

Hard Drives 13
Technology 13
Interfaces 13

Flash Memory 13
Technology 14
Options for Flash Memory 15
MultiMediaCard 16
SD Memory Card 20
CompactFlash 22

Contents

iv

2 Supporting USB 25
The Interface in Brief 26

Hosts and Devices 26
Host Responsibilities 27
Device Responsibilities 29
Bus Speeds 31
Endpoints 31
Transfer Types 32
Transactions 32
The Data Toggle 33
Descriptors 34
Mass Storage Requirements 34

Choosing a Device Controller 37
Controllers with Support for Flash Memory 37
Controllers with support for ATA/ATAPI 38
Firmware Options 38

Microchip PIC18F4550 39
Architecture 39
Firmware Support 39
The USB Controller 39

3 The USB Mass Storage Class 45
Requirements 45

Specifications 45
Logical Block Addressing 46
Mass Storage Requests 46

Descriptors 46
Device Descriptor 47
Configuration Descriptor 49
Interface Descriptor 51
Endpoint Descriptors 53
String Descriptors 54

Contents

 v

Responding to Commands 55
The Command Block Wrapper 56
The Command Status Wrapper 60
Managing Communications on the Bulk Endpoints 62
More about STALL 72
Thirteen Cases for Any Situation 73

PC Support 76
Windows 76
Linux 77

4 Accessing Flash Memory Cards 79
The Interface 79

Signals and Power 80
Example Circuit 80

Host Programming 83
Configuring 83
Hardware Ports 85
Firmware-controlled Ports 86

Transferring Data 86
Default States 86
SPI on the PIC18F4550 86
Configuring the Port 88
Writing a Byte 89
Reading a Byte 91

5 MultiMediaCard Protocol 93
Command and Response Formats 93

Commands 94
Response Types 94
Token Formats 98

The Commands 99
Classes 99
Commands Used by Mass-storage Devices 100
Registers 101

Contents

vi

Sending Commands 101
Timing Considerations 102
Commands with No Data Transfer 105
Commands that Read Data from the Storage Media 105
Commands that Write Data to the Storage Media 106

Application Example 107
Detecting and Selecting a Card 107
Sending a Command 109
Reading a Sector 118
Writing a Sector 120
Initializing Communications 123

6 SCSI Commands 131
About the Commands 131

Specifications 131
Which Commands to Implement? 132

Sense Data 135
Fixed-format Sense Data 137
Setting Default Values 138

Primary Commands 139
INQUIRY 139
MODE SELECT 143
MODE SENSE 143
PREVENT ALLOW MEDIUM REMOVAL 145
REPORT LUNS 146
REQUEST SENSE 146
SEND DIAGNOSTIC 147
TEST UNIT READY 147

Contents

 vii

Block Commands 148
FORMAT UNIT 148
READ 149
READ CAPACITY 152
START STOP UNIT 154
SYNCHRONIZE CACHE 154
VERIFY 155
WRITE 155

Multimedia Commands 159
READ FORMAT CAPACITIES 159
READ TOC/PMA/ATIP 159

Handling Commands and Events 160
Decoding Commands 160
The UNIT ATTENTION Condition 161
Informing the Host about Media Changes 162
Reset Behavior 163

7 Media Structure 165
A Look Inside 165

Components of Formatted Media 166
Drives without an MBR Sector 168
Byte Order 168

The Master Boot Record Sector 168
Executable Code 169
The Partition Table 169
Extended Partitions 170
The Boot Signature 172

8 FAT File Systems 175
Inside a FAT16 Volume 175

Reserved Region 176
File Allocation Table Region 179
Root Directory Region 180
File and Directory Data Region 180

Contents

viii

Inside a FAT32 Volume 181
Reserved Region 181
File Allocation Table Region 184
File and Directory Data Region 185

Selecting a File System 185
Cluster Sizes 185
A Hardware Solution 186

The File Allocation Table 188
The First Two Entries 188
Data Clusters 188

Accessing the FAT 190
Volume Information 190
File Information 191
Obtaining a Cluster’s Logical Block Address 192
Reading from the FAT 192
Writing to the FAT 194
Finding a File’s Next Cluster 195
Performing Sequential Reads 197
Finding an Empty Cluster 198

9 Directories 201
The Contents of an Entry 201

File Entries 202
Directory Entries 205
The Volume Label Entry 206
Subdirectory Entries 207

Handling Long File Names 207
LFN Entries 207
The Checksum 209
Creating a Short File Name 210

Contents

 ix

Using Directories 211
Storing an Entry 211
Reading an Entry 212
Getting the Main Entry 217
Updating an Entry 219
Updating the Time and Date 220

10 File Operations 223
Cluster Operations 224

Erasing a Cluster 224
Reserving an Available Cluster 225
Allocating a File’s First Cluster 226
Allocating Additional Clusters 226

Managing Files 228
Obtaining File Information 228
Finding a File 231
Creating a Directory Entry 234
Finding an Available Entry 235
Creating a File 238
Deleting a File 239
Opening a File 243

Reading from a File 246
Tasks 246
Performing a Read Operation 247

Writing to a File 250
Tasks 250
Performing a Write Operation 251
Closing a File 257

Contents

x

11 Embedded Hosts 259
Inside an Embedded Host 259

OTG Devices and Conventional Hosts 260
General Host Functions 260
Mass Storage Functions 261
Handling Non-compliant Devices 263

Host Options 266
Cypress EZ-HOST 266
Host Software 267
A Mass-storage Host Module 267

Index 271

 xi

Acknowledgements

Many people helped in the development and writing of this book.

My technical reviewers helped to keep me on track, pointed out errors, sug-
gested additions to improve the book, and answered many questions. (With
that said, any errors that remain are my fault alone.) Thanks to Paul E. Berg
of MCCI and USB-IF Device Working Group Chair for encouragement
and help in finding reviewers. Thanks also to John Hyde of USB Design by
Example, to Pat LaVarre, to Hiromichi Oribe of Hagiwara Sys-Com Co.,
Ltd., to Rawin Rojvanit and Gurinder Singh of Microchip Technology, Inc.,
and to Alan Stern of the Rowland Institute at Harvard.

For their help in obtaining products used in the writing of the book, thanks
to Laurent Guinnard of Ellisys, Gus Issa of GHI Electronics, and Alan
Lowne of Saelig Co. Inc.

This page intentionally left blank

 xiii

Introduction

A mass-storage device can provide access to data for just about any purpose.
Every time you load an application or save a file on a PC, you’re using a
mass-storage device. A computer’s hard drive is a mass-storage device, as are
flash, CD, and DVD drives. Devices with dedicated functions—data log-
gers, robots, and other embedded systems—can use mass storage as well.
Every mass-storage device contains a microcontroller, microprocessor, or
other intelligent hardware that knows how to access the contents of the stor-
age media.

A USB device controller enables a mass-storage device to share its data with
other computers. For example, a data logger can collect data in the field and
then connect to a PC, where an application reads the data from the logger’s
storage media. Or a robot can attach to a PC to receive a file containing con-
figuration data to use in robotic tasks.

Flash-memory cards provide convenient storage for many small systems.
Other systems function as USB hosts that can access files in off-the-shelf
USB flash drives and hard drives.

Introduction

xiv

If you’re involved with designing or programming devices that incorporate a
USB mass-storage device or host interface, this book will help you get your
projects up and running. You’ll also find the book useful if you’re designing
or programming devices that use flash-memory cards for data storage,
whether or not the devices have USB interfaces.

Interfaces, Protocols, and Technologies
Designing and programming a USB mass-storage device or embedded USB
host involves a variety of interfaces, protocols, and structures.

Every USB mass-storage device must support two interfaces:

• A USB device interface to enable the device to communicate with a PC
or other USB host.

• An interface between the device’s microcontroller or other CPU and the
storage media. Flash-memory cards typically use the Serial Peripheral
Interface (SPI), MultiMediaCard bus, SD-Card bus, or a bus derived
from the ATA interface or PC-Card bus. Hard drives typically use the
ATA parallel interface.

A USB mass-storage device must implement these protocols and structures:

• Generic USB protocol. Every USB device must respond to requests sent
by the USB host and other events on the bus.

• USB mass-storage protocol. Every USB mass-storage device must detect
and respond to requests that are specific to the USB mass-storage class.

• SCSI commands. USB hosts access mass-storage devices via commands
originally developed for devices that use the Small Computer Systems
Interface (SCSI).

• Media-specific protocol. The storage media’s controller typically supports
a command set for accessing the media’s contents. Many flash-memory
cards use the MultiMediaCard protocol or the SD Card protocol. Hard
drives use the ATA protocol.

Reading and writing data to a mass-storage device also involves understand-
ing logical structures in the media:

• Media structure. Program code accesses the storage area in drives as a
series of logical blocks, or sectors. Dedicated areas in the media store

Introduction

 xv

information about the logical blocks and other logical structures in the
media.

• File system. If the device firmware reads or writes to files on its own,
rather than via a USB host, the device must implement a file system such
as FAT16 or FAT32.

This book shows how to put all of these interfaces, protocols, and structures
to work in a USB mass-storage device. The book assumes you have a basic
familiarity with microcontroller programming and interfacing. For more
about USB, I recommend my book, USB Complete: Everything You Need to
Develop Custom USB Peripherals.

About the Code
This book include code examples written for the Microchip PIC18F4550
microcontroller using Microchip’s MPLAB® C18 C compiler. On my web-
site (www.Lvr.com) you can find links to complete mass-storage firmware
for this chip and example mass-storage firmware for other microcontrollers.

For More Information
In addition to example code, www.Lvr.com has links to specification docu-
ments, white papers, corrections and additions to this book, and other infor-
mation to help you design and program USB mass-storage devices.

I hope you find the book useful!

Jan Axelson
jan@lvr.com

www.Lvr.com
www.Lvr.com

This page intentionally left blank

 1

1

Mass Storage Basics
A mass-storage device is electronic hardware that stores information and
supports a protocol for sending and retrieving the information over a hard-
ware interface. The information can be anything that can be stored electron-
ically: executable programs, source code, documents, images, spreadsheet
numbers, database entries, data logger output, configuration data, or other
text or numeric data. Mass-storage devices typically store information in
files. A file system defines how the files are organized in the storage media.

In Windows computers, mass-storage devices appear as drives in My Com-
puter. From Windows Explorer, users can copy, move, and delete files in the
devices. Program code can access files using file-system APIs or .NET’s File
class.

When to Use a Storage Device
Implementing a mass-storage function is a solution for systems that need to
read or write moderate to large amounts of data.

Chapter 1

2

If the device has a Universal Serial Bus (USB) interface, any PC or other
USB host can access the storage media. Generic USB mass-storage devices
include the hard drives, flash drives, CD drives, and DVD drives available
from any computer-hardware store. Table 1-1 lists popular device types.
These devices have just one function: to provide storage space for the sys-
tems they connect to.

Another type of USB mass-storage device (or storage device for short) is the
special-purpose device with storage capabilities. For example, a camera can
capture images and store the images in files. A data logger can collect and
store sensor readings in files. A robotic device can receive files containing
configuration parameters. With the addition of a USB mass-storage inter-
face, any of these devices can use USB to exchange files with PCs and other
USB hosts.

Generic storage devices are readily available and inexpensive. Unless you’re
employed by a storage-device manufacturer, there isn’t much point in
designing and programming your own generic devices. But special-purpose
USB storage devices are useful in many embedded systems, including
one-of-a-kind projects and products manufactured in small quantities.

Another option for some systems is to add USB host-controller hardware
and mass-storage firmware. The embedded system can then store and read
files in off-the-shelf USB storage devices.

Benefits
Adding storage-device capabilities to a system has several benefits:

• With a USB device controller, a system can make the contents of its stor-
age media available to any PC or other USB host computer.

• File systems provide a standard way to store and access data. A PC or
other USB host can format the media in a USB storage device to use the
FAT16 or FAT32 file system. When the device is connected to a PC, the
operating system enables reading and writing to files. Users can access the
files without having to install and learn a vendor-specific application.

• Storage media is readily available. Flash-memory cards are convenient
and have enough capacity for many applications. Some cards require only
a few port pins to access. Devices that need large amounts of storage can
interface to hard drives.

Mass Storage Basics

 3

Other Considerations
A storage device isn’t the solution for every application, however.

• Mass-storage firmware is complex. A USB mass-storage device must sup-
port the USB protocols required for all USB devices as well as class-spe-
cific mass-storage protocols. If the device firmware needs to create, read,
or write to files and directories on its own (not via the USB interface),
the firmware must also support a file system. For some applications, a
different USB class or a vendor-specific protocol would require less time
and expense to implement.

• USB mass-storage devices transfer data using bulk transfers. These pro-
vide the fastest transfers on an otherwise idle bus but have no guaranteed
timing or bus bandwidth. If your device needs precise timing in transfer-
ring data, the mass-storage class isn’t appropriate.

• A storage device should have one mass-storage master at a time. The mas-
ter, or mass-storage host, is the computer that reads and writes to the
storage media. Special-purpose mass-storage devices can function as mas-
ters on their own and can also permit a PC or other USB host to func-
tion as the master. If one master adds, deletes, or changes a file and the
other master isn’t aware of the changes, confusion or worse problems can
result. Devices that support two masters can have a manual or electronic
switch to enable one master at a time, or a device can use firmware proto-
cols to inform the host when the media’s contents have changed. For
some designs, another approach without this added complexity makes
more sense.

Table 1-1: Common USB mass storage devices use a variety of storage media.
Device Storage Media Local CPU Interface

to Media
Removable Media?

Hard drive Hard disk ATA No

CD drive CD ATA + ATAPI Yes

DVD drive DVD ATA + ATAPI Yes

Flash drive Flash memory Local CPU data bus No

Flash-memory-card
reader/writer

Flash memory SPI,
MultiMediaCard bus,
SD-Card bus

Yes

Chapter 1

4

Alternate approaches for USB devices that transfer generic or vendor-spe-
cific data include the human-interface device class, a device accessed via a
virtual COM port, or a generic or vendor-specific driver.

Requirements
Adding storage capabilities and a USB interface to an embedded system
requires hardware and firmware to support accessing the storage media and
communicating over the USB interface.

Devices
An embedded system that functions as a USB mass-storage device requires
the following hardware (Figure 1-1):

• A microcontroller or other CPU or intelligent hardware to manage the
embedded system’s operation.

• A USB device controller, which can be embedded in a microcontroller
chip or on a separate chip that interfaces to a CPU or microcontroller.

• A generic hard drive, flash drive, or other media that interfaces to the
device’s CPU.

Figure 1-1: A USB mass-storage device contains storage media, a media
controller, a device CPU or microcontroller, and a USB device controller, which
can be on a separate chip or embedded in a microcontroller.

Mass Storage Basics

 5

In a USB mass-storage device, the hardware or firmware must perform the
following functions:

• Detect and respond to generic USB requests and other events on the bus.
• Detect and respond to USB mass-storage requests for information or

actions from the device.
• Detect and respond to SCSI commands received in USB transfers. These

industry-standard commands read and write blocks of data in the storage
media, request status information, and control device operation.

In addition, devices that create, read, or write to files and directories on their
own (not via a USB host) must implement a file system. A file is a named
collection of data. A directory structure provides an index to the files. Popu-
lar file systems for embedded systems include FAT16 and FAT32.

Two popular types of storage media for embedded systems are flash-memory
cards and hard drives. A flash-memory card contains flash-memory chips to
provide storage, a controller that manages reading and writing to the mem-
ory, and an interface to the outside world. Common types of flash-memory
cards includes the MultimediaCard (MMC), Secure Digital (SD) Card, and
CompactFlash® (CF®) card. A hard drive contains a hard disk that provides
storage, drive components to perform functions such as spinning the disk
and positioning the heads, a drive controller, and an interface to the outside
world. An embedded system that accesses flash-memory cards or hard drives
must have a microcontroller or other CPU or intelligent hardware to man-
age communications with the cards or drives.

This book focuses on block storage devices, where data is transferred in
blocks of defined sizes. USB hard drives and flash drives are block storage
devices. Other devices are stream devices, where each data transfer is a
sequence, or stream, of data that can be any length. An example of a stream
device is a modem that carries voice communications.

Embedded Hosts
An embedded system that functions as a USB host for flash or hard drives
requires the following hardware (Figure 1-2):

• A microcontroller or other CPU or intelligent hardware to manage the
embedded system’s operation.

Chapter 1

6

• A USB host controller, which can be embedded in a microcontroller chip
or on a separate chip that interfaces to the CPU, microcontroller, or
other intelligent hardware.

• A generic hard drive, flash drive, or other media connected to a USB port
on the host.

The hardware or firmware in an embedded USB mass-storage host must
provide the following functions:

• Issue USB requests and initiate other events on the bus to identify
attached devices and manage traffic and power on the bus.

• Issue USB mass-storage requests that ask for status information or specify
actions for the device to perform.

• Issue SCSI commands in USB transfers. The commands read and write
blocks of data in the storage media, request status information, and con-
trol the device operation.

• Support a file system to access files in the media.

Figure 1-2: To access generic USB mass-storage devices, an embedded
system must contain a USB host controller, which can be on a separate chip or
embedded in a microcontroller.

Mass Storage Basics

 7

Selecting a Media Type
The storage media is the physical entity that holds a device’s data. In embed-
ded systems, a storage device’s media is typically separate from the system’s
program memory, which stores the code executed by the system’s CPU.
Over time, various storage technologies and form factors have come and
gone in popularity. Currently popular technologies include hard drives,
CD/DVD drives, flash-memory cards, and USB flash drives (Figure 1-3).
Other names for a USB flash drive (UFD) include USB key, pen drive,
ThumbDrive®, DiskOnKey®, and JumpDrive®.

The different media types vary in the hardware and circuits required to
access the media, the ability to erase and rewrite, methods of write protec-
tion, whether the media is removable from its drive, and interface options
for external CPUs.

For many devices, flash memory is a good choice for storage media.
Flash-memory cards are physically small, can store moderate amounts of

Figure 1-3: USB flash drives provide convenient storage that PCs and other
USB hosts can access.

Chapter 1

8

data, and manage the low-level protocols for accessing the memory. Some
cards require only a few port pins to access. With the addition of a USB
device controller and supporting firmware, USB hosts can access the data in
a device’s flash-memory card. Users can also remove a card from the device
and insert the card in a card reader attached to a PC or other computer.
Flash memory consumes less power than other media types. When attached
to a USB host or hub, a typical flash-memory storage device can receive all
of its power from the bus.

Hard drives are the cheapest per byte and can hold massive quantities of
data. CD and DVD drives are less common in embedded systems because
embedded applications tend to require media that is easily erased and rewrit-
ten. CD-RW, DVD-RW, and DVD+RW discs can be erased and rewritten,
but not as easily as magnetic media.

A device that contains a USB host controller and supporting firmware can
access ordinary USB flash drives and hard drives. Because a USB host must
manage the bus, USB host programming is more complex than USB device
programming. But for some applications, the ability to store data in generic
drives makes the increased complexity worthwhile.

Drive Mechanisms
Hard disks require a drive mechanism to spin the disks and position the read
and write heads (Figure 1-4). A hard drive contains a stack of platters. Each
platter has magnetic storage media arranged in concentric circles, called
tracks, on both sides. Each surface of a platter has a head positioned above
the platter’s surface. The head can read or write to the bit of data directly
opposite the head.

An area on a drive can be identified by cylinder, head, and sector. A cylinder
is a stack of tracks of the same diameter. Each surface has a head, so the head
identifies a surface on a platter. A sector is a portion of a track and contains
the smallest addressable quantity of data in the media. All sectors in a drive
have the same capacity, typically 512 bytes.

The drive mechanism spins the disks and moves the heads to requested
tracks. When a requested sector on a spinning disk passes under the head,

Mass Storage Basics

 9

the head performs the read or write operation on the media. The head reads
and writes a minimum of a sector’s data in each read or write operation.

Flash memory resides in chips. Accessing flash memory requires no moving
parts. USB storage devices with flash memory don’t have mechanical drives,
but the term flash drive for these devices has stuck.

Figure 1-4: A hard drive contains multiple platters. Each side on a platter has
circular tracks containing magnetic media and a read/write head. A cylinder
consists of all of the tracks with the same diameter on all of the platters.

Chapter 1

10

Addressing Methods
All USB drives and other drives of recent vintage support logical block
addressing (LBA). With LBA, blocks of storage capability are numbered
sequentially beginning at zero. All blocks have the same size, again typically
512 bytes. The logical block address is often referred to as a sector address
because the block size equals the capacity of a sector in a hard drive. To
access the media, software specifies the logical block address to read or write
to. For hard drives, the drive’s controller translates each LBA to a cylinder,
head, and sector on the drive. For flash drives, the drive’s controller trans-
lates each LBA to a block, page, and column in the memory array. The
sequence of logical block addresses doesn’t have to correspond to the physi-
cal locations of the sectors in a drive or the memory in a chip. All that mat-
ters is that the media’s controller knows what area of storage corresponds to
each address.

In older systems, software accessed storage media using CHS addressing,
where the software specifies a cylinder, head, and sector number to read or
write to. A storage device can support both CHS addressing and LBA.

Compared to CHS addressing, LBA is simpler, more flexible, and supports
larger capacities. File-system drivers in embedded systems are unlikely to
need to use CHS addressing.

Reading and Writing Considerations
Storage media varies in the available methods of write-protecting the con-
tents, support for erasing, and copy-protection technologies.

Write Protection

The storage media, drive mechanism, circuits, or a manual switch can per-
mit or forbid writing to the media. For example, a flash-memory controller
can forbid writing to all or a portion of the memory. Or a manual switch on
a flash-memory card can inform the host that the media shouldn’t be erased
or overwritten. Higher-level software in the mass-storage master can also
control access to data on a storage device.

Mass Storage Basics

 11

Erasing

The media in a hard drive can be erased and rewritten virtually endlessly,
while flash memory can survive 10,000 or more erase cycles, depending on
the technology. Some memory cards contain programmed ROM chips,
which can’t be erased and rewritten.

The flash memory used in storage devices must be read and written in pages
and erased in blocks. The page size for read and programming (write) opera-
tions is typically either 528 bytes (small block) or 2112 bytes (large block).
A 528-byte page can hold one 512-byte sector and 16 additional bytes for
error-correcting codes (ECC), address-mapping information for use in wear
leveling, and other information. A 2112-byte page holds four 512-byte sec-
tors with 16 additional bytes per sector. Newer memory chips tend to use
large blocks.

The block size for erase operations is much larger than the page size for read-
ing and writing. In the past, blocks of 16 KB and 32 KB were common,
while current flash memory has erase blocks of 128 KB or 256 KB. Before
writing to previously programmed memory, the area to be written must be
erased. So to write even a single byte to a previously programmed area, the
memory controller must erase an entire erase block and then program a
page’s contents back into the memory.

The controllers in flash-memory cards manage the erase operations and
enable device firmware to work with 512-byte blocks. To write a byte to a
flash-memory card, device firmware typically reads 512 bytes into a buffer,
changes the byte to be written, and writes the buffer back to the memory
card. The card’s controller handles the erase and write operations.

The controllers in flash-memory cards use wear-leveling techniques that
help extend the useful life of the memory array by spreading erase/write
cycles evenly among all of the memory cells. A file-system driver that
accesses raw flash-memory chips can implement wear leveling as well.

Security

Some media types have built-in copy-protection capabilities. For example,
an SD Card can be configured to require authentication before allowing
access to the card’s contents, and a card can restrict the number of allowed
copies.

Chapter 1

12

Removable Media and Devices
A device can have removable media, and an entire device can be removable
from the computer that communicates with the device.

Removable Media

In a drive with removable media, users can easily insert and remove media in
the drive. CD and DVD drives have removable media because you can easily
swap discs. A memory-card reader with a card slot has removable media.
Hard drives and flash drives have non-removable media because you can’t
easily remove the hard disk from its drive or the flash memory from its cir-
cuit board. A device reports whether it has removable media in the response
to a SCSI INQUIRY command. Some flash drives with non-removable
media report that they have removable media. Chapter 6 has more about the
INQUIRY command.

Removable Devices

An entire storage device can also be removable or non-removable from the
computer that accesses the drive. USB drives are removable. An internal
drive is considered non-removable because removing the drive requires more
work than detaching a cable.

Managing Removal

A user can detach a USB device or remove a flash-memory card at any time.
If a device or card is removed while the host is writing to the media, the
device and host should detect the removal and handle it as gracefully as pos-
sible.

Hardware Interfaces
A storage device can support one or more interfaces to its storage media. In
most cases, the device’s CPU doesn’t access the media directly. Instead, the
CPU communicates with an intelligent controller embedded in a drive or
flash-memory card. In devices that support USB, the CPU also interfaces to
a USB device controller.

Mass Storage Basics

 13

Hard Drives
When you need a lot of storage, a hard drive is the most economical choice.
At this writing, a megabyte of hard-drive storage is 50 to 100 times cheaper
than a megabyte in a flash-memory card. Prices for both media continue to
fall, and the price differential may change over time, but for the near future,
hard drives are likely to continue to be the favored solution for storing very
large amounts of data.

Technology
Because they use mechanical drive components, hard drives tend to be more
fragile than completely electronic media such as flash memory. Modern
drives are much more rugged than in the past, however. For embedded sys-
tems that need to fit in a small space, tiny hard drives are available in the
USB key-drive form factor and in Type II CompactFlash cards.

Interfaces
The most common interface between a hard drive and its CPU is the Paral-
lel AT Attachment (ATA) interface, also known as the Integrated Drive Elec-
tronics (IDE) interface. A drive that uses ATA must have an intelligent
controller embedded in the unit. The ATA specification defines the cables
and connectors, signals, and registers and commands for communicating
with the drive’s controller. ATA devices must support logical block address-
ing. A single ATA interface on a host computer can connect to up to two
storage devices. The host computer communicates by reading and writing to
registers in the device.

ATA with Packet Interface (ATAPI) is an extension to ATA that defines a
protocol for sending SCSI and other commands to an ATA device in struc-
tures called command packets. CD and DVD drives use the ATAPI proto-
col. More information about ATA/ATAPI and links to the standard
documents are at www.ncits.org.

Flash Memory
Flash memory is non-volatile, electrically erasable storage available as chips
and in cards that incorporate memory chips and a controller.

www.ncits.org

Chapter 1

14

Technology
Both flash memory and EEPROM provide non-volatile, electrically erasable
storage. Compared to EEPROM, flash-memory cells are physically smaller,
can withstand more erase/write cycles, and are cheaper to manufacture. The
main disadvantage of flash memory is that unlike EEPROM, flash memory
is erasable only in blocks, not by individual byte. Even so, for most storage
devices, flash memory is the more practical choice, while EEPROM is useful
for storing infrequently changed configuration settings.

Two flash-memory technologies in popular use are NOR and NAND.

NOR flash is suited for storing program code, where the CPU wants fast
read access but rarely writes to the memory. NOR flash has fast read times
but slow erase and write times. NOR flash has low density, so large amounts
of storage may require multiple chips. To access NOR flash, a CPU uses the
same data and address lines used to access other parallel memory chips.

Storage devices use NAND flash, which has fast erase and write times.
NAND flash also has lower power consumption and is much cheaper than
NOR flash. A CPU accesses NAND flash chips via data lines and command
and address registers. NAND flash has high density, so large amounts of
memory can fit in a small package. The advantages of NAND flash are so
attractive that some devices use NAND flash for program memory along
with a RAM cache to improve performance.

Three varieties of NAND flash are Old Single-level Cell (SLC), New SLC,
and Multi-level Cell (MLC). MLC memory stores multiple bits in each cell
and is popular because it’s cheaper to manufacture. However, compared to
SLC memory, MLC memory supports fewer erase cycles, has slower write
times, and consumes more power. These are the typical number of erase
cycles supported by each memory type: Old SLC: 1,000,000, New SLC:
100,000, MLC: 10,000.

Wear Leveling

Wear-leveling techniques can extend the useful life of flash memory by writ-
ing to different physical locations in each erase/write cycle. A typical write
operation accesses only a portion of the memory in a flash-memory card.
Writing to different locations with each write operation helps to spread the
erase/write operations evenly to all areas of the memory and extends the life

Mass Storage Basics

 15

of the memory as a whole. A card that uses chips rated for 10,000 erase
cycles can thus withstand a much greater number of erase operations if each
operation erases a portion of the memory. Wear leveling is especially impor-
tant if the chip stores files or structures such as file allocation tables (FATs)
that are rewritten frequently.

To accomplish wear leveling, firmware can map each logical address to a
physical address that changes with each write operation. Higher-level firm-
ware writes to the logical addresses, and the wear-leveling firmware trans-
lates the addresses to physical locations in the memory. For example, write
operations can be mapped to the physical addresses in sequence, starting
over at the beginning after reaching the end.

Error Correcting

Error correcting code (ECC) bytes enable a controller to verify data in read
operations. The controller generates and stores an ECC when writing to a
block and can use the code to verify the data after reading the block.

Manufacturers of flash-memory cards may implement additional protocols
to help ensure data reliability. For example, under margin conditions, the
controller in a Sandisk MultiMediaCard reads data back after writing to ver-
ify the write operation. If a bit is bad, the controller replaces the bit with a
spare bit. The controller can also replace an entire bad block with another
block. Higher-level protocols can also support error correcting via check-
sums sent with data.

Options for Flash Memory
Using flash-memory cards rather than raw flash chips has two advantages.
The controller in the card greatly simplifies accessing the memory. And
cards are easily removable and replaceable, so you can store data in multiple
cards and replace cards that fail or wear out.

Things to consider when selecting a type of flash-memory card include
physical size, capacities, interfacing options, data-transfer speed, power-sup-
ply voltage, and cost. Cost includes the price for the memory cards and con-
nectors as well as any charges for specification documents, licensing, and
royalties. If protecting the media’s contents from writing or copying is
important, some cards have this capability built in.

Chapter 1

16

For many embedded systems, a MultiMediaCard host is a good choice
because the cards are small, many microcontrollers can interface to them,
and MultiMediaCard hosts have no licensing fees. A MultiMediaCard host
can also communicate with SD Cards if the connector accepts the slightly
thicker SD cards. Other options are an SD-Card host or CompactFlash
host.

MultiMediaCard
A MultiMediaCard contains these elements (Figure 1-5):

• Memory for data storage. The memory is typically flash memory but
ROM-based MultiMediaCards are also available.

• Five registers that can store configuration and status information such as
valid power-supply voltages and whether the card has completed its
power-up procedure.

• An interface that supports communicating via the MultiMediaCard bus
and SPI.

• A controller that executes MultiMediaCard commands.

There are three classes of MultiMediaCards. The Read/Write (RW) class
encompasses cards that can read and write to storage media, typically flash
memory. Read-only Memory (ROM) cards support reading but not writing
to the storage media. I/O cards perform additional functions beyond data
storage.

Figure 1-5: Each MultiMediaCard contains memory, registers, and an intelligent
controller.

Mass Storage Basics

 17

The MultiMediaCard specifications are a product of the MultiMediaCard
Association (MMCA) (www.mmca.org). The MMCA board consists of over
a dozen semiconductor and technology companies. The organization is ded-
icated to open, royalty-free standards.

The MultiMediaCard specifications are the ultimate authority on the physi-
cal interface and command set. Data sheets for specific MultiMediaCards
are another helpful source of information about the interface, protocols, and
card-specific information.

Packages

Table 1-2 compares the five MultiMediaCard variants. The cards are avail-
able in three form factors and with interfaces of 7, 10, and 13 pins (Figure
1-6). The original MultiMediaCard has a 7-pin interface and is about 1.25 x
1 inch in size. The RS-MultiMediaCard is functionally identical and about
half the size. The MMCplusTM and MMCmobileTM add 13-pin interfaces in
both form factors. The MMCmicroTM has 10 pins and is about half an inch
square.

Interfacing

A MultiMediaCard can use either of two synchronous serial interfaces: the
MultiMediaCard bus or SPI. Just about any microcontroller can implement
either bus. The MMCplus, MMCmobile, and MMCmicro can also use a

Figure 1-6: From left to right: MultiMediaCard, RS-MultiMediaCard, MMCplus,
MMCmobile, and MMCmicro.

www.mmca.org

Chapter 1

18

4-bit parallel MultiMediaCard bus. The MMCplus and MMCmobile can
use an 8-bit parallel MultiMediaCard bus.

An SPI host must have a clock output (SCLK), a data output (DataIn on the
card), and a data input (DataOut on the card). The host must also control a
unique chip-select output (CS) for each device the host communicates with.

A MultiMediaCard-bus host must have a clock output (CLK), a bidirec-
tional pin for commands (CMD), and a bidirectional pin for data (DAT).
The master uses commands to assign addresses and select cards, so the Mul-
tiMediaCard bus doesn’t need a chip-select line for each card.

On power-up, a MultiMediaCard must be clocked at 400 kHz or less.
When the initialization procedure is complete, the host can increase the
clock frequency.

Table 1-2: MultiMediaCards are available in several formats.
Card MultiMediaCard RS-

MultiMediaCard
MMCplus MMCmobile MMCmicro

Sponsor mmca.org

Physical Size
(mm)

32 x 24 x 1.4 18 x 24 x 1.4 32 x 24 x 1.4 18 x 24x 1.4 14 x 12 x 1.1

Pins 7 13 10

Interface MultiMediaCard bus (serial),
SPI

MultiMediaCard bus (serial or parallel), SPI

Data Bus
Width (bits)

1 1, 4, 8 1, 4

Maximum
Data Transfer
Rate
(Mbits/sec.)

20 416 208

Maximum
Clock Speed
(Mbits/sec.)

20 52 52

Power
Supply (V)

3/3.3/1.8

Security SecureMMC interface supports digital rights management

Specification
Cost

$500 or MMCA member
@$2500/year

$1000 or MMCA member @$2500/year
(includes all MultiMediaCard variants)

Licensing
Fees and
Royalties

none

Mass Storage Basics

 19

These are advantages to using SPI:

• Many microcontrollers include hardware support for SPI. The hardware
support simplifies programming.

• All SPI signals are unidirectional so the host doesn’t need to have bidirec-
tional port pins.

• A variety of chips and modules in addition to MultiMediaCards have SPI
interfaces. The options include EEPROMs, analog-to-digital converters,
and other I/O functions. A microcontroller can thus use one bus to
access multiple components.

• For interfaces that don’t require error checking, an SPI host can instruct a
card to ignore error checking. Error checking is mandatory with the Mul-
tiMediaCard bus.

These are advantages to using the MultiMediaCard bus:

• The host doesn’t require a chip-select line for each card. Instead,
addresses are assigned via firmware.

• The host can broadcast commands to multiple cards.
• The host can perform stream reads and writes, where the data isn’t in

defined blocks and the card or host transmits continuously until the host
issues a STOP_TRANSMISSION command. SPI hosts can perform
block reads and writes only.

• MMCplus, MMCmobile, and MMCmicro cards can use a parallel data
bus for faster transfers.

A host selects the MultiMediaCard bus or SPI by controlling the CS pin on
the card when sending the GO_IDLE_STATE command to the card. To
use SPI, the host brings CS low while sending the command. To use the
MultiMediaCard bus, CS remains high. All communications that follow use
the selected bus.

The MultiMediaCard specification doesn’t mandate power-consumption
limits. A typical MultiMediaCard consumes 50 mA during read operations
and 60 mA during write operations. Cards can support a low-power sleep
mode when the card isn’t being accessed.

Protocols

The MultiMediaCard specification defines a set of MultiMediaCard com-
mands. The host uses the commands to retrieve information about a card

Chapter 1

20

and its status, to send control information to a card, and to read and write
data in the storage media. An SPI host can use most of the MultiMediaCard
commands. Chapter 4 and Chapter 5 have more about MultiMediaCard
programming.

Fees

MultiMediaCard hosts have no licensing fees, but the MMCA charges to
download the specifications. At this writing, the cost is $500 for version 3.1
of the specification and $1000 for version 4.1, which adds the MMCmobile
and MMCplus variants. Those who join the MMCA at $2500/year get the
specifications for no additional charge plus other benefits.

SD Memory Card
Secure Digital (SD) Memory Cards, or SD Cards for short, are similar in
capability, size, and pinout to MultiMediaCards. An SD-Card host can
communicate with both MultiMediaCards and SD Cards.

Compared to MultiMediaCards, SD Cards have these differences:

• In the original form factors, SD Cards are thicker than MultiMediaCards
(2.1 mm versus 1.4 mm). Card connectors that accommodate both types
are available. With adapters, you can use any form factor of either card
type in a full-size SD-card connector.

• Some SD Cards have a manual write-protect switch.
• SD cards have additional registers with configuration and status informa-

tion.
• SD Cards support additional commands, including a command that

enables the host to specify a power-supply voltage.
• Unlike MultiMediaCards, SD Cards don’t need to be clocked at 400 kHz

or less until the card is initialized (but doing so causes no harm).

The SD-Card technology was developed by Matsushita Electric Industrial
Co., Ltd., SanDisk Corporation, and Toshiba Corporation.

Packages

Table 1-4 compares the SD-Card variants. SD Cards are available in three
form factors: original SD Card, miniSDTM Card, and microSDTM Card (Fig-

Mass Storage Basics

 21

ure 1-7). The form factors are similar to the options available for MultiMe-
diaCards. A card that performs I/O functions such as modem, GPS device,
or network interface is called an SDIO Card.

The optional write-protect switch is a sliding tab on the side of the card. If
the tab is in the lock position, the host must write-protect the contents. The
switch by itself doesn’t offer protection. The firmware accessing the card is
responsible for reading the state of the switch and protecting the contents
when appropriate. SD-Card connectors include a pin that enables reading
the switch state. The miniSD and microSD Cards don’t have write-protect
switches but can be inserted in an SD-Card adapter that contains a switch.

Interfacing

An SD Card can use SPI or the SD-Card bus. The SD-Card bus can use a
bus width of one or four bits. The SD-Card bus can have shorter timeout
values and doesn’t require a clock frequency of 400 kHz or less on power up.
A typical SD Card uses 65 mA to read and 75 mA to write and has a
low-power sleep mode when the card isn’t being accessed.

Protocols

SD Cards use the same commands and protocols defined by the MultiMedi-
aCard specification. SD Cards also support a series of commands that are
specific to SD Cards. These commands support security functions and

Figure 1-7: SD Cards are available in three form factors. From left to right:
original SD Card, miniSD Card, and microSD Card.

Chapter 1

22

enable reading additional status information and controlling a pull-up on
the Card Detect pin.

Fees

Implementing an SD-Card host isn’t practical for developers of inexpensive
products that sell in modest quantities. Every device that contains an
SD-Card host must be licensed. At this writing, it costs $1000/year to join
the SD Card Association and another $1000/year for a member to license a
host. Membership includes access to the SD Card specifications.

If you don’t need the additional capabilities of SD Cards, a MultiMediaCard
host is a less expensive option. If you use a connector wide enough to accept
SD Cards, the host can communicate with both MultiMediaCards and SD
Cards operated as MultiMediaCard-compatible devices.

CompactFlash
Another option for flash memory is the CompactFlash card (Figure 1-8).
Like MultiMediaCards and SD Cards, CompactFlash cards contain mem-

Table 1-3: Secure Digital (SD) Cards are available in several formats.
Card SD Card miniSD Card microSD Card

Sponsor sdcard.org

Physical Size (mm) 32 x 24 x 2.1 20 x 21.5 x 1.4 11 x 15 x 1
Pins 9 11 8

Interface SD Card bus, SPI

Data Bus Width (bits) 1, 4
Maximum Data
Transfer Rate
(Mb/sec.)

100 (SD Card bus); 25 (SPI)

Maximum Clock
Speed (Mbits/sec.)

25

Power Supply (V) 2.7-3.6 or 1.6-3.6(LV)
Security support for digital rights management

Write Protect Switch optional no no

Specification Cost Membership @$1000/year

Licensing Fees and
Royalties

Host/ancillary product license for $1000/year, available to members
only

Mass Storage Basics

 23

ory, registers, and an intelligent controller. CompactFlash was introduced by
SanDisk Corporation. These cards are a solution if you need to store a lot of
data in a small package or need very fast transfers.

Packages

Table 1-3 compares the two CompactFlash variants. Both are 1.7 in. wide
and 1.4 in. or greater in length. A Type II CompactFlash card is thick
enough (about 0.2 in.) to hold a tiny hard drive. A CF+TM card is any card
that has the CompactFlash form factor and contains storage media other
than flash memory or performs I/O functions other than storage.

Interfacing

CompactFlash cards can use an 8- or 16-bit parallel data bus. Storage
devices can use either of two modes. PCMCIA mode is based on the PC
Card (PCMCIA) interface and uses an 11-bit address bus. True IDE Mode
is based on the ATA-4 specification, is compatible with the IDE disk drive
interface, and uses a 3-bit address bus to select registers.

A CompactFlash card can draw up to 75 mA at 3.3V or 100 mA at 5V. A
CF+ card can use either of two power levels. The limits for Power Level 0 are
the same as for CompactFlash, while Power Level 1 allows drawing up to
500mA at 3.3V or 5V. All currents specified are average RMS currents.

Figure 1-8: A CompactFlash card is another option for flash-memory storage.

Chapter 1

24

Protocols

CompactFlash and CF+ cards with storage media are accessed much like
other ATA hard drives. A series of registers store status and control informa-
tion and data being transferred. The CompactFlash specification defines a
CF-ATA command set for communicating with cards.

Fees

The CF+ and CompactFlash specification is available at no charge. Use of
the CompactFlash logo and trademarks on products requires membership in
the CompactFlash association at $2500 per year.

Table 1-4: CompactFlash cards are available in several formats.
Card CompactFlash CompactFlash II

Sponsor compactflash.org
Physical Size (mm) 36.4 or greater x 42.8 x 3.3 36.4 or greater x 42.8 x 5
Pins 50

Interface PC Card/True IDE Mode

Data Bus Width (bits) 8 or 16
Maximum Data Transfer Rate
(Mbits/sec.)

528

Power Supply (V) 3.3/5

Security Security Mode password protection, recommended for use only
in non-removable devices

Specification Cost none
Licensing Fees and
Royalties

Membership @$2500/year enables using the logo and trade-
marks

 25

2

Supporting USB
Many mass-storage devices store files that PCs or other computers must
access. To make files available to any PC or other USB host, a device can use
either of these approaches:

• Include a USB device controller and support for USB’s mass-storage
class. The files can be stored in any media. To access the files from a USB
host, attach the device to a USB port on the host.

• Include a USB host controller and a mass-storage driver. The device can
then store files on the same USB drives that PCs and other USB hosts
can access. To access the files from another USB host, remove the drive
from the device and attach the drive to the other host.

An additional option that doesn’t require USB support on the device is to
store files in flash-memory cards. To access a card’s contents from a PC,
insert the card in a card reader/writer device either built into the PC or
attached via USB. (You can also use flash-memory cards as the storage media
in a device that has a USB interface.)

A USB device interface is a popular choice for mass-storage devices because
it’s inexpensive to implement and convenient to use. Every recent PC has

Chapter 2

26

USB 2.0 ports that support the bus speeds used by mass-storage devices: 12
megabits/sec and 480 megabits/sec. Windows and other operating systems
support USB’s mass-storage class. A USB host interface is a good solution if
you need a host controller to communicate with other devices or if you want
to use off-the-shelf USB storage devices.

This chapter introduces the USB interface and USB’s mass storage class.

The Interface in Brief
The Universal Serial Bus is an interface and protocol that enable a single
host computer to communicate with a variety of peripheral devices. USB is
appropriate for just about any kind of mass-storage device, including hard
drives, CD and DVD drives, and flash drives.

The USB specifications are available from the USB Implementers Forum
(USB-IF) (www.usb.org). The USB-IF is the non-profit corporation
founded by companies involved with developing the USB specification. The
USB-IF also sponsors a developers Web forum, provides software and hard-
ware to help in developing and testing products, and develops compliance
tests for devices, hosts, and related hardware.

The USB 2.0 specification is the main document that defines the interface.

Hosts and Devices
Every USB communication is between a host and a device. The host is in
charge of the bus. Devices communicate only when requested to do so by
the host. The only exception is the remote-wakeup feature, which enables a
device in the low-power Suspend state to request communications with the
host.

A USB host is a computer that contains USB host-controller hardware, a
root hub with one or more USB ports, and program code to manage com-
munications and events on the bus. The host-controller hardware formats
data for transmitting on the bus and converts received data to a format that
host software can understand. The host controller also performs functions
related to managing communications on the bus. The root hub has one or
more connectors for attaching devices. The root hub, in combination with
the host controller, detects newly attached and removed devices, carries out

www.usb.org

Supporting USB

 27

requests received from the host, and passes data between devices and the
host controller.

A USB host can be a desktop or notebook computer, a handheld, or any
embedded system that contains host-controller hardware and software. To
communicate with mass-storage devices, the host must have a driver that
supports the protocols defined for USB’s mass-storage class.

A USB device contains USB device-controller hardware and a microcontrol-
ler, CPU, or other intelligent hardware. As Chapter 1 explained, some
devices contain a microcontroller with an on-chip USB device controller,
while other devices use a microcontroller or CPU that interfaces to a USB
controller on a separate chip. The hardware that implements the low-level
USB protocols in the device controller is called the serial interface engine
(SIE). Program code in a USB device is typically firmware stored in non-vol-
atile memory. Some devices manage USB communications entirely in hard-
ware and require no programming for the USB communications.

A USB device can connect to a host’s root hub or to an external hub. The
device can have a standard USB series-B or mini-B receptacle, a vendor-spe-
cific connector, or a permanently attached USB cable. The upstream
(toward the host) end of the device’s cable has a series-A plug that attaches to
a host or hub or a mini-A plug that attaches to an On-The-Go device. Fig-
ure 2-1 shows the different plug types.

An On-The-Go (OTG) device is a special kind of USB device that can func-
tion as a limited-capability host or as a device. An On-The-Go device has a
mini-AB receptacle that can accept a mini-A plug or a mini-B plug. An
example of a USB On-The-Go device is a camera that can function as a
mass-storage device that stores images that PCs can access via USB and as a
host that sends images to a USB printer.

Host Responsibilities
A USB host manages power and communications on the bus. The USB host
has these responsibilities:

Chapter 2

28

Detect Devices

On power-up, hubs make the host aware of all attached USB devices. In a
process called enumeration, the host assigns an address and requests a series
of data structures called descriptors from each device. After power-up,
whenever a device is removed or attached, the host learns of the event and
enumerates any newly attached device or removes any detached device from
the record of available devices.

Provide Power

The host provides power to all devices on power-up or attachment and
works with the devices to conserve power when possible. Some devices draw
all of the power they need from the bus, while others have their own power
supplies to supplement or replace the bus power.

Figure 2-1: USB cable plugs from left to right: series-A, series B, mini-A, and
mini-B.

Supporting USB

 29

Manage Traffic on the Bus

The host manages the flow of data on the bus. Multiple peripherals may
want to transfer data at the same time. The host controller divides the avail-
able time into segments called frames (on a full-speed host) or microframes
(on a high-speed host). The host gives each transmission a portion of a
frame or microframe. A frame is 1 millisecond; a microframe is 125 micro-
seconds.

Handle Error Checking

When transmitting data, the host adds error-checking bits. When receiving
data, the host uses received error-checking bits to detect errors.

Exchange Data with Peripherals

All of the above tasks support the host’s main job, which is to exchange data
with peripherals. On a PC, users can access mass-storage devices via file-sys-
tem functions supported by the operating system.

Device Responsibilities
In many ways, a device’s responsibilities mirror the host’s, but devices also
have unique duties.

The most important thing to remember in writing USB device firmware is
this: the device should assume nothing about what the host will do next. For
the most part, the host isn’t obligated to perform communications or initiate
events on the bus in any particular order. Different hosts might do things
differently, and the same host might do things differently at different times.
A device should concentrate on responding properly to each received com-
munication or other event on the bus. The device should not assume that
any particular sequence of communications or events will occur.

A USB device has these responsibilities:

Detect the Bus Voltage

A device must be able to detect voltage on the bus’s power-supply line and
on detecting the voltage, switch in a pull-up resistor to announce the
device’s presence to the host.

Chapter 2

30

Manage Power

In normal operation, a device must limit the bus current consumed to either
100 milliamperes or a higher amount, up to 500 mA, approved by the host
during enumeration. A device must also detect the presence of the host’s
periodic timing markers and enter the low-power Suspend state when the
markers are absent. While in the Suspend state, the device must monitor the
bus and exit the Suspend state when bus activity resumes.

In the mass-storage class, most hard drives provide their own power supplies
to replace or supplement the current available from the bus, while most flash
drives use bus power only.

Respond to Standard Requests

On power-up or on attachment to a powered host, a device must respond to
standard requests sent by the host during enumeration. The host may also
send requests any time after enumeration completes. The requests query the
capabilities and status of the device or request the device to take other
action.

Handle Error Checking

When transmitting data, the device adds error-checking bits. When receiv-
ing data, the device uses received error-checking bits to detect errors.

Exchange Data with the Host

All of the above tasks support the main job of the device’s USB port, which
is to exchange data with the host.

Each device on the bus has an address and every transaction between a host
and a device contains a device address. On detecting a matching address, a
device must return requested data or status information. A device may store
received data and trigger an interrupt to notify device firmware that a com-
munication has occurred.

Implement the Device’s Function

Of course, a device must also do anything required to implement its func-
tion. For some mass-storage devices, the device’s only task is to store blocks
of data received from the host and send blocks of data requested by the host.

Supporting USB

 31

Other mass-storage devices have additional duties such as operating as a
camera, data logger, or other special-function device.

Bus Speeds
The USB 2.0 specification defines three bus speeds: high speed at 480
megabits/sec., full speed at 12 megabits/sec., and low speed at 1.5 mega-
bits/sec. A USB mass-storage device must support full speed, high speed, or
both. Almost all high-speed devices also support full speed because adding
support for full speed is rarely difficult and enables the device to work when
attached to full-speed hosts. USB hosts in recent PCs support all three
speeds. An On-The-Go host or an embedded host with mass-storage sup-
port can support full speed, high speed, or both.

The bus speeds describe the rate that information travels on the bus. In
addition to data, the bus must carry status, control, and error-checking sig-
nals. Plus, all peripherals must share the bus. So the data throughput for a
device is always less than the bit rate on the bus.

In theory, on an otherwise idle bus, a full-speed device can transfer just over
1.2 megabytes/sec., and a high-speed device can transfer more than 53
megabytes/sec. Some full-speed hosts can achieve the maximum speed or
close to it. At this writing, some high-speed hosts can transfer close to 40
megabytes/sec. The actual rate of data transfer varies depending on the effi-
ciency of the host’s and device’s programming, how busy the bus is, and
hardware capabilities of the host and drive.

Endpoints
All bus traffic is to or from device endpoints. An endpoint serves as a buffer
for received data or data waiting to transmit. Typically an endpoint is a
block of data memory or a register in the device controller.

Every device must have endpoint zero, which is the default endpoint used
for control transfers. Endpoint zero is bidirectional.

A device can have up to 30 additional endpoint addresses. Each of these
endpoint addresses has a number (1 to 15) and direction (IN or OUT). The
direction is defined from the host’s perspective: an IN endpoint provides
data to send to the host and an OUT endpoint stores data received from the
host. Device hardware or firmware configures each endpoint address for a

Chapter 2

32

specific USB transfer type. The number of available endpoints and sup-
ported transfer types vary with the device controller. A mass-storage device
must have one IN endpoint and one OUT endpoint in addition to end-
point zero.

Transfer Types
One reason why USB is suitable for a wide range of devices is its support for
four types of data transfers.

Control transfers enable the host to learn about a device, set a device’s
address, and select configurations and other settings. Control transfers can
also send vendor-specific requests that transfer data for any purpose. All
USB devices must support control transfers. A control transfer has two or
three stages. In the Setup stage, the host sends a request. In the Data stage,
the host or device sends data. Some requests don’t have a Data stage. In the
Status stage, the receiver of data in the Data stage returns status information.
If there is no Data stage, the device returns the status information.

The other transfer types don’t have stages. A class specification or ven-
dor-specific protocol determines the length of a transfer. Bulk transfers are
intended for situations where the rate of transfer isn’t critical. If the bus is
very busy, bulk transfers are delayed, but if the bus is otherwise idle, bulk
transfers are the fastest. Mass-storage devices use bulk transfers. Interrupt
transfers are for devices that must receive or send data periodically.
Mass-storage devices rarely use interrupt transfers except for some full-speed
floppy drives, which use interrupt transfers to report the status of a received
command. Isochronous transfers have guaranteed delivery time but no error
correcting. Mass-storage devices don’t use isochronous transfers.

Transactions
Each transfer consists of one or more transactions. Each transaction contains
a token packet, a data packet, and a handshake packet. (The handshake
packet isn’t present in isochronous transfers.) Each packet begins with a
packet ID (PID). The function of the PID varies with the packet type.

The token packet contains the device address and the endpoint number the
transaction is directed to. The token packet’s PID identifies the packet as
one of these types: SETUP (first packet in a control transfer), OUT (other

Supporting USB

 33

host-to-device packet), IN (device-to-host packet), or SOF (start-of-frame
marker).

The data packet contains any data the host or device is sending in the trans-
action. For control transfers, the transfer stage and the request determine
who sends the data. For other transfers, the endpoint’s direction determines
who sends the data. The PID contains the data-toggle value, as explained
below.

The handshake packet is sent by the receiver of the data packet. The PID
contains a code to indicate whether the data was received without error. A
code of ACK means success, NAK means busy, and STALL means either
that the device doesn’t support a received request in a control transfer or that
the endpoint’s Halt feature is set. High-speed bulk OUT endpoints can also
return a NYET handshake code, which means that the endpoint accepted
the data in the current transaction but isn’t yet ready for more data.

The Data Toggle
The data toggle is a data-sequencing value that guards against lost or dupli-
cated data. If you’re debugging a device where it appears that the proper data
is transmitting on the bus but the receiver is discarding the data, chances are
good that the device isn’t sending or expecting the correct data toggle.

Each endpoint maintains its own data-toggle value, which alternates
between DATA0 and DATA1. Devices typically store the value in a register
bit. When the host configures a device on power up or attachment, the host
and device each set their data toggles to DATA0. On detecting an incoming
data packet, the host or device compares the state of its data toggle with the
data toggle in the received data packet. If the values match, the data packet’s
receiver toggles its value for the next transaction and returns an ACK. On
receiving the ACK, the data packet’s sender toggles its value for the next
transaction.

The next received packet should contain a data toggle of DATA1, and again
the receiver toggles its bit and returns an ACK. In additional transactions,
the data toggle continues to alternate between DATA0 and DATA1. An
exception is control transfers, where the Status stage always uses DATA1.

Chapter 2

34

If the receiver is busy and returns a NAK, or if the receiver detects corrupted
data and returns no response, the sender doesn’t toggle its bit and tries again
with the same data and data toggle.

Control transfers always use DATA0 in the Setup stage, use DATA1 in the
first transaction of the Data stage, toggle the value in any additional
Data-stage transactions, and use DATA1 in the Status stage. Bulk endpoints
toggle the value in every transaction, resetting the data toggle only after a
bus reset or completing a Set Configuration, Set Interface, or Clear Fea-
ture(ENDPOINT HALT) request.

Descriptors
During enumeration, the host computer uses control transfers to request the
device’s descriptors, which are data structures that contain information
about a device’s capabilities and requirements. The descriptors enable the
host computer to select an appropriate driver for the device. The descriptors
also provide information the driver needs to communicate with the device.
Table 2-1 shows a set of descriptors for a mass-storage device. Every USB
device must have descriptors and the ability to send the descriptors to the
host on request. The USB specifications define the descriptors.

A device that can operate at both full and high speeds must support two sets
of descriptors. For a mass-storage device, the values in each set can be identi-
cal except that the bulk endpoints in the high-speed descriptors have a
wMaxPacketSize of 512 instead of 64. Chapter 3 has more about descrip-
tors.

Mass Storage Requirements
In addition to what’s required for any USB device, a USB mass-storage
device must have all of the following:

• An interface descriptor with the class code = 08h (mass storage).
• A bulk IN endpoint and a bulk OUT endpoint that belong to the

mass-storage interface.
• A serial number stored in a string descriptor.
• Storage media.
• The ability to access the storage media’s contents using logical block

addressing.

Supporting USB

 35

Table 2-1: Example descriptors for a full-speed mass-storage device (Sheet 1 of
2).
Device Descriptor

0x12 Descriptor size in bytes (18)

0x01 Descriptor type (DEVICE)

0x0200 USB specification release (BCD) (2.00)

0x00 Class (specified at interface level)

0x00 Subclass (specified at interface level)

0x00 Protocol (specified at interface level)

0x40 Maximum packet size for endpoint zero (64)

0x04D8 Vendor ID (Microchip Technology; assigned by USB-IF)

0x0009 Product ID (assigned by vendor)

0x0100 Device release number (BCD, assigned by vendor) (1.00)

0x01 Manufacturer string index

0x02 Product string index

0x03 Serial number string index

0x01 Number of possible configurations

Configuration Descriptor

0x09 Descriptor size in bytes (9)

0x02 Descriptor type (CONFIGURATION)

0x0020 Total length of this and subordinate descriptors

0x01 Number of interfaces in this configuration

0x01 Identifier for this configuration

0x00 Configuration string index (no string defined)

0xC0 Attributes: self powered, no remote wakeup

0x32 Maximum power consumption (100 mA)

Interface Descriptor

0x09 Descriptor size in bytes (9)

0x04 Descriptor type (INTERFACE)

0x00 Interface Number

0x00 Alternate Setting Number

0x02 Number of endpoints in this interface

0x08 Class code (mass storage)

0x06 Subclass code (SCSI transparent command set)

0x50 Protocol code (bulk-only transport)

Chapter 2

36

0x00 Interface string index (no string defined)

Endpoint Descriptor

0x07 Descriptor size in bytes (7)

0x05 Descriptor type (ENDPOINT)

0x81 Endpoint number and direction (1 IN)

0x02 Transfer type (bulk)

0x0040 Maximum packet size (64)

0x00 Maximum latency
(doesn't apply to full-speed bulk endpoints)

Endpoint Descriptor

0x07 Descriptor size in bytes (7)

0x05 Descriptor type (ENDPOINT)

0x01 Endpoint number and direction (1 OUT)

0x02 Transfer type (bulk)

0x0040 Maximum packet size (64)

0x00 Maximum latency/high-speed OUT NAK rate
(doesn't apply to full-speed bulk endpoints)

String Descriptor 0 (Language ID)

0x04 Descriptor size in bytes (4)

0x03 Descriptor type (STRING)

0x0409 Language ID (U.S. English)

String Descriptor 1 (Manufacturer String)

0x34 Descriptor size in bytes (52)

0x03 Descriptor type (STRING)

“Microchip Technology Inc.” String contents, Unicode, 2 bytes per character

String Descriptor 2 (Product String)

0x3A Descriptor size in bytes (58)

0x03 Descriptor type (STRING)

“Microchip Mass Storage Drive” String contents, Unicode, 2 bytes per character

String Descriptor 3 (Serial Number)

0x1A Descriptor size in bytes (26)

0x03 Descriptor type (STRING)

“123456789ABC” String contents, Unicode, 2 bytes per character

Table 2-1: Example descriptors for a full-speed mass-storage device (Sheet 2 of
2).

Supporting USB

 37

• The ability to detect and respond to the class-specific Bulk Only Mass
Storage Reset and Get Max LUN requests. (A device with a single logical
unit can stall the Get Max LUN request.)

• Support for the USB mass-storage class’s protocol for receiving and
responding to commands required for the mass-storage interface’s sub-
class and peripheral device type.

The device firmware doesn’t have to support a file system. The USB trans-
fers just read and write blocks of data at logical block addresses in the storage
media. The device doesn’t have to know or care about the contents of the
data blocks. The host software translates requests to read and write files and
directories into requests to read and write to blocks at specific LBAs.

Choosing a Device Controller
A mass-storage device can use just about any full- or high-speed device con-
troller chip. Low-speed chips aren’t an option because they aren’t allowed to
do bulk transfers. Some device controllers are designed specifically for use in
mass-storage devices. These controllers provide dedicated interfaces and
other support for accessing popular media types, including flash memory
and hard drives.

Controllers with Support for Flash Memory
Standard Microsystems Corporation (SMSC) has the USB2228 flash media
controller with support for communicating with MultiMediaCards, SD
Cards, CompactFlash, and other flash-memory card types. The chip can
also access raw flash-memory chips via a generic memory and I/O interface.
The chip includes an 8051-compatible microcontroller and 15 general-pur-
pose I/O pins. The USB interface supports the control endpoint and two
bulk endpoints required for a mass-storage device. Internal FETs can switch
power to memory cards. There is hardware support for ECC error correc-
tion and SD-Card security commands.

The microcontroller can run code from ROM or from external memory. If
running code from ROM, an external EEPROM can provide product-spe-
cific and chip-specific information such as a serial number and configura-
tion data.

Chapter 2

38

Prolific Technology is another source for USB controllers with support for
flash memory.

Controllers with support for ATA/ATAPI
For controlling hard drives and CD/DVDs, SMSC has the USB97C202
ATA/ATAPI controller. Like the USB2228, the chip contains an 8051
microcontroller, but with support for ATA/ATAPI instead of flash memory.
The chip includes support for accessing hard drives that use the Compact-
Flash II form factor.

These device controllers also have ATA/ATAPI interfaces:

Cypress Semiconductor CY7C68300B EZUSB AT2LP high-speed
USB-to-ATA/ATAPI bridge.

Philips Semiconductor ISP1583 Hi-Speed Universal Serial Bus peripheral
controller.

Texas Instruments TUSB6250 USB 2.0 to ATA/TAPI Bridge Controller.

Firmware Options
Additional sources offer USB mass-storage firmware for use with a variety of
embedded-system architectures and operating systems.

Accelerated Technology has the Nucleus real-time operating system with
optional USB “middleware” that supports mass storage.

Jungo Ltd. has a USB device stack that consists of a device-controller
driver, USB core driver, and class drivers, including a mass-storage driver.
The device stack is compatible with a variety of embedded-system operat-
ing systems and CPU architectures.

MCCI’s USB DataPump firmware package supports mass storage, several
real-time operating systems, and many device controllers.

Micro Digital’s smxUSBD USB device stack supports device controllers
from Philips and has a class emulator for mass storage.

An embedded Linux system with a USB device controller can use the
file-backed USB storage gadget (FSG) driver. When attached to a USB
host, the system enumerates as a mass-storage device. The FSG driver is in
Linux/drivers/usb/gadget/file_storage.c.

Supporting USB

 39

Microchip PIC18F4550
Microchip Technology’s PICmicro® microcontrollers are popular because of
their low cost, wide availability, speed, capabilities, and low power con-
sumption. The PIC18F4550 is a PICmicro microcontroller with an embed-
ded USB device controller that can communicate at low and full speeds.
The chip doesn’t have specific support for mass storage but is suitable for
mass-storage applications that need to store and transfer moderate quantities
of data at moderate speeds. The example firmware in this book is written for
the PIC18F4550 and Microchip’s C18 C compiler.

Architecture
The PIC18F4550 is a member of Microchip’s high-performance, low-cost
PIC18 series. Program memory is flash memory. The chip also has 256
bytes of EEPROM. A bootloader routine can upgrade firmware via the USB
port.

The chip has 34 I/O pins that include a 10-bit analog-to-digital converter, a
USART, a synchronous serial port that can be configured to use the I2C bus
or SPI, enhanced PWM capabilities, and two analog comparators.

The USB module and CPU can use separate clock sources, enabling the
CPU to use a slower, power-saving clock even when using the USB port.

Firmware Support
Microchip provides USB Firmware Framework code for the Microchip
compiler and example applications for USB communications. The Frame-
work code is structured to make it as easy as possible to develop firmware for
devices in different classes and vendor-specific devices. This book includes
excerpts from Microchip’s mass-storage firmware, which uses the Frame-
work.

The USB Controller
The microcontroller’s USB controller supports all four transfer types and up
to 30 endpoint addresses plus the default control endpoint. The endpoints

Chapter 2

40

share 1 KB of buffer memory. Endpoints can use double buffering for more
efficient transfers. For isochronous transfers, USB data can transfer directly
to and from a streaming parallel port (SPP).

For each enabled endpoint address, firmware must reserve memory for a
buffer and a buffer descriptor. The microcontroller’s CPU (in other words,
the device firmware) and the USB controller’s SIE share access to the buffers
and buffer descriptors. The UOWN bit in the buffer descriptor’s status reg-
ister determines whether the CPU or SIE owns the resources. The SIE has
ownership when data is ready to transmit and when waiting to receive data
on the bus. When the SIE has ownership, device firmware shouldn’t attempt
to access the buffer or buffer descriptor except to read the UOWN bit.
When readying an endpoint to perform a transfer, the last operation the
firmware should perform is updating the status register to set UOWN to
pass ownership to the SIE. When a transaction completes, the SIE clears the
UOWN bit, passing ownership back to the CPU.

The buffer descriptor consists of four registers. The buffer descriptor status
register contains status information and the two highest bits of the end-
point’s byte count. The functions of the status bits change depending on
who owns the buffer descriptor: the CPU (Table 2-2) or the SIE (Table 2-3).
The byte-count register’s eight bits plus the two bits in the status register
contain the number of bytes to be transmitted or sent in an IN transaction
or the number of bytes expected or received in an OUT transaction. The
address-low and address-high registers contain the 16-bit starting address for
the endpoint’s buffer in RAM.

In firmware, each endpoint buffer descriptor has a name that uses this for-
mat:
ep<#>B<d>

where # is the endpoint number and d is the direction, with i = IN and o =
OUT. In the code below, MSD_BD_IN is the buffer descriptor for end-
point 1 IN and MSD_BD_OUT is the buffer descriptor for endpoint 1
OUT:
#define MSD_BD_IN ep1Bi

#define MSD_BD_OUT ep1Bo

Supporting USB

 41

A BDT union can store the contents of the buffer descriptor’s four registers:

typedef union _BDT

{

 struct

 {

 BD_STAT Stat; // status

 byte Cnt; // byte count

 byte ADRL; // buffer address, low byte

 byte ADRH; // buffer sddress, high byte

 };

 struct

 {

 unsigned :8;

 unsigned :8;

 byte* ADR; // buffer address

 };

} BDT;

Table 2-2: Bit functions for an endpoint’s buffer descriptor status register when
the CPU owns the buffer descriptor.
Bit Name Description

7 UOWN 0 = the CPU owns the buffer descriptor and its buffer.

6 DTS Data toggle synchronization: 0 = DATA0, 1 = DATA1.

5 KEN Buffer descriptor keep enable:
0 = the SIE gives up ownership after processing a packet.
1 = the SIE keeps ownership when UOWN = 0 (use for SPP
configuration).

4 INCDIS Address increment disable:
0 = address increment enabled.
1 = address increment disabled (use for SPP configuration).

3 DTSEN Data toggle synchronization enable:
0 = accept packets with incorrect data toggle.
1 = ignore packets with incorrect data toggle.

2 BSTALL Buffer stall enable:
0 = don’t return STALL handshake.
1 = return STALL handshake.

1 BC9 Byte count, bit 9.

0 BC8 Byte count, bit 8.

Chapter 2

42

The BD_STAT structure enables access to the status register’s eight bits:
typedef struct

{

 unsigned BC8:1; // byte count, bit 8

 unsigned BC9:1; // byte count, bit 9

 unsigned BSTALL:1; // return STALL handshake: 1 = true; 0 = false

 unsigned DTSEN:1; // ignore packets with incorrect data toggle:

 // 1 = true; 0 = false

 unsigned INCDIS:1; // disable address increment: 1 = true; 0 = false

 // (normally false, set true to use SPP)

 unsigned KEN:1; // SIE keeps control of endpoint’s buffer after UOWN is set:

 // 1 = true; 0 = false

 // (normally false, set true to use SPP)

 unsigned DTS:1; // Data Toggle: 1 = DATA1; 0 = DATA0

 unsigned UOWN:1; // ownership of the endpoint’s buffer and buffer descriptor:

 // 0 = CPU; 1 = SIE

} BD_STAT;

Two macros determine who currently owns an endpoint’s buffer descriptor
by reading the UOWN bit in the status register. The macros return true if
the SIE has ownership and false if the CPU has ownership.

The mMSDTxIsBusy macro is for the bulk IN (device to host) endpoint:
#define mMSDTxIsBusy() MSD_BD_IN.Stat.UOWN

The mMSDRxIsBusy macro is for the bulk OUT (host to device) endpoint:
#define mMSDRxIsBusy() MSD_BD_OUT.Stat.UOWN

The mUSBBufferReady macro gives ownership of an endpoint’s buffer
descriptor and buffer to the SIE. Firmware calls the macro when a bulk IN
endpoint buffer has data ready to send and after reading received data from

Table 2-3: Bit functions for an endpoint’s buffer descriptor status register when
the SIE owns the buffer descriptor.
Bit Name Description

7 UOWN 1 = the SIE owns the buffer descriptor and its buffer.

6 reserved Not written by the SIE.

5..2 PID3:PID0 Packet identifier. The PID of the last received IN, OUT, or Setup packet.

1 BC9 Byte count, bit 9.

0 BC8 Byte count, bit 8.

Supporting USB

 43

a bulk OUT endpoint. The macro accepts the name of a buffer descriptor,
such as ep1Bi or ep1Bo.
#define _DTSEN 0x08 // data-toggle synchronization bit

#define _DTSMASK 0x40 // data-toggle bit

#define _USIE 0x80 // SIE owns the endpoint’s buffer descriptor

#define _UCPU 0x00 // CPU owns the endpoint’s buffer descriptor

#define mUSBBufferReady(buffer_dsc)

{

 buffer_dsc.Stat._byte &= _DTSMASK; // Get the data toggle state

 buffer_dsc.Stat.DTS = !buffer_dsc.Stat.DTS; // Toggle the data toggle

 buffer_dsc.Stat._byte |= _USIE | _DTSEN; // Give ownership to the SIE

}

Each bulk endpoint can transfer up to 64 bytes in each USB transaction:

#define MSD_OUT_EP_SIZE 64

#define MSD_IN_EP_SIZE 64

Each endpoint number also has a control register that can enable a control
endpoint, an IN endpoint, an OUT endpoint, or a pair of IN and OUT
endpoints with the same endpoint number. Other bits in the register can
stall the endpoint and disable handshaking (for isochronous transactions).
Additional registers provide general USB capabilities such as storing the
device’s address on the bus and storing status and control information for
USB communications and interrupts. The chip’s data sheet has more details
about these registers.

This page intentionally left blank

 45

3

The USB Mass Storage
Class
This chapter describes USB’s mass storage class and presents device firmware
that demonstrates how mass-storage devices exchange data with USB hosts.

Requirements
In addition to complying with the USB 2.0 specification, a mass-storage
device must meet the requirements of the mass-storage class. The require-
ments include hardware capabilities and support for software protocols.

Specifications
The mass-storage class specification encompasses several documents. The
Specification Overview and Bulk-Only Transport documents are relevant to
almost all devices. The Bootability document applies to devices that systems
can boot from. Two additional documents, Control/Bulk/Interrupt (CBI)

Chapter 3

46

Transport and UFI Command Specification, are relevant only to some
floppy drives.

Devices must also support one or more industry-standard command-block
sets to exchange data, control devices, and read status information. Chapter
6 has more about these command blocks.

Logical Block Addressing
A USB mass-storage host specifies locations to read and write to in the stor-
age media using the logical block addressing (LBA) method described in
Chapter 1. Every USB mass-storage device must support accessing its media
via LBA.

Mass Storage Requests
The bulk-only transport protocol has two defined control requests. Bulk
Only Mass Storage Reset requests the device to become ready to receive a
new mass-storage command block. Get Max LUN requests the highest logi-
cal-unit number supported by the device. In Windows, each logical unit, or
volume, is represented by a drive letter. A device with a single logical unit
can return zero or stall the request. A device with LUN 0 and LUN 1
returns 1. The maximum is 15. All other mass-storage data travels in bulk
transfers.

The control/bulk/interrupt (CBI) protocol has one defined control request:
Accept Device-Specific Command (ADSC). The Data stage of the request
carries the command. A device can use an interrupt transfer to indicate that
the device has completed a command’s requested action.

A mass-storage host can also use control transfers to clear halt conditions on
bulk endpoints. To do so, the host sends the standard USB request Clear
Feature with the feature specified as ENDPOINT_HALT.

Descriptors
As Chapter 2 explained, every USB device has a series of descriptors that
provide information about the device’s capabilities. Every mass-storage
device has a device descriptor, a configuration descriptor, an interface

The USB Mass Storage Class

 47

descriptor, at least two endpoint descriptors, and at least one string descrip-
tor in addition to string descriptor zero.

In the descriptors, multi-byte numeric values transmit in little-endian for-
mat, with the least-significant-byte (LSB) first. For example, if a device’s
Product ID is 1234h, byte 10 in the device descriptor contains 34h and byte
11 contains 12h.

Device Descriptor
The device descriptor contains information about the device, its configura-
tions, and any classes the device belongs to as a whole. Table 3-1 shows the
fields in the device descriptor. Here are more details about the fields and
how they’re used in a mass-storage device:

bLength. The length in bytes of the descriptor. Always 12h.

bDescriptorType. The constant DEVICE (01h).

bcdUSB. The USB specification version that the device and its descriptors
comply with in BCD (binary-coded decimal) format. If you think of the
version’s value as a decimal number, the upper byte represents the integer,
the next four bits are tenths, and the final four bits are hundredths. Version
2.0 is 0200h. A 2.0 device does not have to be high speed. Any new
full-speed mass-storage device should comply with the latest version of the
specification.

bDeviceClass. For devices whose function is defined at the device level, this
field specifies the device’s class. Many devices, including mass-storage
devices, specify their class in the interface descriptor and set the bDevice-
Class field in the device descriptor to 00h.

bDeviceSubclass. A subclass within bDeviceClass. In mass-storage devices,
this field is 00h.

bDeviceProtocol. A protocol defined by a class or subclass. In mass-storage
devices, this field is 00h.

bMaxPacketSize0. The maximum packet size for endpoint zero. Full-speed
devices may use 08h, 10h, 20h, or 40h. High-speed devices must use 40h.

Chapter 3

48

idVendor. Members of the USB-IF and others who pay an administrative
fee receive the rights to use a unique Vendor ID. Every device descriptor
must have an assigned Vendor ID in this field.

idProduct. The owner of the Vendor ID assigns a Product ID to identify
the device. Each Product ID is specific to a Vendor ID, so multiple vendors
can use the same Product ID without conflict.

bcdDevice. The device’s release number in BCD format. The owner of the
Vendor ID assigns this value.

iManufacturer. Index to a string descriptor that contains a string describing
the manufacturer. This value is zero if there is no manufacturer string
descriptor.

Table 3-1: The device descriptor is 18 bytes.
Byte Field Description

0 bLength Descriptor size in bytes (12h)

1 bDescriptorType The constant DEVICE (01h)

2 bcdUSB USB specification release number (BCD). For USB 2.0,
byte 2 = 00h and byte 3 = 02h.

4 bDeviceClass Class code. For mass storage, set to 00h (the class is speci-
fied in the interface descriptor).

5 bDeviceSubclass Subclass code. For mass storage, set to 00h.

6 bDeviceProtocol Protocol Code. For mass storage, set to 00h.

7 bMaxPacketSize0 Maximum packet size for endpoint zero.

8 idVendor Vendor ID. Obtained from USB-IF.

10 idProduct Product ID. Assigned by the product vendor.

12 bcdDevice Device release number (BCD). Assigned by the product
vendor.

14 iManufacturer Index of string descriptor for the manufacturer. Set to 00h if
there is no string descriptor.

15 iProduct Index of string descriptor for the product. Set to 00h if there
is no string descriptor.

16 iSerialNumber Index of string descriptor containing the serial number.
Must be > 00h for mass-storage devices.

17 bNumConfigurations Number of possible configurations. Typically 01h.

The USB Mass Storage Class

 49

iProduct. Index to a string descriptor that contains a string describing the
product. This value is zero if there is no product string descriptor.

iSerialNumber. An index that points to a string containing the device’s
serial number. Virtually every mass-storage device must have a serial number
whose final 12 characters differ from the final 12 characters in the serial
number of any other device with the same Vendor ID and Product ID. The
only exception is devices that use the CBI protocol, which don’t require
serial numbers.

bNumConfigurations. The number of configurations the device supports.
This value is almost always 01h.

Configuration Descriptor
Each device has at least one configuration that defines the device’s features
and abilities. Multiple configurations are allowed but rare. The configura-
tion descriptor contains information about the device’s use of power and the
number of interfaces supported. Table 3-2 shows the fields in the configura-
tion descriptor. Here are more details about the fields and how they’re used
in a mass-storage device:

bLength. The length in bytes of the descriptor. Always 09h.

bDescriptorType. The constant CONFIGURATION (02h).

wTotalLength. The number of bytes in the configuration descriptor and all
of its subordinate descriptors. The subordinate descriptors include interface
and endpoint descriptors but do not include string descriptors.

bNumInterfaces. The number of interfaces in the configuration. The mini-
mum is 1. A device with multiple interfaces can perform multiple functions,
such as mass storage and human-interface device.

bConfigurationValue. Identifies the configuration in Get Configuration
and Set Configuration requests. Set to 01h for the first (or only) configura-
tion.

Chapter 3

50

iConfiguration. Index to a string descriptor that contains a string describ-
ing the configuration. This value is zero if there is no configuration string
descriptor.

bmAttributes. Bit 6 = 1 if the device is self-powered or zero if bus-powered.
Bit 5 = 1 if the device supports the remote wakeup feature, which enables a
suspended USB device to tell its host that the device wants to communicate.
A USB device must enter the Suspend state if there has been no bus activity,
including Start-of_Frame markers, for 3 milliseconds. If a suspended device
requires action from the host, a device with remote wakeup enabled can
request the host to resume communications. Mass-storage devices typically
don’t support remote wakeup. Bits 0..4 must equal 0. Bit 7 must equal 1.

bMaxPower. Specifies how much bus current a device requires. The bMax-
Power value equals one half the number of milliamperes requested. If a
device requires 200 milliamperes, bMaxPower = 100. The maximum cur-
rent a device can request is 500 milliamperes. If the requested current isn’t
available, the host can refuse to configure the device. Some battery-powered
hosts and all bus-powered hubs supply only 100 milliamperes per port. To
enable a device to operate entirely from bus power when attached to these
hosts and hubs, bMaxPower must equal 32h or less.

Table 3-2: The configuration descriptor has information about the device’s power
requirements.
Byte Field Description

0 bLength Descriptor size in bytes. Always 09h.

1 bDescriptorType The constant CONFIGURATION (02h).

2 wTotalLength The number of bytes in the configuration descriptor and all
of its subordinate descriptors.

4 bNumInterfaces The number of interfaces in the configuration.

5 bConfigurationValue Identifier for Set Configuration and Get Configuration
requests. Use 01h for the first configuration.

6 iConfiguration Index of string descriptor for the configuration. Set to 00h if
there is no string descriptor.

7 bmAttributes Self/bus power and remote wakeup settings.

8 bMaxPower The amount of bus power the device requires, expressed as
(maximum milliamperes / 2).

The USB Mass Storage Class

 51

Interface Descriptor
The interface descriptor is where a device specifies the mass-storage func-
tion. A configuration can have multiple interfaces that are active at the same
time. Each interface has its own interface descriptor and subordinate
descriptors. Table 3-3 shows the fields in the interface descriptor. Here are
more details about the fields and how they’re used in a mass-storage device:

bLength. The number of bytes in the descriptor. Always 09h.

bDescriptorType. The constant INTERFACE (04h).

bInterfaceNumber. Identifies the interface. Each interface must have a
descriptor with a unique value in this field.

bAlternateSetting. A single interface number can have alternate settings.
Each setting has its own interface descriptor with the same value in bInter-
faceNumber and a unique value in bAlternateSetting. Each setting also has
its own endpoint descriptors. Only one setting is active at a time. The
default interface setting (bAlternateSetting = 00h) is active immediately after
the host has enumerated the device and selected a configuration. Mass-stor-
age host drivers typically support only the default setting.

bNumEndpoints. The number of endpoints an interface supports in addi-
tion to endpoint zero. Set to 02h for a bulk-only mass-storage device.

bInterfaceClass. Set to 08h to specify the mass-storage class.

bInterfaceSubClass. In mass-storage devices, the bInterfaceSubClass field
specifies either an industry-standard command-block set or the SCSI trans-
parent command set (06h). Each device also specifies a peripheral device
type (PDT) in response to a SCSI INQUIRY command. Each PDT corre-
sponds to a document that specifies a command set. Virtually all new
mass-storage designs should set bInterfaceSubClass = 06h. The device then
declares its command set in a single location, in the PDT value in the
response to an INQUIRY command. Devices that use other values for
bInterfaceSubClass should be sure that the value is compatible with the
PDT returned in the INQUIRY response. Chapter 6 has more about the
INQUIRY command.

The mass-storage overview specification is somewhat confusing when it says
that the contents of bInterfaceSubclass specify “transport protocols and

Chapter 3

52

command code systems transported by the interface.” In reality, bInterface-
Subclass names the command-code system, or command blocks, that a
device uses (either explicitly or by leaving the issue to the INQUIRY com-
mand), and the bInterfaceProtocol field (described below) names the trans-
port protocol.

bInterfaceProtocol. In mass-storage devices, the bInterfaceProtocol field
specifies a mass-storage transport protocol. The transport protocol defines
structures and specifies USB transfer types for carrying mass-storage com-
mands, data, and status information on the bus. A device may use either of
two protocols: bulk-only transport (BOT, sometimes called BBB because all
three phases use bulk transfers) or control/bulk/interrupt (CBI). The
mass-storage specification recommends using the bulk-only transport proto-

Table 3-3: The interface descriptor specifies the mass-storage function.
Byte Field Description

0 bLength Descriptor size in bytes (09h).

1 bDescriptorType The constant INTERFACE (04h).

2 bInterfaceNumber Number identifying this interface.

3 bAlternateSetting Set to 00h for the default setting.

4 bNumEndpoints Number of endpoints supported, not counting endpoint
zero. Set to 02h for a bulk-only mass-storage device.

5 bInterfaceClass Class code. Mass storage = 08h.

6 bInterfaceSubclass Subclass code. Mass-storage values:
01h: Reduced Block Commands (RBC).
02h: SFF-8020i, MMC-2 (ATAPI) (CD/DVD drives)
03h: QIC-157 (tape drives).
04h: USB Floppy Interface (UFI).
05h: SFF-8070i (ATAPI removable rewritable media
devices).
06h: SCSI transparent command set. Use the SCSI
INQUIRY command to determine the peripheral device
type. Recommended value for most devices.

7 bInterfaceProtocol Protocol code. Mass storage values:
00h: CBI with command completion interrupt transfers
01h: CBI without command completion interrupt transfer
50h: bulk only. Recommended value for most devices.

8 iInterface Index of string descriptor for the interface.

The USB Mass Storage Class

 53

col (50h) for all new devices. CBI is approved for use only with full-speed
floppy drives.

iInterface. Index to a string descriptor that contains a string describing the
interface. This value is zero if there is no interface string descriptor.

Endpoint Descriptors
Each endpoint specified in an interface descriptor has an endpoint descrip-
tor. Endpoint zero never has a descriptor because every device must support
endpoint zero, the device descriptor contains the maximum packet size, and
the USB specification defines everything else about the endpoint.

Table 3-4 shows the fields in the descriptors. Here are more details about the
fields and how they’re used in a mass-storage device:

bLength. The number of bytes in the descriptor. Always 07h.

bDescriptorType. The constant ENDPOINT (05h).

bEndpointAddress. The endpoint number and direction. Bits 0..3 are the
endpoint number, which can be any value from 1 to 15 supported by the
device’s hardware. Bit 7 is the direction: Out = 0, In = 1 Bits 6..4 are unused
and must be zero. For example, an interface could use endpoint 1 OUT
(01h) and endpoint 1 IN (81h), or endpoint 2 OUT (02h) and endpoint 3
in (83h).

bmAttributes. Bits 1..0 specify the type of transfer the endpoint supports.
Bits 7..2 are zero. For bulk transfers, set to 02h.

wMaxPacketSize. The value in bits 10..0 is the maximum number of data
bytes the endpoint can transfer in a transaction. The allowed values vary
with the device speed and type of transfer. A full-speed bulk endpoint can
have a maximum packet size of 08h, 10h, 20h, or 40h bytes. For best perfor-
mance, use 40h. If a full-speed bulk endpoint’s wMaxPacketSize is less than
40h, some host controllers schedule no more than one transaction per
frame. For high speed, the maximum packet size must be 200h. Bits 15..11
are zero for bulk endpoints.

bInterval. The host ignores this value for full-speed bulk endpoints and
high-speed bulk IN endpoints. For high-speed bulk OUT endpoints, the

Chapter 3

54

value indicates the endpoint’s maximum NAK rate. This value is relevant
when the device has received data and has returned ACK, and the host has
more data to send. By returning ACK, the device is saying that it expects to
be able to accept the next transaction’s data. (Otherwise the device would
return NYET.) If the next data packet arrives and for some reason the device
can’t accept the packet, the endpoint returns NAK. The bInterval value says
that the endpoint expects to return NAK no more than once in each period
specified by bInterval. The value can range from 0 to 255 microframes. A
value of zero means the endpoint doesn’t ever expect to return NAK imme-
diately after an ACK.

String Descriptors
A string descriptor contains descriptive text. Support for most string
descriptors is optional, but every mass-storage device that uses the bulk-only
transport protocol must have a string descriptor that contains a serial num-
ber. The serial number must have at least 12 characters and must contain
only characters in the range 0–9 (0030h–0039h) and A–F (0041h–0046h).
Note that lower-case text, hyphens, and many other characters are not
allowed. The last 12 characters must be different from the last 12 characters
of the serial number of any device with the same values in the idVendor and
idProduct fields in the device descriptor. The serial number enables a host to
retain properties such as the drive letter and access policies after a user moves
a device to another port or attaches multiple devices with the same Vendor
ID and Product ID.

Table 3-4: A bulk-only mass storage device must have two endpoint descriptors.
Byte Field Description

0 bLength Descriptor size in bytes (07h).

1 bDescriptorType The constant Endpoint (05h).

2 bEndpointAddress Endpoint number and direction.

3 bmAttributes Transfer type supported. Bulk = 02h.

4 wMaxPacketSize Maximum packet size supported.

6 bInterval Maximum NAK rate for high-speed bulk OUT endpoints.
Otherwise ignored for bulk endpoints.

The USB Mass Storage Class

 55

The device descriptor’s iSerialNumber field contains an index to the string
descriptor containing the serial number.

Table 3-5 shows the fields in a string descriptor. Here are more details about
the fields and how they’re used in a mass-storage device:

bLength. The number of bytes in the descriptor.

bDescriptorType. The constant STRING (03h).

wLANGID[0...n] or bString. When a host requests a String descriptor, the
low byte of the wValue field in the Setup stage is an index value. If the index
value is zero, the host is requesting language IDs. If the index value is greater
than zero, the host is requesting the string descriptor with that index.

String descriptor zero contains one or more 16-bit language ID codes that
indicate the languages that the strings are available in. The code for U.S.
English is 0409h. This is likely to be the only code supported by an operat-
ing system. The wLANGID value must be valid for any of the other strings
to be valid. Devices that return no string descriptors must not return an
array of language IDs. The USB-IF’s web site has a list of defined USB lan-
guage IDs.

For index values of 1 and higher, the bString field contains a Unicode string.
With a few exceptions, ANSI character codes 00h through 7Fh correspond
to Unicode values 0000h through 007Fh. For example, a product string for
a product called “Gizmo” would contain five 16-bit Unicode values that
represent the characters in the product name:

0047 0069 007A 006D 006F

In the string descriptor, each Unicode character transmits LSB first:

47 00 69 00 7A 00 6D 00 6F 00

The strings are not null-terminated. The bLength field for a string descrip-
tor that contains a string equals (2 * number of characters in string) + 2.

Responding to Commands
In mass-storage communications that use SCSI commands, the USB host
sends a command block, the host or device may send data, and the device

Chapter 3

56

returns status. When reading or writing blocks of data, the host identifies
the locations to read or write to by specifying a logical block address. The
USB communications don’t have to know or care anything about files,
directories, or data clusters in the media.

In the bulk-only transport protocol, a successful communication has two or
three phases: command transport, data transport (not used for some com-
mands), and status transport. (Don’t confuse these phases with the phases of
a USB transaction or the stages of a USB control transfer.) In the com-
mand-transport phase, the host sends a command block in a structure called
a command block wrapper (CBW). In the data-transport phase, the host or
device sends data. Some commands don’t have a data-transport phase. In the
status-transport phase, the device sends status information in a structure
called a command status wrapper (CSW).

The mass-storage and SCSI specifications don’t define how long a host
should wait for a device to return requested data or accept received data
before giving up. The drivers in Windows and other operating systems typi-
cally wait 20–30 seconds.

The Command Block Wrapper
The host sends the CBW to the device’s bulk OUT endpoint. The CBW
contains a command block and other information about the command
(Table 3-6). The CBW is 31 bytes.

Table 3-5: A string descriptor has three or more fields.
Byte Field Size

(bytes)
Description

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 The constant String (03h)

2 bSTRING or
wLANGID

varies For string descriptor zero, an array of 1 or more
Language Identifier codes. For other string
descriptors, a Unicode string.

The USB Mass Storage Class

 57

Table 3-6: The CBW contains a command descriptor block and other information
about the command.
Name Bits Description

dCBWSignature 32 The value 43425355h, which identifies the structure as
a CBW. The LSB (55h) transmits first on the bus.

dCBWTag 32 A value that associates this CBW with the CSW the
device will send in response.

dCBWDataTransferLength 32 If bit 7 of bmCBWFlags = 0, the number of bytes the
host will send in the data-transport phase.
If bit 7 of bmCBWFlags = 1, the number of bytes the
host expects to receive in the data-transport phase.

bmCBWFlags 8 Specifies the direction of the data-transport phase.
Bit 7 = 0 for an OUT (host-to-device) transfer.
Bit 7 = 1 for an IN (device-to-host) transfer.
If there is no data-transport phase, bit 7 is ignored.
All other bits are zero.

Reserved 4 Zero.

bCBWLUN 4 For devices with multiple LUNs, specifies the LUN the
command block is directed to. Otherwise the value is
zero.

Reserved 3 Zero.

bCBWCBLength 5 The length of the command descriptor block in the
CBWCB field in bytes. Valid values are 1–16.
Currently defined command descriptor blocks are all at
least 6 bytes.

CBWCB 128 The command block for the device to
execute.

Chapter 3

58

The _USB_MSD_CBW structure can hold a CBW:
#define MSD_CBW_SIZE 0x1F

typedef struct _USB_MSD_CBW

{

 dword dCBWSignature;

 dword dCBWTag;

 dword dCBWDataTransferLength;

 byte bCBWFlags;

 byte bCBWLUN;

 byte bCBWCBLength;

 byte CBWCB[16];

} USB_MSD_CBW;

The CBWCB field of a CBW contains a command descriptor block (CDB),
or command block for short. The CDB is a structure that contains a com-
mand and supplementary information that varies with the command. The
CBWCB field is always 16 bytes, but many CDBs are shorter than 16 bytes.
Any remaining bytes in the CDB are pad bytes of zero.

In most cases, the bCBWCBLength field indicates the length of the CDB
within the CBWCB field excluding pad bytes. For devices with bInterface-
SubClass = 04h (UFI), the host must pad CDBs shorter than 12 bytes with
zeroes and set bCBWCBLength to 12. For CBWs carrying the 6-byte SCSI
REQUEST SENSE command block, the Windows mass-storage driver
incorrectly sets bCBWCBLength = 12 even for non-UFI devices.

The bmCBWFlags field indicates the direction of the data-transport phase.
The dCBWDataTransferLength field indicates how many bytes the host will
send or how many bytes the host expects to receive.

On receiving a CBW, a device should check that the structure is valid and
has meaningful content. A CBW is valid if all of the following are true:

• The CBW is received after a CSW or reset.
• The CBW is 31 bytes.
• The dCBWSignature field has the correct value.

The contents are considered meaningful if all of the following are true:

• All of the reserved bits are zero.
• The bCBWLUN field contains a supported LUN value.

The USB Mass Storage Class

 59

• The bCBWCBLength and CBWCB fields are valid for the interface’s
subclass.

The IsValidCBW function checks a CBW’s size and signature. The function
uses the MSD_BD_OUT identifier defined in Chapter 2 for the bulk OUT
endpoint buffer descriptor.
byte gblCBWLength;

USB_MSD_CBW gblCBW;

gblCBWLength = MSD_BD_OUT.Cnt;

byte IsValidCBW()

{

 // A valid CBW is 31 bytes and

 // its dCBWSignature field contains 0x43425355.

 if ((gblCBWLength != MSD_CBW_SIZE) ||

 (gblCBW.dCBWSignature != 0x43425355))

 return FALSE;

 else

 return TRUE;

}

The IsMeaningfulCBW function checks for bCBWLUN less than or equal
to 0Fh, bCBWCBLength of 01h to 10h bytes, and bCBWFlags equal to
00h or 80h. Note that a meaningful CBW must have a LUN value that is
valid for the specific device. (Few devices have 16 LUNs.)
byte IsMeaningfulCBW()

{

 if ((gblCBW.bCBWLUN <= 0x0f) &&

 (gblCBW.bCBWCBLength <= 0x10) &&

 (gblCBW.bCBWCBLength >= 0x01) &&

 (gblCBW.bCBWFlags == 0x00 | gblCBW.bCBWFlags == 0x80))

 return TRUE;

 else

 return FALSE;

}

Chapter 3

60

After receiving a CBW, depending on the command, the device must pre-
pare to receive data from the host on the bulk OUT endpoint or prepare to
send data or a CSW to the host on the bulk IN endpoint.

The Command Status Wrapper
Table 3-7 shows the fields in the CSW, which is 13 bytes. The
_USB_MSD_CSW structure can contain a CSW:

#define MSD_CSW_SIZE 0x0d

typedef struct _USB_MSD_CSW

{

 dword dCSWSignature;

 dword dCSWTag;

 dword dCSWDataResidue;

 byte bCSWStatus;

} USB_MSD_CSW;

On receiving a CSW, a host should check that the structure is valid and has
meaningful content. A CSW is valid if all of the following are true:

• The CSW is 13 bytes.
• The dCSWSignature field has the correct value.
• The value of dCSWTag equals the value in the dCBWTag field of a pre-

viously sent CBW.

The contents are considered meaningful if either of the following is true:

• The bCSWStatus field equals 02h.
• The bCSWStatus field equals 00h or 01h and dCSWDataResidue is less

than or equal to dCBWDataTransferLength.

In the dCSWDataResidue field in the CSW, a device indicates whether it
has received and processed all of the data the host promised to send in the
CBW or whether the device has sent all of the data requested by the CBW.

In a command where the host sends data in the data-transport phase,
dCSWDataResidue contains the difference between dCBWDataTransfer-
Length in the command’s CBW and the amount of data the device has pro-
cessed. If the device processes dCBWDataTransferLength bytes,
dCSWDataResidue is zero.

The USB Mass Storage Class

 61

In a command where the device sends data in the data-transport phase,
dCSWDataResidue contains the difference between dCBWDataTransfer-
Length in the command’s CBW and the amount of valid data the device
sent, excluding any pad bytes. If the device has sent dCBWDataTransfer-
Length bytes, dCSWDataResidue is zero.

The bCSWStatus field indicates whether the command completed without
error. A value of 00h means success. A value of 01h means the command
failed and the host should immediately issue a SCSI REQUEST SENSE
command to get status information. The protocol that causes the host to
send REQUEST SENSE on receiving a response code of 01h is sometimes
called auto sense because the host’s USB driver, rather than higher-level
code, requests the status information. The handling of the error and sense
data is thus “automatic” to higher-level software. Chapter 6 has more about
the REQUEST SENSE command.

A value of 02h means that the host should perform a reset recovery on the
device. A reset recovery consists of the following control transfers in order:

1. Bulk-only Mass Storage Reset. On completion of the request, the
device is ready to receive a new CBW. The reset should not change the
states of data-toggle bits and endpoint STALL conditions. This is a

Table 3-7: The CSW contains status and related information about a command.
Name Bits Description

dCSWSignature 32 The value 53425355h, which identifies the structure as a
CSW. The LSB (55h) transmits first on the bus.

dCSWTag 32 The value of the dCBWTag in a CBW received from the
host.

dCSWDataResidue 32 For transfers where the host sends data to the device in
the data-transport phase, the difference between
dCBWDataTransferLength and the number of bytes the
device processed.
For transfers where the device sends data to the host in
the data-transport phase, the difference between
dCBWDataTransferLength and the number of valid
bytes the device has sent, excluding any pad bytes.

bCSWStatus 8 00h = command passed.
01h = command failed.
02h = phase error. Host should perform a reset recovery.

Chapter 3

62

class-specific request for the mass-storage class.

2. Clear Feature(ENDPOINT_HALT) request for the bulk IN end-
point. The device resets the endpoint’s data toggle to DATA0. The end-
point resumes normal communications if possible. This request is a
standard USB request.

3. Clear Feature(ENDPOINT_HALT) request for the bulk OUT end-
point. The device resets the endpoint’s data toggle to DATA0. The end-
point resumes normal communications if possible. This request is a
standard USB request.

As an alternative to a reset recovery, a host might issue a Set Port Feature
(PORT_RESET) request to the device’s hub port. The host must then
re-enumerate the device. This option isn’t ideal for composite devices, which
have multiple active interfaces, because the port reset will affect all of the
device’s interfaces. But a port reset can be necessary when communicating
with a device that crashes when the host attempts a reset recovery. (Such
devices exist.) The Windows mass-storage driver favors the port reset over
the reset recovery.

The PrepareCSWData function sets the CSWTag and CSWSignature fields
in the CSW. The other fields in the CSW are set in other functions later in
this chapter.
volatile far USB_MSD_CSW msd_csw;

void PrepareCSWData()

{

 // Set dCSWTag to match dCBWTag in the command’s CBW.

 msd_csw.dCSWTag = gblCBW.dCBWTag;

 msd_csw.dCSWSignature = 0x53425355;

}

Managing Communications on the Bulk Endpoints
One way to manage communications on the bulk endpoints is to set a vari-
able that specifies whether the device is waiting for a CBW, ready to send
data or a CSW to the host, or ready to receive data from the host.

The USB Mass Storage Class

 63

Firmware can call a function repeatedly to check the value of the variable
and take any needed action:
#define MSD_WAIT 0 // Waiting for a CBW.

#define MSD_DATA_IN 2 // IN Data State (device to host).

#define MSD_DATA_OUT 3 // OUT Data State (host to device).

byte MSD_State; // Holds the current state of the device.

The msd_buffer array holds a 512-byte block of data:
volatile far char msd_buffer[512];

The mMin macro returns the lower of two values (A or B):
#define mMin(A, B) (A < B) ? A:B

The code that follows uses these macros from Chapter 2: MSD_BD_IN,
MSD_BD_OUT, MSD_IN_EP_SIZE, MSD_OUT_EP_SIZE, mUSB-
BufferReady, and mMSDTxIsBusy. The code also calls the USBDriverSer-
vice function included in Microchip’s Framework firmware.
USBDriverService handles interrupts related to USB communications.

Sending Data

The SendData function accepts a pointer to data to send (dataAddr) and the
number of bytes to send (dataSize). The function stores the passed address
in the buffer descriptor’s address registers, stores the number of bytes to send
in the byte-count register, and gives ownership of the buffer descriptor to
the SIE. The device sends the data in the next IN transaction on the end-
point.
void SendData(byte* dataAddr, byte dataSize)

{

 // Wait for the SIE to give up ownership of the bulk IN endpoint.

 while (mMSDTxIsBusy())

 {

 // Service USB interrupts. See Microchip Framework firmware for details.

 USBDriverService();

 }

 // Set the address in the buffer descriptor to the passed address.

 MSD_BD_IN.ADR = dataAddr;

Chapter 3

64

 // Set the buffer descriptor’s count to the passed data size.

 MSD_BD_IN.Cnt = dataSize;

 // Give ownership of the buffer descriptor to the SIE.

 mUSBBufferReady(MSD_BD_IN);

 // Service USB interrupts.

 USBDriverService();

}

Preparing to Send Data to the USB Host

The MSDDataIn function manages sending data in the data-transport
phase of a command. The function sets fields in the CSW to indicate how
many bytes in the transfer have been received and how many additional
bytes the device expects to receive.
byte *ptrNextData; // must be set to the location of the first byte to send

void MSDDataIn(void)

{

 byte i;

 dword size;

 // Does bCSWStatus = no error AND is the total data to be sent >= the endpoint’s size?

 if ((msd_csw.bCSWStatus == 0x00) &&

 (msd_csw.dCSWDataResidue >= MSD_IN_EP_SIZE))

 {

 // Send MSD_IN_EP_SIZE bytes of data on the bulk IN endpoint.

 // The data begins at ptrNextData.

 SendData (ptrNextData, MSD_IN_EP_SIZE);

 // Subtract the sent bytes from dCBWDataTransferLength in the CBW.

 gblCBW.dCBWDataTransferLength -= MSD_IN_EP_SIZE;

 // Subtract the sent bytes from dCSWDataResidue in the CSW.

 msd_csw.dCSWDataResidue -= MSD_IN_EP_SIZE;

The USB Mass Storage Class

 65

 // Increment the pointer to the next data to send.

 ptrNextData += MSD_IN_EP_SIZE;

 } else

 {

 if (msd_csw.bCSWStatus != 0x0)

 {

 // bCSWStatus indicates an error.

 // Set size to the lower of the endpoint size or dCBWDataTransferLength.

 size = mMin (MSD_IN_EP_SIZE, gblCBW.dCBWDataTransferLength);

 // Reset msd_buffer’s contents to zeroes to send pad data.

 for (i = 0; i < size; i++) msd_buffer[i] = 0;

 if (gblCBW.dCBWDataTransferLength > MSD_IN_EP_SIZE)

 {

 // There was an error (bCSWStatus != 0x0)

 // and dCBWDataTransferLength is greater than the endpoint size.

 // Send MSD_IN_EP_SIZE bytes from msd_buffer.

 SendData((byte*)&msd_buffer[0], MSD_IN_EP_SIZE);

 // Subtract the sent bytes from dCBWDataTransferLength in the CBW.

 gblCBW.dCBWDataTransferLength -= MSD_IN_EP_SIZE;

 // Subtract the sent bytes from dCSWDataResidue in the CSW.

 msd_csw.dCSWDataResidue -= MSD_IN_EP_SIZE;

Chapter 3

66

 } else

 {

 // There was an error (bCSWStatus != 0x0)

 // and dCBWDataTransferLength is <= the endpoint size.

 // Send dCBWDataTransferLength bytes from msd_buffer.

 SendData((byte*)&msd_buffer[0], gblCBW.dCBWDataTransferLength);

 // Set dCBWDataTransferLength = 0 to cause the CSW to be sent.

 gblCBW.dCBWDataTransferLength = 0;

 // Decrement dCSWDataResidue by the number of bytes sent.

 msd_csw.dCSWDataResidue -= gblCBW.dCBWDataTransferLength;

 }

 } else

 {

 // There is no error and the data to be sent is <= the endpoint size.

 // Send dCSWDataResidue bytes beginning at ptrNextData.

 SendData(ptrNextData, msd_csw.dCSWDataResidue);

 // Subtract the sent bytes from dCBWDataTransferLength.

 gblCBW.dCBWDataTransferLength -= msd_csw.dCSWDataResidue ;

 // Set dCSWDataResidue equal to dCBWDataTransferLength.

 msd_csw.dCSWDataResidue = gblCBW.dCBWDataTransferLength;

 // If the host expected more bytes than were sent,

 // dCBWDataTransferLength is greater than zero.

 // Set dCBWDataTransferLength = 0 to cause the CSW to be sent.

 gblCBW.dCBWDataTransferLength = 0;

 }

 }

 }

}

The USB Mass Storage Class

 67

Receiving Data from the USB Host

If the data-transport phase is host-to-device, firmware calls the MSD-
DataOut function to get data received from the host.
void MSDDataOut(void)

{

 // To enable receiving data, give ownership of the endpoint’s buffer to the SIE.

 mUSBBufferReady(MSD_BD_OUT);

 // Service USB interrupts. (See Microchip’s Framework firmware for details.)

 USBDriverService();

 // Wait until the SIE has returned ownership of the endpoint buffer to the CPU,

 // indicating that data was received.

 while (mMSDRxIsBusy())

 {

 USBDriverService();

 }

 // Subtract the number of received bytes from dCBWDataTransferLength in the CBW.

 gblCBW.dCBWDataTransferLength -= MSD_BD_OUT.Cnt;

 // Subtract the number of received bytes from dCSWDataResidue in the CSW.

 msd_csw.dCSWDataResidue -= MSD_BD_OUT.Cnt;

 // For the next transaction, set the OUT endpoint’s count to the endpoint size.

 MSD_BD_OUT.Cnt = MSD_OUT_EP_SIZE;

 // Increment the OUT endpoint’s address by endpoint-size bytes

 // in case there is more data to receive.

 MSD_BD_OUT.ADR += MSD_OUT_EP_SIZE;

}

Sending the CSW

Firmware calls the SendCSW function after completing the com-
mand-transport and data-transport (if required) phases of a command. The

Chapter 3

68

function places the CSW in the IN endpoint’s buffer and transfers owner-
ship of the buffer descriptor to the SIE.
void SendCSW(void)

{

 // Wait until the CPU has ownership of the endpoint’s buffer descriptor.

 while (mMSDTxIsBusy())

 {

 // Service USB interrupts. See Microchip’s Framework firmware for details.

 USBDriverService();

 }

 // Set the IN endpoint’s address registers to the CSW’s address.

 MSD_BD_IN.ADR = (byte*)&msd_csw;

 // Set the IN endpoint’s count to the CSW’s size.

 MSD_BD_IN.Cnt = MSD_CSW_SIZE;

 // To enable sending the CSW, give ownership of the endpoint descriptor to the SIE.

 mUSBBufferReady(MSD_BD_IN);

 // Service USB interrupts.

 USBDriverService();

 // Prepare to receive another CBW.

 // Set the OUT endpoint’s count to the size of a CBW.

 MSD_BD_OUT.Cnt = sizeof(msd_cbw);

 // Set the OUT endpoint’s buffer descriptor’s address to the location that will store

 // the received CBW.

 MSD_BD_OUT.ADR = (byte*)&msd_cbw;

 // The next bulk OUT data from the host should be a CBW.

 MSD_State = MSD_WAIT;

}

The USB Mass Storage Class

 69

Managing Transfers

The ProcessIO function manages transfers on the bulk endpoints. The func-
tion implements a state machine that determines what to do depending on
the value of MSD_State. The function calls the MSDCommandHandler
function in Chapter 6 to decode and respond to command blocks in the
CBW.
void ProcessIO(void)

{

 byte i;

 dword size;

 // Is the bulk IN endpoint sending data to the host?

 if (MSD_State == MSD_DATA_IN) {

 // Has all of the data been sent?

 if (gblCBW.dCBWDataTransferLength == 0)

 {

 // Prepare to send the CSW.

 SendCSW();

 }

 else

 {

 // Prepare to send data.

 MSDDataIn();

 }

 return;

 } // End: sending data to host.

Chapter 3

70

 // Is the bulk OUT endpoint receiving data from the host?

 if (MSD_State == MSD_DATA_OUT) {

 // Has all of the data been received?

 if (gblCBW.dCBWDataTransferLength == 0) {

 // If dCSWDataResidue isn’t zero, the quantity of received data

 // doesn't match the quantity expected.

 if ((msd_csw.bCSWStatus == 0x00) && (msd_csw.dCSWDataResidue != 0))

 // Set bCSWStatus to phase error (02h).

 msd_csw.bCSWStatus = 0x02;

 // Prepare to send the CSW.

 SendCSW();

 }

 return;

 } // End: receiving data from the host

 // If the CPU owns the OUT endpoint’s buffer descriptor,

 // was the device waiting for a CBW?

 if ((MSD_BD_OUT.Stat.UOWN == _UCPU) && (MSD_State == MSD_WAIT))

 {

 // Copy the received CBW into the gblCBW structure.

 gblCBW.dCBWSignature = msd_cbw.dCBWSignature;

 gblCBW.dCBWTag = msd_cbw.dCBWTag;

 gblCBW.dCBWDataTransferLength = msd_cbw.dCBWDataTransferLength;

 gblCBW.bCBWFlags = msd_cbw.bCBWFlags;

 gblCBW.bCBWLUN = msd_cbw.bCBWLUN;

 gblCBW.bCBWCBLength = msd_cbw.bCBWCBLength;

 for (i = 0; i < msd_cbw.bCBWCBLength; i++)

 gblCBW.CBWCB[i] = msd_cbw.CBWCB[i];

The USB Mass Storage Class

 71

 // Save the size of the CBW.

 gblCBWLength = MSD_BD_OUT.Cnt;

 if (IsValidCBW()) {

 if (IsMeaningfulCBW()) {

 // The CBW is valid and meaningful.

 // Set fields in the CSW.

 PrepareCSWData();

 // Is the data-transport phase device to host?

 if (gblCBW.bCBWFlags == 0x80)

 // Prepare to send data.

 MSD_State=MSD_DATA_IN;

 // Is the data-transport phase host to device?

 else if (gblCBW.bCBWFlags == 0x00) {

 // Prepare to read received data in msd_buffer.

 MSD_BD_OUT.Cnt = MSD_OUT_EP_SIZE;

 MSD_BD_OUT.ADR = (byte*)&msd_buffer[0];

 MSD_State = MSD_DATA_OUT;

 }

 // Decode and process the received command block.

 MSDCommandHandler();

 }

 }

 // To enable receiving data,

 // give ownership of the endpoint’s buffer descriptor to the SIE.

 mUSBBufferReady(MSD_BD_OUT);

Chapter 3

72

 // Service USB interrupts. (See Microchip’s Framework firmware for details.)

 USBDriverService();

 } // End received CBW.

}

More about STALL
The mass-storage class is unique in its use of the STALL handshake to end
bulk transfers. In other USB classes, a sender can indicate the end of a trans-
fer by transmitting a short packet, which is a data packet that contains zero
data bytes or any quantity fewer than wMaxPacketSize. In contrast,
mass-storage devices use STALL for this purpose and to respond to other
error conditions.

After a bulk endpoint returns STALL, the endpoint is in the halt condition.
To resume communications with the endpoint, the host must issue a Clear
Feature(ENDPOINT_HALT) control request with the endpoint’s address
in the Setup transaction’s wIndex field.

(Endpoint zero can also use the STALL handshake. On receiving a Get Max
LUN request, a device with a single LUN may return a STALL to indicate
that the device doesn’t support the command. The endpoint resumes nor-
mal operation on receiving a new Setup transaction.)

A mass-storage device must stall one or both bulk endpoints in these situa-
tions:

If a device sends less than the requested amount of data in the data-trans-
port phase, the device must stall the bulk IN endpoint.

If a received CBW isn’t valid, the device must stall the bulk IN endpoint
and must either stall the bulk OUT endpoint or accept and discard any
received data on the endpoint.

On experiencing an internal error that requires a reset, a device must
either stall the endpoint being used in any data transfer in progress and
set bCSWStatus = 02h or stall the bulk IN and bulk OUT endpoints
until a reset recovery.

A mass-storage device may stall a bulk endpoints in these situations:

If a device expects to send more data than the host specified in the CBW,

The USB Mass Storage Class

 73

after sending the requested quantity of data, the device may stall the bulk
IN endpoint.

If a device expects to receive a different quantity of data than the host
specified in the CBW, the device may stall the bulk OUT endpoint.

If a device determinines that it can’t complete a command during the
data-transport phase, the device may stall the bulk IN or bulk OUT end-
point as appropriate.

The thirteen cases described below have more about the use of STALL with
mass-storage commands.

Thirteen Cases for Any Situation
The mass-storage bulk-only transport specification spells out how the host
and device should behave after the host sends a command in each of thirteen
cases. Cases 1, 6, and 12 (in bold) are the normal cases, where the host and
device each expect the same quantity and direction of data transfer in the
data-transport phase. The other cases are situations where the host and
device have differing expectations.

1. The host expects no data-transport phase.
The device expects no data-transport phase.

2. The host expects no data-transport phase.
The device expects to send data.

3. The host expects no data-transport phase.
The device expects to receive data.

4. The host expects to receive data.
The device expects no data-transport phase.

5. The host expects to receive data.
The device expects to send less data than the host intends to receive.

6. The host expects to receive data.
The device expects to send the exact amount of data the host

 intends to receive.

7. The host expects to receive data.
The device intends to send more data than the host expects to receive.

Chapter 3

74

8. The host expects to receive data.
The device expects to receive data.

9. The host expects to send data.
The device expects no data-transport phase.

10. The host expects to send data.
The device expects to send data.

11. The host expects to send data.
The device expects to receive less data than the host intends to send.

12. The host expects to send data.
The device expects to receive the exact amount of data the host

 intends to send.

13. The host expects to send data.
The device expects to receive more data than the host intends to send.

The following sections summarize the device’s behavior in each of the 13
cases.

The Host Expects No Data Transfer

When dCBWDataTransferLength is zero, the host expects the command to
have no data-transport phase.

In the most common situation (case 1), the device agrees that there is no
data-transport phase. The device sets bCSWStatus to 00h or 01h and sets
dCSWDataResidue to zero.

If the device expects to send (case 2) or receive (case 3) data in the
data-transport phase when the host expects no data, the devices sets bCSW-
Status to 02h and may stall the bulk IN endpoint. On receiving bCSWSta-
tus = 02h, the host ignores dCSWDataResidue and performs a reset
recovery or resets the device’s port.

The Host Expects to Receive Data

When dCBWDataTransferLength is greater than zero and the Direction bit
in bmCBWFlags = 1, the host expects to receive data in the data-transport
phase.

The USB Mass Storage Class

 75

In the most common situation (case 6), the device intends to send dCBW-
DataTransferLength bytes. The device sets bCSWStatus to 00h or 01h and
sets dCSWDataResidue to zero.

If the device expects to send no data (case 4) or less than dCBWDataTrans-
ferLength bytes (case 5), the device may pad the data up to the requested
length, or the device may send no data or less data. A device that sends less
than the requested amount of data must stall the bulk IN endpoint. In
either case, the device sets bCSWStatus to 00h or 01h and sets dCSWDa-
taResidue to the difference between dCBWDataTransferLength and the
amount of data sent, excluding any pad bytes.

If the device expects to send more than dCBWDataTransferLength bytes
(case 7) or expects to receive data from the host (case 8), the device may
send up to dCBWDataTransferLength bytes. On sending less than dCBW-
DataTransferLength bytes, the device must stall the bulk IN endpoint and
set bCSWStatus to 02h. On sending dCBWDataTransferLength bytes, the
device may stall the bulk IN endpoint and must set bCSWStatus to 02h.
On receiving bCSWStatus = 02h, the host ignores dCSWDataResidue and
performs a reset recovery or resets the device’s port.

The Host Expects to Send Data

When dCBWDataTransferLength is greater than zero and the Direction bit
in bmCBWFlags = 0, the host expects to send data in the data-transport
phase.

In the most common situation (case 12), the device expects and receives
dCBWDataTransferLength bytes. The device sets bCSWStatus to 00h or
01h and sets dCSWDataResidue to zero.

If the device expects to receive less than dCBWDataTransferLength bytes
(case 11) or no data (case 9), the device may accept dCBWDataTransfer-
Length bytes (recommended) or the device may end the transfer early by
stalling the bulk OUT endpoint. In either case, the device sets bCSWStatus
to 00h or 01h and sets dCSWDataResidue to the difference between dCB-
WDataTransferLength and the amount of data processed. The amount of
data processed by the device can be less than or equal to the amount of data
received and accepted by the device. Stalling the bulk OUT endpoint in
these cases can cause problems under Windows, so most devices accept

Chapter 3

76

dCBWDataTransferLength bytes and set dCSWDataResidue to the appro-
priate value.

If the device expects to receive more than dCBWDataTransferLength bytes
(case 13) or expects to send data to the host (case 10), the device may accept
up to dCBWDataTransferLength bytes or may end the transfer early by
stalling the bulk OUT endpoint. In either case, the device sets bCSWStatus
to 02h. If bCSWStatus = 02h, the device may stall the bulk IN endpoint as
well. On receiving bCSWStatus = 02h, the host ignores dCSWDataResidue
and performs a reset recovery or resets the device’s port.

PC Support
Major operating systems include drivers to support communications with
mass-storage devices

Windows
Windows 2000 and later include a driver that supports USB devices that use
the bulk-only transport protocol and CBI. When a device’s descriptors iden-
tify the device as mass-storage class with a supported bInterfaceSubClass,
the operating system loads the USB storage port driver (usbstor.sys). This
driver manages communications between the lower-level USB drivers and
Windows’ storage-class drivers. The operating system assigns a drive letter to
the device’s volume or volumes, which appear in My Computer. Mass-stor-
age devices don’t need a vendor-specific INF file to specify a driver. The
Windows file usbstor.inf causes Windows to load the mass-storage drivers
for any mass-storage device in a supported bInterfaceSubClass.

The mass-storage driver in Windows XP supports bInterfaceSubClass codes
02h, 05h, and 06h. Support for drives with multiple LUNs was added in
Windows 2000 SP3.

Users with administrator access rights can run applications that send SCSI
commands to devices using the IOCTL_SCSI_PASS_THROUGH func-
tion. To open a device for sending SCSI pass-through requests, the applica-
tion must call CreateFile with the dwDesiredAccess parameter requesting
both GENERIC_READ and GENERIC_WRITE access.

The USB Mass Storage Class

 77

One point of confusion relating to the mass-storage support under Win-
dows is Windows’ support for Autoplay (previously called Autorun).
Autoplay enables the operating system to run a program, play a movie, or
perform other actions when a disk or other removable media is inserted. To
support Autoplay, a USB flash drive must contain a startup application and
an autorun.inf file that identifies the application. For operating systems pre-
vious to Windows XP SP2, the drive must report that it has non-removable
media in the response to a SCSI INQUIRY command. Chapter 6 has more
about the INQUIRY command.

Flash drives that incorporate U3 smart drive technology can hold a self-con-
tained application that runs on a Windows PC without having to install the
application on a hard drive, make registry changes, or reserve other system
resources. Running an application from a U3 drive copies temporary files to
the host computer,. The temporary files run the application and disappear
when the application closes. U3 is an open standard developed by SanDisk
and M-Systems. More information and development kits are at
www.u3.com. A similar technology is available in the Ceedo portable oper-
ating system from Ceedo Technologies.

Linux
Linux has two drivers that support communications with USB mass-storage
devices. The usb-storage driver in Linux/drivers/usb/storage supports a wide
range of devices and has fast performance. The ub driver in Linux/driv-
ers/block/ub.c focuses on reliable operation but is slower and doesn’t sup-
port as many devices. The ub driver supports only the bulk-only transport
protocol and PDT = 00h, doesn’t try to accommodate non-compliant
devices, uses its own SCSI stack, and waits for each USB request block
(URB) to complete before submitting the next one.

www.u3.com

This page intentionally left blank

 79

4

Accessing
Flash Memory Cards
For many embedded systems, a good choice for storage is a a MultiMedi-
aCard accessed via SPI. This chapter shows what’s involved in implementing
SPI communications with MultiMediaCards. SD-Card hosts can use the
same interface and firmware.

The Interface
The Serial Peripheral Interface (SPI) originated at Motorola (now Freescale
Semiconductor). Many microcontrollers from Motorola/Freescale and oth-
ers have hardware support for SPI. In systems without hardware support,
the communications can be controlled entirely in firmware.

Every SPI communication is between a host, or master, and a MultiMedi-
aCard or other slave device. The host controls the interface’s clock and
chip-select lines.

Chapter 4

80

Signals and Power
SPI has no official specification document other than the data sheets for the
components that support the interface. As a result, different implementa-
tions use different names for the signals (Table 4-1). Note that the MultiMe-
diaCard signal names are from the perspective of the MultiMediaCard card:
DataIn is an input on the card, while DataOut is an output on the card.

Data and Clock Lines

Table 4-2 shows the pin functions for a MultiMediaCard in SPI mode.

SCLK (also called SCK) is the card’s clock input. The clock provides transi-
tions that determine when to write and read data on the data lines. The SPI
host generates the clock pulses.

DataIn (also called MOSI, or Master Out Slave In, or SDI) is the card’s data
input. The host uses the DataIn line to send commands and to send data to
the storage media.

DataOut (also called MISO, or Master In, Slave Out, or SDO) is the card’s
data output. The card uses the DataOut line to send responses to com-
mands, other status information, and data requested from the storage
media.

CS (also called /SS, or Slave Select) is the device’s chip-select input. The host
must control a unique chip-select output for each card on the bus. The host
selects a card by bringing the card’s CS input low.

Power

Each card also has a power-supply pin (VDD) and two ground pins (VSS
and VSS2). A high-voltage MultiMediaCard requires a supply voltage of
3.3V. A low-voltage MultiMediaCard can be powered at either 3.3V or
1.8V.

Example Circuit
An SPI host can be a microcontroller with hardware SPI support or any
generic microcontroller or other intelligent hardware with available port
pins and the ability to implement communications entirely in firmware.

Accessing Flash Memory Cards

 81

Microchip’s PIC18F4550 microcontroller has an SPI port and can serve as a
MultiMediaCard host. Chapter 2 discussed using this chip for USB
mass-storage communications.

Figure 4-1 shows connections between a PIC18F4550 and a MultiMedi-
aCard/SD-Card connector. The circuit is similar to the circuits on Micro-
chip’s PICtail® board for SD Cards and MultiMediaCard cards. The PICtail
board attaches to a header on Microchip’s PICDEM® Full Speed USB dem-
onstration board. A spring-loaded latch holds the card in place. The micro-
controller is powered at +5V to enable clocking the chip faster than 16 Mhz
(up to 48 Mhz). The MultiMediaCard operates at +3.3V. Pull-up resistors
and buffers perform the voltage translations.

On the MultiMediaCard connector, pins 1–7 connect to the MultiMedi-
aCard’s pins. The CD pin connects to a card-detect switch, and the WP pin
connects to a write-protect switch.

Port outputs on the microcontroller drive 5V-tolerant inputs of buffers pow-
ered at +3.3V. The buffer’s outputs in turn drive the CD, DataIn, and
SCLK inputs on the MultiMediaCard. Pull-up resistors bring the logic-high
buffer outputs close to +3.3V.

The Multimedia card’s DataOut output drives an input of a buffer powered
at +5V. The buffer has TTL-compatible input voltages. When DataOut is
high, a pull-up resistor brings the voltage near 3.3V, which is well above the
buffer’s 2V minimum logic-high input requirement. The buffer’s 5V-logic
output drives input port pins on the microcontroller. In a similar way, the
MultiMediaCard connector’s CD and WP pins drive buffer inputs, and the
corresponding buffer outputs connect to input port pins on the microcon-
troller.

Table 4-1: Because there is no signal specification document for SPI, the signal
names used by different sources vary.
MultiMediaCard
Signal Name

Freescale
Signal Name

Microchip
Signal Name

Direction Function

SCLK SCK host to card clock

DataIn MOSI SDI host to card data

DataOut MISO SDO card to host data

CS /SS host to card chip select

Chapter 4

82

Table 4-2: Pin functions for a MultiMediaCard in SPI mode.
Pin Number Name Description

1 CS Chip Select input, active low

2 DataIn Data input

3 VSS1 Power supply ground

4 VDD Power supply voltage

5 SCLK Clock input

6 VSS2 Power supply ground

7 DataOut Data output

Figure 4-1: The pins on the MultiMediaCard/SD-Card connector connect to
port pins on the PIC18F4550.

Accessing Flash Memory Cards

 83

If the PIC18F4550 or another MultiMediaCard host is powered at 3.3V, the
level-translation circuits are unneeded and the host can interface directly to
the MultiMediaCard, but the maximum clock frequency (at Fosc) is 16
Mhz.

Host Programming
To communicate with a MultiMediaCard, the host uses the MultiMedi-
aCard protocol to send commands, receive responses, and send and receive
additional data as required by commands. On a lower level, the commands,
responses, and data each consist of one or more bytes. This chapter explains
how the individual bytes travel on the SPI bus. Chapter 5 describes the pro-
tocol for sending MultiMediaCard commands.

Configuring
SPI is a synchronous bus, where the host provides a clock signal that deter-
mines when the host and MultiMediaCard read and write data. The inter-
face provides options for configuring the clock polarity and the phase, or
timing, relationship between the clock and data bits. The clock polarity
determines whether the clock is high or low when idle. The clock phase
determines whether input data is valid on the rising or falling clock edge.
For MultimediaCards, the clock line must be high when idle and data is
valid on the rising clock edge.

SPI hosts are generally more flexible than SPI devices. Microcontrollers with
SPI support typically provide configuration registers for selecting a clock
polarity and phase to match a device’s requirements.

Figure 4-2 and Table 4-3 show the timing requirements for MultiMedi-
aCards. The cards latch data received on the DataIn line on SCLK’s rising
edge. The data must be valid 3 nanoseconds before and after the rising edge.
When sending data on DataOut, the data is valid at least 5 nanoseconds
before and after SCLK’s rising edge. In practice, MultiMediaCards typically
latch output data on SCLK’s falling edge, so the data is valid for a longer
period.

Data on the bus travels most significant bit first. Transmitting a byte
requires eight clock cycles. The host must generate clock cycles when trans-

Chapter 4

84

Table 4-3: Timing requirements for MultiMediaCards on a bus with 10 or
fewer cards.
Parameter Symbol Minimum

(nsec.)
Maximum
(nsec.)

Clock low time TWL 10 –

Clock high time TWH 10 –

Clock rise time TTLH – 10

Clock fall time TTHL – 10

Input set-up time TISU 3 –

Input hold time TIH 3 –

Output set-up time TOSU 5 –

Output hold time TOH 5 –

Figure 4-2: A MultiMediaCard data reads data on SCLK’s rising edge and
writes data that the MultiMediaCard host can read on SCLK’s rising edge.

Accessing Flash Memory Cards

 85

mitting bytes on DataIn, when receiving bytes on DataOut, and at other
times as required by the MultiMediaCard specification.

Hardware Ports
The PIC18F4550 and other microcontrollers with hardware support for SPI
hosts contain these components:

• Three port pins to provide the SCLK output, DataOut input, and
DataIn output.

• One or more generic port pins to provide a firmware-controlled CS out-
put for each device. If a host has many devices to control, a host can use
an external decoder chip such as a 74HC138 to control the CS lines.

• One or more buffers to hold data waiting to transmit and received data.
• A clock source to drive the SCLK output.
• A shift register to clock data out on the DataIn line and clock data in on

the DataOut line.
• Configuration registers to enable setting clock polarity and phase, setting

the clock’s frequency, and enabling the SPI port.

Many microcontrollers with SPI support also enable configuring the micro-
controller as either a host (master) or device (slave). For MultiMediaCard
communications, the microcontroller must be a host.

When the PIC18F4550’s SPI port has been configured as a host, device
firmware can send and receive data by bringing CS low and writing to the
SPI buffer. Writing to the buffer causes SCLK to generate 8 clock cycles,
latching a bit from the buffer onto DataIn on each cycle.

Each write operation also reads a byte from the DataOut line into the buffer.
If there is no data to receive, firmware can ignore the received byte. To read
a byte when there is no data to send, firmware can write a byte that holds
the line in the idle state (FFh for MultiMediaCard communications). When
eight bits have been transferred, the port hardware copies the byte read on
DataOut from the shift register to the buffer, where firmware can access the
value.

Chapter 4

86

Firmware-controlled Ports
A microcontroller that doesn’t have hardware SPI support can control all of
the communications in firmware. In addition to toggling CS to select and
deselect a card, the firmware must bring SCLK high and low as needed,
write each bit to transmit at the appropriate time on DataIn, and read each
received bit at the appropriate time on DataOut.

The MultiMediaCard SPI bus has no minimum required clock frequency or
duty cycle except that the clock’s high and low pulses must be at least 10
nanoseconds wide. Firmware can toggle SCLK as needed without having to
worry about maintaining a frequency or duty cycle. The maximum SCLK
frequency is 20 Mhz, and the maximum rise and fall times are 10 nanosec-
onds. (For buses with more than 10 MultiMediaCards, the maximum
SCLK frequency is 5 Mhz and the maximum rise and fall times are 50 nano-
seconds.)

Transferring Data
The code excerpts that follow show how the PIC18F4550’s SPI port sends
and receives data. Some of the information is specific to the chip, but other
microcontrollers with SPI ports use similar architectures to implement SPI
ports.

Default States
The host brings a card’s CS line low to select the card. In MultiMediaCard
communications, when CS is low and the DataIn output isn’t transmitting,
the host must hold DataIn high. When CS is low while the DataOut output
isn’t transmitting and the card isn’t busy, the card holds DataOut high.
When the clock is idle, the host must hold SCLK high. On completing a
command and any responses to it, the host brings the card’s CS line high to
deselect the card.

SPI on the PIC18F4550
The PIC18F4550 has a Master Synchronous Serial Port (MSSP) module
that can be configured as an SPI or I2C port. The MSSP manages the send-
ing and receiving of data on an SPI or I2C bus. (I2C is another type of syn-

Accessing Flash Memory Cards

 87

chronous serial port used by serial EEPROMs and other peripheral chips.)
When using SPI, the port can function as a host or device. Table 4-4 shows
the port pins used by the chip’s SPI port.

Registers

The PIC18F4550 has six registers that store information related to SPI com-
munications.

The MSSP Status Register (SSPSTAT) contains status and control infor-
mation relating to the port. Table 4-5 shows the functions of the SSPSTAT
bits.

MSSP Control Register 1 (SSPCON1) contains additional status and con-
trol information relating to the port. Table 4-6 shows the functions of the
SSPCON1 bits.

The Serial Receive/Transmit Buffer Register (SSPBUF) holds a received
byte or a byte waiting to transmit.

The MSSP Shift Register (SSPSR) holds the bits in a byte being received
or a byte that is transmitting. Firmware can’t access the SSPSR.

In Peripheral Interrupt Enable Register 1 (PIE1), bit 3 is the master SPI
interrupt enable bit. When the bit equals 1, the interrupt is enabled.

In Peripheral Interrupt Request (Flag) Register 1 (PIR1), bit 3 is the mas-
ter SPI interrupt flag bit. When this bit equals zero, the SPI port is waiting
to transmit or receive. When the bit equals 1, a transmit or receive opera-
tion is complete. Firmware that uses this interrupt should clear the bit in
the interrupt-service routine that services the interrupt.

Microchip’s MPLAB C18 C compiler provides a processor definition mod-
ule for the PIC18F4550 (p18f4550.asm). The module defines names for the
registers. These declarations from the compiler file p18F4550.h enable
accessing SSPBUF and the bits in SSPCON1 and SSPSTAT:
extern volatile near unsigned char SSPBUF;

extern volatile near unsigned char SSPCON1;

extern volatile near unsigned char SSPSTAT;

Chapter 4

88

extern volatile near struct {

 unsigned SSPM0:1;

 unsigned SSPM1:1;

 unsigned SSPM2:1;

 unsigned SSPM3:1;

 unsigned CKP:1;

 unsigned SSPEN:1;

 unsigned SSPOV:1;

 unsigned WCOL:1;

} SSPCON1bits;

extern volatile near struct {

 unsigned BF:1;

 unsigned UA:1;

 unsigned R_W:1;

 unsigned S:1;

 unsigned P:1;

 unsigned D_A:1;

 unsigned CKE:1;

 unsigned SMP:1;

 } SSPSTATbits;

Configuring the Port
Before using the SPI port, firmware must also configure the port bits as
inputs or outputs as appropriate and must configure the SPI port in the reg-
isters. The Microchip C18 compiler libraries include an OpenSPI function
that performs these tasks. The function accepts three parameters:
sync_mode sets the mode (bits 3..0 in SSPCON1), bus_mode sets the trans-
mit mode (CKE) in SSPSTAT and clock polarity (CKP) in SSPCON1, and
smp_phase sets the receive mode (SMP) in SSPSTAT.

Table 4-4: The PIC18F4550’s built-in SPI port uses three port pins (plus
additional pins as needed for CS outputs).
Port Bit Signal on PIC18F4550 Connection to MultiMediaCard

PORTC 7 SDO DataIn

PORTB 0 SDI DataOut

PORTB 1 SCK SCLK

Accessing Flash Memory Cards

 89

This statement opens the SPI port for MultiMediaCard communications:
OpenSPI(SPI_FOSC_64, MODE_11, SMPMID);

The compiler file spi.h defines the parameters passed to the function.
SPI_FOSC_64 sets the sync_mode parameter to configure the port as an
SPI master with the clock equal to Fosc/64. Fosc is the frequency of the
microcontroller’s OSC1/CLKI input. The clock speed must be less than or
equal to 400 kHz until the MultiMediaCard has initialized and the host has
read the card’s CSD register. A setting of Fosc/64 meets this requirement if
Fosc is 25 Mhz or less.

MODE_11 sets the bus_mode parameter with CKE = 0 and CKP = 1, so
the clock’s idle state is high and bits transmit on high-to-low clock transi-
tions.

SMPMID sets the smp_phase parameter with SMP = 0 to cause the chip to
sample DataOut in the middle of the clock cycle (on low-to-high clock tran-
sitions).

Writing a Byte
After configuring and enabling the port, device firmware can send a byte by
writing the value to SSPBUF. The shift register clocks the bits out on the
SDO/DataIn line without further intervention by firmware. When the byte
has been written, the BF bit in SSPSTAT equals zero. Any attempt to write
to SSPBUF while the register is sending data results in a collision. On a col-

Table 4-5: The SSPSTAT register contains configuration and status information
for the SPI port.
Bit Name Description

0 BF Receive buffer full.
1 = SSPBUF is full.
0 = SSPBUF is empty.

1..5 – Unused in SPI mode.

6 CKE Clock select.
1 = transmit occurs on the transition from active to idle clock state.
0 = transmit occurs on the transition from idle to active clock state.

7 SMP Master mode:
1 = input data is sampled at the end of the data output time.
0 = input data is sampled in the middle of the data output time.
Slave mode: 0

Chapter 4

90

lision, the byte being sent continues to transmit, but the attempted new
write operation fails and the WCOL bit in SSPCON1 is set to 1. After writ-
ing a byte, device firmware should check WCOL to verify that the write was
successful and if not, clear the bit and try again.

Microchip’s C18 compiler libraries include a WriteSPI function, which
writes a byte to the SPI bus. The function accepts a byte to write (data_out),
writes the byte to SSPBUF, and checks WCOL. If there was no collision, the
function waits for the byte to transmit. A return value of zero means the
write was successful.
unsigned char WriteSPI(unsigned char data_out)

{

 // Write the passed byte to the SPI buffer.

 SSPBUF = data_out;

 if (SSPCON1 & 0x80)

 // WCOL = 1, so there was a write collision.

 return (-1);

Table 4-6: The SSPCON1 register contains configuration and status information
for the SPI port.
Bit Name Description

3..0 SSPM3..
SSPM0

Synchronous serial port mode select:
0101: slave, clock = SCK input, /SS disabled
0100: slave, clock = SCK input, /SS enabled
0011: master, clock = (TMR2 output) / 2
0010: master, clock = FOSC / 64
0001: master, clock = FOSC / 16
0000: master, clock = FOSC / 4

4 CKP Clock polarity: 1 = clock idle state is high; 0 = clock idle state is low.

5 SSPEN Synchronous serial port enable. 1= enabled; 0 = disabled.

6 SSPOV Receive overflow.
Slave mode: 1 = overflow. 0 = no overflow.
Master mode: 0.

7 WCOL Write collision detect.
1 = SSPBUF was written to while transmitting.
0 = no collision.

Accessing Flash Memory Cards

 91

 else

 {

 // No collision occurred.

 // When the BF bit in SSPSTAT = 1, the transmit operation is complete.

 while (!SSPSTATbits.BF);

 }

 // Success.

 return (0);

}

Reading a Byte
When receiving a byte, the shift register stores bits received on
SDI/DataOut. When a byte has been received, the port hardware copies the
byte to SSPBUF. The BF bit SSPSTAT is set to 1 and the SPI interrupt flag
in PIR1 is set to 1 to indicate that a byte has arrived. Firmware can detect
received data with the SPI interrupt or by polling BF. After the hardware
copies a received byte to SSPBUF, the shift register can begin receiving
another byte. Reading a byte from SSPBUF clears the BF bit. Firmware
must clear the interrupt flag.

Microchip’s C18 compiler libraries include a ReadSPI function, which reads
a byte from the SPI bus. However, the function isn’t usable for MultiMedi-
aCard communications because ReadSPI holds DataIn low while reading a
byte, and MultiMediaCards require DataIn to be high. The ReadMedia
function reads a byte while holding DataIn high:
byte ReadMedia(void)

{

 // Write FFh to the SPI buffer to hold the MultiMediaCard’s DataIn line high

 // while reading a byte.

 SSPBUF = 0xFF;

 // When the BF bit in SSPSTAT = 1, SSPBUF contains a byte read from the bus.

 while (!SSPSTATbits.BF);

 return(SSPBUF);

}

This page intentionally left blank

 93

5

MultiMediaCard
Protocol
SPI provides a protocol for sending and receiving bytes, but the interface
assumes nothing about the contents of the bytes being transferred. The
MultiMediaCard specification defines commands to use in SPI communica-
tions. The host uses the commands to retrieve information about a card and
its status, to send control information to a card, and to read and write data
in the card’s storage media. This chapter introduces the MultiMediaCard
commands and shows how to implement the commands in firmware. A host
can use the same commands and firmware to access SD Cards.

Command and Response Formats
Each MultiMediaCard command has a defined format for the command, a
response, and any additional data the command sends or requests. On the
SPI bus, the DataIn line carries commands and data sent by the host, and
the DataOut line carries responses and data sent by the MultiMediaCard.

Chapter 5

94

The information that travels on the bus includes commands, command
responses, and tokens that contain data and error indications.

Commands
Each MultiMediaCard command is 48 bits. Table 5-1 shows the format of
the commands.

The command index is a number that identifies the command. Each com-
mand also has a name consisting of “CMD” followed by the index value
(CMD0, CMD1, and so on) and a descriptive abbreviation. For example,
the descriptive abbreviation for CMD17 is READ_SINGLE_BLOCK.

The command argument is a 32-bit value that can provide supplementary
information required to carry out a command. For example, the argument
for READ_SINGLE_BLOCK is the beginning address of the block to read.
For commands that don’t require arguments, the host sends stuff bits of
zero.

The CRC value is seven bits that the MultiMediaCard controller can use to
verify that a command arrived without error.

The transmission bit is set to 1. The start bit and end bit mark the begin-
ning and end of the command.

Response Types
On receiving a command and argument, a MultiMediaCard returns a
response. The MultiMediaCard specification defines six response types with
each command having a designated response type. Most commands use
response type R1 or R1b. A few use R2 or R3. Only I/O cards use types R4
and R5.

These are the response types a mass-storage device uses on an SPI bus.

R1

Response type R1 is a single byte. A value of 00h means that the command
completed without error. On error, one or more of the bits are set:

Bit 0: The card is in the idle state and is initializing.
Bit 1: An erase sequence was cleared before executing the command
because an out-of-erase-sequence command was received.

MultiMediaCard Protocol

 95

Bit 2: An illegal or unsupported command code was received.
Bit 3: CRC error.
Bit 4: An error occurred in the sequence of erase commands.
Bit 5: The device received an address that doesn’t match the expected block
length.
Bit 6: The command’s argument was out of range.
Bit 7: Always zero.

The RESPONSE_1 union defines a byte or eight bits that can hold an R1
response:
typedef union

{

 byte _byte;

 struct

 {

 unsigned IN_IDLE_STATE:1;

 unsigned ERASE_RESET:1;

 unsigned ILLEGAL_CMD:1;

 unsigned CRC_ERR:1;

 unsigned ERASE_SEQ_ERR:1;

 unsigned ADDRESS_ERR:1;

 unsigned PARAM_ERR:1;

 unsigned B7:1;

 };

} RESPONSE_1;

Table 5-1: MultiMediaCard commands have 48 bits.
Bit(s) Field Width (bits) Value Description

0 1 End bit Always 1

1..7 7 CRC Error-detect value

8..39 32 Command argument Additional information or
stuff bits (zeros)

40..45 6 Command index Identifies the command

46 1 Transmission bit Always 1 for commands

47 1 Start bit Always zero

Chapter 5

96

R1b

Response type R1b is identical to the R1 response format except the
response byte is followed by one or more bytes that indicate busy status. The
card returns zeroes continuously while busy and returns a non-zero byte
when ready to receive another command. In other words, DataOut remains
low to indicate busy and goes high when no longer busy.

R2

In SPI mode, response type R2 is used only for the SEND_STATUS com-
mand. The response is two bytes. The first byte is identical to the R1 for-
mat. The second byte contains eight status bits. On error, one or more of
the bits are set:

Bit 0: The user has locked the card.
Bit 1: The host has attempted to erase a write-protected block or a
sequence or password error occurred during a card lock/unlock operation.
Bit 2: General or unknown error.
Bit 3: Internal card-controller error.
Bit 4: A card’s internal error-correction code was applied but failed to cor-
rect the data.
Bit 5: The command tried to write to a write-protected block.
Bit 6: The selection of erase groups was invalid.
Bit 7: The command argument was out of range, or the command is
attempting to change the ROM section, or the command is attempting to
reverse the copy bit or permanent write-protect bit in the CSD register.

MultiMediaCard Protocol

 97

The RESPONSE_2 union defines a word, bytes, or bits that can hold an R2
response:
typedef union

{

 word _word;

 struct

 {

 byte _byte0;

 byte _byte1;

 };

 struct

 {

 unsigned IN_IDLE_STATE:1;

 unsigned ERASE_RESET:1;

 unsigned ILLEGAL_CMD:1;

 unsigned CRC_ERR:1;

 unsigned ERASE_SEQ_ERR:1;

 unsigned ADDRESS_ERR:1;

 unsigned PARAM_ERR:1;

 unsigned B7:1;

 unsigned CARD_IS_LOCKED:1;

 unsigned WP_ERASE_SKIP_LK_FAIL:1;

 unsigned ERROR:1;

 unsigned CC_ERROR:1;

 unsigned CARD_ECC_FAIL:1;

 unsigned WP_VIOLATION:1;

 unsigned ERASE_PARAM:1;

 unsigned OUTRANGE_CSD_OVERWRITE:1;

 };

} RESPONSE_2;

R3

Response type R3 is five bytes. In SPI mode, the only command that uses
this response type is READ_OCR, which requests the contents of the oper-
ation conditions register. The first byte is identical to the R1 format. The
next four bytes are the contents of the register.

Chapter 5

98

Token Formats
Commands that send or request blocks of data use structures called tokens
to hold the data and MultiMediaCard responses. There are three types of
tokens: data, data_response, and data_error.

Data

Data blocks being sent to or from a MultiMediaCard’s storage media travel
in data tokens. In SPI mode, each data token consists of a Start Block token
(1 byte) followed by the data block (1 or more bytes) and a CRC value (2
bytes). Table 5-2 shows the values for Start Block tokens and the Stop Tran
token, which a host can send to end a command that is writing multiple
blocks. Note that FEh is the Start Block token for all operations except mul-
tiple block writes.

Data_response

After receiving a data token, the MultiMediaCard returns a 1-byte
data_response token. These are the values of the bits in the data_response
token:

Bit 0: 1.
Bits 3..1: Status

010 = Data accepted
101 = CRC error
110 = Write error

Bit 4: 0.
Bits 5..7: Don’t care.

To determines if the data was accepted, firmware can logically AND the
data_response byte with 0Fh. If the result is 05h, the data was accepted.

MultiMediaCard Protocol

 99

Data_error

When unable to return a requested data token, a MultiMediaCard returns a
data-error token. These are the values of the bits in the data_error token:

Bit 0: General or unknown error.
Bit 1: Internal card controller error.
Bit 2: A card’s internal error-correction code was applied but failed to cor-
rect the data.
Bit 3: The command’s argument was out of range.
Bit 4: The user has locked the card.
Bits 5..7: Zero.

The Commands
A MultiMediaCard host with an SPI interface can use most of the com-
mands defined in the MultiMediaCard specification.

Classes
The specification defines ten classes of commands (Table 5-3). A single
command can be in multiple classes. For example, both the block-read and
block-write classes include the SET_BLOCK_LEN command, which sets
the length of a data block. SPI mode doesn’t support commands in the
stream-read and stream-write classes, where transmitted data isn’t in blocks
of a defined size, or commands in the I/O-mode class, which supports

Table 5-2: A Start Block data token precedes a block of data being sent to or
from the storage media. A Stop Tran data token requests to end a multiple-block
write.
Token Type Transaction Type Value (hex)

Start Block Single block read FE

Multiple block read FE

Single block write FE

Multiple block write FC

Stop Tran Multiple block write (end) FD

Chapter 5

100

non-storage functions. SPI mode supports everything a mass-storage device
requires, however.

All MultiMediaCards support all of the commands in the basic class. These
commands carry out basic status and control functions. MultiMediaCards
using SPI also support commands in the block-read, block-write, erase,
write-protection, lock-card, and application-specific classes.

A host needs to support only the commands required to carry out its pur-
pose. Some commands are required to initialize the card. USB mass-storage
communications read and write blocks of data, so a MultiMediaCard host in
a USB mass-storage device uses block-read and block-write commands to
access the MultiMediaCard’s storage media.

The descriptions that follow apply to a MultiMediaCard host using the SPI
bus. A host using the MultiMediaCard bus can accomplish the same things,
but the command and response formats and protocols vary as described in
the MultiMediaCard specification.

Commands Used by Mass-storage Devices
Table 5-4 shows basic-class commands that flash-memory MultiMediaCard
hosts typically support in USB mass-storage devices.

Table 5-5 shows commands used in reading and writing blocks of data. The
commands that read or write data require a starting address to read or write.

Table 5-3: The MultiMediaCard protocol includes ten classes of commands.
Class Number Class Name SPI Support?

0 basic yes

1 stream read no

2 block read yes

3 stream write no

4 block write yes

5 erase yes

6 write protection yes

7 lock card yes

8 application specific yes

9 I/O mode no

MultiMediaCard Protocol

 101

This value is the offset of the byte within the media, with the bytes num-
bered sequentially from zero. To convert a logical block address (LBA) to a
byte address, multiply the LBA by the media’s block, or sector, size (typically
512).

Registers
Some commands read or write to registers in the MultiMediaCard. Table
5-6 shows the three MultiMediaCard registers used in SPI communications.
The MultiMediaCard bus supports two additional registers for storing a
card address and providing data to improve bus performance. These registers
are unneeded and unavailable in SPI mode.

Sending Commands
Most MultiMediaCard commands are in one of three categories: commands
that transmit no data blocks to or from the storage media, commands where
the MultiMediaCard host sends data to the storage media, and commands
where the MultiMediaCard host receives data from the storage media. For

Table 5-4: Mandatory basic-class commands for a MultiMediaCard.
Index Abbreviation Argument Response Description

CMD0 GO_IDLE_STATE none R1 Reset the card to the idle state.

CMD1 SEND_OP_COND none R1 Activate the card’s initialization
process.

CMD9 SEND_CSD none R1 Request the contents of the CSD
register. The register’s contents
follow the response token.

CMD10 SEND_CID none R1 Request the contents of the CID
register. The register’s contents
follow the response token.

CMD13 SEND_STATUS none R2 Request status information

CMD58 READ_OCR none R3 Read the operation conditions
register. The register’s contents
are in the response token.

CMD59 CRC_ON_OFF 31..1:
stuff bits;
0:
CRC option

R1 Bit 0 = 1: use CRC.
Bit 0 = 0: ignore CRC.

Chapter 5

102

each command, the host sends a command block and the device sends a
response. For some commands, the device follows the response with one or
more data tokens. For other commands, the host follows the response with
one or more data tokens, and the device sends a response after receiving each
data token.

Timing Considerations
Communications on the SPI bus must meet the timing and clocking
requirements in the MultiMediaCard specification. The host must generate
clock cycles when sending a command or data, when receiving a response or
data token from a card, and when waiting for a response or data token from
a card. The host also must generate 8 clock cycles after all of a command’s
communications are complete.

When generating clock cycles and not transmitting a command or data, the
host must hold DataIn high. A PIC18F4550 host can send eight clock

Table 5-5: Block read and write commands used by mass-storage devices.
Index Abbreviation Argument Response Description

CMD12 STOP_TRANSMISSION 00000000h R1 Stop multiple
block read.

CMD15 SET_BLOCK_LEN Block length R1 Set the block
size in bytes for
block read and
block write.

CMD17 READ_SINGLE_BLOCK Starting address
to read

R1 Read a block of
data.

CMD18 READ_MULTIPLE_BLOCK Starting address
to read

R1 Read multiple
blocks of data.

CMD23 SET_BLOCK_COUNT 31..16: 0000h;
15..0: number of
blocks

R1 Set the number
of blocks to
transfer in a
multiple-block
read or write
command.

CMD24 WRITE_SINGLE_BLOCK Starting address
to write to

R1 Write a block of
data.

CMD25 WRITE_MULTIPLE_BLOCK Starting address
to write to

R1 Write multiple
blocks of data.

MultiMediaCard Protocol

 103

cycles while holding DataIn high by writing FFh to the SPI buffer (SSP-
BUF). This macro generates eight clock cycles while holding DataIn high by
calling the WriteSPI library function:
#define mSend8ClkCycles() WriteSPI(0xFF);

Figure 5-1 shows the timing for block-read and block-write commands for
MultiMediaCards on an SPI bus. The following descriptions refer to the sig-
nals and times in the diagram.

A host can send a command immediately on bringing CS low to select the
card (NCS).

After receiving a command, a card delays between 8 and 64 clock cycles
before sending a response (NCR).

In a read operation, after sending a response, a card delays between 8 clock
cycles and a card-specific access time before sending the requested data
token (NAC). For commands where the card sends multiple data tokens,
the same wait time applies for the time between data tokens. The card-spe-
cific time is determined by values in the CSD register and the SCLK fre-
quency. Firmware that is waiting for a response can time out after any value
equal to or greater than the card-specific time.

Commands that request the contents of the CSD and CID registers are sim-
ilar in structure to commands that read from the storage media. A difference

Table 5-6: MultiMediaCards have five configuration and status registers. Two of
the registers are unused in SPI mode.
Abbrevia-
tion

Name Size
(bytes)

Purpose

OCR Operation Conditions
Register

4 Bits 30..0 specify allowed power-supply
voltages.
Bit 31 is a status bit that equals 1 when the
power-up procedure has completed.

CID Card Identification 16 Contains manufacturer and card
identification numbers, product name,
revision, serial number, and manufacturing
date.

CSD Card Specific Data 16 Provides card-specific information. Includes
data relating to timing, data formats,
electrical specifications, write protection, and
error detecting.

Chapter 5

104

is that the card delays just zero to eight cycles between the response token
and the register data.

In a write operation, after sending a command and receiving a response, the
host generates at least 8 clock cycles before sending a data token (NWR).
There is no maximum number of clock cycles before the data token. The
card’s response follows the data token immediately. The host then waits for
the DataOut line to return high to indicate that the card has programmed

Figure 5-1: Timing for block-read and block-write commands.

MultiMediaCard Protocol

 105

the received data into the storage media. There is no specified maximum
time to wait for DataOut to return high.

After a command completes, the host generates at least 8 clock cycles before
sending a new command. There is no maximum number of clock cycles
before the next command. The host can bring CS high on the last clock
transition of the last byte that is part of the command’s communications
(before the final 8 clock cycles) or any time after this (NEC and NDS). In a
block-write operation, the host can bring CS high while the card is busy
programming, and bring CS low again later to verify that DataOut is high,
indicating that the write operation completed.

Commands with No Data Transfer
On an SPI bus, a command with no data transfer has these steps:

1. The host brings CS low.

2. The host sends the 48-bit command and continues to generate clock
cycles.

3. After receiving the command followed by 8 to 64 clock cycles, the card
sends the command’s response.

4. The host can bring CS high any time after receiving the response.

5. The host generates 8 clock cycles to complete the command.

Commands that Read Data from the Storage Media
On an SPI bus, a command that requests a single data block from the stor-
age media has these steps:

1. The host brings CS low.

2. The host sends the 48-bit command and continues to generate clock
cycles.

3. After receiving the command followed by 8 to 64 clock cycles, the card
sends the command’s response.

4. The host continues to generate clock cycles.

5. After between 8 clock cycles and the card-specific access time, the card
sends the requested data block. On error, the card sends a data_error token
instead of a data token.

Chapter 5

106

6. The host can bring CS high at any time after receiving the data block or a
data_error token.

7. The host generates 8 clock cycles to complete the command.

In a command that reads multiple blocks, step 5 repeats as many times as
needed to transfer the data blocks. Steps 6 and 7 occur when any of the fol-
lowing is true: the card has sent the requested number of data blocks, the
card has sent a data_error token, or the host has sent a
STOP_TRANSMISSION command (CMD12).

Commands that Write Data to the Storage Media
On an SPI bus, a command that writes a single data block to the storage
media has these steps:

1. The host brings CS low.

2. The host sends the 48-bit command followed by clock cycles.

3. After between 8 and 64 clock cycles, the card sends the command’s
response.

4. After 8 or more clock cycles, the host sends a data block in a data token
and continues to generate clock cycles.

5. The card sends a data_response token immediately after receiving the
data token. If the card received the data token without error, the card fol-
lows the data_response token with continuous busy tokens (by holding
DataOut low) until the controller has finished programming the data block
into the storage media. The card then brings DataOut high.

6. The host can bring CS high any time after writing the data tokens or
receiving a data_error token. If the host brings CS high before DataOut
goes high, the host must bring CS low again and read DataOut to verify that
the write operation completed

7. The host generates 8 clock cycles to complete the command.

In a command that writes multiple blocks, steps 4 and 5 repeat as many
times as needed to transfer the data blocks. After DataOut goes high to indi-
cate that the card has programmed the previous block, the host generates at
least 8 clock cycles before sending the next data block. The transfer ends
when any of the following is true: the card has received and programmed the
specified number of data blocks, the card has sent an error indication in a

MultiMediaCard Protocol

 107

data_response token, or the host has sent a Stop Tran data token instead of a
data block.

The host can check the result of a write operation by sending CMD13
(SEND_STATUS). The card returns a response that contains the status
information.

Application Example
The example that follows uses the Microchip PIC18F4550 microcontroller
circuit introduced in Chapter 4. The code shows how to detect a MultiMe-
diaCard, initialize communications, and read and write data in the card’s
storage media.

Detecting and Selecting a Card
As the circuit in Chapter 4 showed, firmware can use spare port bits to con-
trol a MultiMediaCard’s CS input and monitor a card connector’s
card-detect (CD) and write-protect (WP) pins. The host brings CS low to
enable communications in SPI mode. The card-detect and write-protect
pins connect to switches in the card connector, with one switch terminal
connected to the ground pin and the other terminal brought out to the CD
or WP connector pin. The card-detect switch is open when no card is
present and closed when a card is present. The write-protect switch is open
if the card’s write-protect tab is in the write-protect position or the card isn’t
present. The switch is closed if the tab is in the write-enable position or the
card doesn’t have a write-protect tab. Only full-size SD Cards have
write-protect tabs, though full-size adapters with tabs enable other card
types to provide a write-protect signal.

Hirose DM1 series sockets are an example of SD-Card/MultiMediaCard
sockets that have card-detect and write-protect switches. To monitor the
state of a switch, connect it to a port pin with a pull up. The port pin is high
when the switch is open and low when the switch is closed.

On the PIC18F4550, each I/O port has three registers. A TRIS register sets
the direction of the port’s bits (0 = output, 1 = input). Firmware can use the
Port and LAT registers to read and write to the port. Reading the Port regis-
ter returns the current state of the port’s pins. Firmware can write to the port

Chapter 5

108

by writing to either the Port or LAT register. Writing to the Port register
latches the value to the port pins. The LAT register simplifies writes to indi-
vidual bits. The register always contains the last value written to the port. To
change a single bit on the port, firmware can write to the bit in the register,
and the write operation causes the chip to write the register’s contents,
including the just-written bit, to the port pins.

In Chapter 4’s circuit, CS connects to PORTB, bit 3 on the microcontroller.
The card-detect pin connects to PORTB, bit 4, and the write-protect pin
connects to PORTA, bit 4. The code below provides application-specific
names for the port bits and their direction bits. The Microchip C18 com-
piler files p18f4550.asm and p18f4550.h define the locations of the regis-
ters.

#define SDC_CS LATBbits.LATB3

#define SDC_CS_DIR TRISB3

#define MEDIA_CD RB4

#define MEDIA_CD_DIR TRISB4

#define MEDIA_WD RA4

#define MEDIA_WD_DIR TRISA4

The SocketInitialize function initializes a MultiMediaCard socket by setting
the direction of the card-detect, CS, and write-protect bits and setting CS
high to deselect the card:
void SocketInitialize(void)

{

 MEDIA_CD_DIR = INPUT;

 SDC_CS_DIR = OUTPUT;

 MEDIA_WD_DIR = INPUT;

 SDC_CS = 1;

}

The DetectSDCard function returns the state of the card-detect pin:
int DetectSDCard(void)

{

 if (MEDIA_CD)

 return 0; // Card not present.

 else

 return 1; // Card is present.

}

MultiMediaCard Protocol

 109

Sending a Command
For each supported MultiMediaCard command, device firmware needs to
know the command index, the response type, the CRC value to send in the
command, and whether the command’s six bytes are followed by more data.
The code below stores this information about commands using an enumera-
tion, a series of defines, and a table in ROM.

Storing Command Information

The sdmmc_cmd enumeration assigns a value to each command:
typedef enum

{

 GO_IDLE_STATE,

 SEND_OP_COND,

 SEND_CSD,

 SEND_CID,

 STOP_TRANSMISSION,

 SEND_STATUS,

 SET_BLOCKLEN,

 READ_SINGLE_BLOCK,

 READ_MULTI_BLOCK,

 WRITE_SINGLE_BLOCK,

 WRITE_MULTI_BLOCK,

 TAG_SECTOR_START,

 TAG_SECTOR_END,

 UNTAG_SECTOR,

 TAG_ERASE_GRP_START,

 TAG_ERASE_GRP_END,

 UNTAG_ERASE_GRP,

 ERASE,

 LOCK_UNLOCK,

 SD_APP_OP_COND,

 APP_CMD,

 READ_OCR,

 CRC_ON_OFF

}sdmmc_cmd;

Chapter 5

110

A table in ROM holds additional information about the commands. For
each command, the table below stores a command name, CRC value,
response type, and whether or not the command is followed by more data.
Firmware can identify an entry in the table by specifying a command from
the enumeration above. For example, SEND_CSD is the third enumeration
constant in the enumeration, and cmdSEND_CSD is the third entry in the
table.
#define MOREDATA !0

#define NODATA 0

const rom typSDC_CMD sdmmc_cmdtable[] =

{

 // command name CRC response type more data?

 {cmdGO_IDLE_STATE, 0x95, R1, NODATA},

 {cmdSEND_OP_COND, 0xF9, R1, NODATA},

 {cmdSEND_CSD, 0xAF, R1, MOREDATA},

 {cmdSEND_CID, 0x1B, R1, MOREDATA},

 {cmdSTOP_TRANSMISSION, 0xC3, R1, NODATA},

 {cmdSEND_STATUS, 0xAF, R2, NODATA},

 {cmdSET_BLOCKLEN, 0xFF, R1, NODATA},

 {cmdREAD_SINGLE_BLOCK, 0xFF, R1, MOREDATA},

 {cmdREAD_MULTI_BLOCK, 0xFF, R1, MOREDATA},

 {cmdWRITE_SINGLE_BLOCK, 0xFF, R1, MOREDATA},

 {cmdWRITE_MULTI_BLOCK, 0xFF, R1, MOREDATA},

 {cmdTAG_SECTOR_START, 0xFF, R1, NODATA},

 {cmdTAG_SECTOR_END, 0xFF, R1, NODATA},

 {cmdUNTAG_SECTOR, 0xFF, R1, NODATA},

 {cmdTAG_ERASE_GRP_START, 0xFF, R1, NODATA},

 {cmdTAG_ERASE_GRP_END, 0xFF, R1, NODATA},

 {cmdUNTAG_ERASE_GRP, 0xFF, R1, NODATA},

 {cmdERASE, 0xDF, R1b, NODATA},

 {cmdLOCK_UNLOCK, 0x89, R1b, NODATA},

 {cmdSD_APP_OP_COND, 0xE5, R1, NODATA},

 {cmdAPP_CMD, 0x73, R1, NODATA},

 {cmdREAD_OCR, 0x25, R3, NODATA},

 {cmdCRC_ON_OFF, 0x25, R1, NODATA}

};

MultiMediaCard Protocol

 111

In a command’s first byte, bit 7 = 0, bit 6 = 1, and bits 5..0 are the command
index. In other words, the first byte in the command equals the command
index + 40h.

The code below provides values for the first bytes in MultiMediaCard com-
mands:
 // command first byte command index

#define cmdGO_IDLE_STATE 0x40 // 0

#define cmdSEND_OP_COND 0x41 // 1

#define cmdSEND_CSD 0x49 // 9

#define cmdSEND_CID 0x4a // 10

#define cmdSTOP_TRANSMISSION 0x4c // 12

#define cmdSEND_STATUS 0x4d // 13

#define cmdSET_BLOCKLEN 0x50 // 16

#define cmdREAD_SINGLE_BLOCK 0x51 // 17

#define cmdREAD_MULTI_BLOCK 0x52 // 18

#define cmdWRITE_SINGLE_BLOCK 0x58 // 24

#define cmdWRITE_MULTI_BLOCK 0x59 // 25

#define cmdTAG_SECTOR_START 0x60 // 32

#define cmdTAG_SECTOR_END 0x61 // 33

#define cmdUNTAG_SECTOR 0x62 // 34

#define cmdTAG_ERASE_GRP_START 0x63 // 35

#define cmdTAG_ERASE_GRP_END 0x64 // 36

#define cmdUNTAG_ERASE_GRP 0x65 // 37

#define cmdERASE 0x66 // 38

#define cmdSD_APP_OP_COND 0x69 // 41

#define cmdLOCK_UNLOCK 0x71 // 49

#define cmdAPP_CMD 0x77 // 55

#define cmdREAD_OCR 0x7a // 58

#define cmdCRC_ON_OFF 0x7b // 59

Chapter 5

112

Command and Response Structures

Each 48-bit command can be accessed as six generic bytes, a command byte
plus four address bytes and CRC byte, or a command byte plus a 4-byte
address, a 7-bit CRC value, and an end bit.

The CMD_PACKET union provides these options:
typedef union

{

 struct

 {

 byte field[5];

 };

 struct

 {

 byte crc;

 byte addr0; // LSB

 byte addr1;

 byte addr2;

 byte addr3; // MSB

 byte cmd;

 };

 struct

 {

 unsigned END_BIT:1;

 unsigned CRC7:7;

 dword address;

 byte command;

 };

} CMD_PACKET;

The SDC_RESPONSE union can hold a RESPONSE_1 or RESPONSE_2
structure as defined earlier in this chapter:
typedef union

{

 RESPONSE_1 r1;

 RESPONSE_2 r2;

} SDC_RESPONSE;

MultiMediaCard Protocol

 113

Error Codes

The SDC_Error enumeration names various MultiMediaCard communica-
tion errors:
typedef enum

{

 sdcValid = 0, // No error

 sdcCardInitCommFailure, // Communication hasn’t been established with the card.

 sdcCardNotInitFailure, // Card did not initialize.

 sdcCardInitTimeout, // Card initialization timed out.

 sdcCardTypeInvalid, // Card type was not able to be defined.

 sdcCardBadCmd, // Card did not recognize the command.

 sdcCardTimeout, // Card timed out during a read, write or erase sequence.

 sdcCardCRCError, // A CRC error occurred during a read.

 sdcCardDataRejected, // CRC did not match.

 sdcEraseTimedOut // Erase timed out.

}SDC_Error;

A Function for Sending Commands

The SendSDCCmd function sends a command on the SPI bus and returns
an SDC_RESPONSE structure. The function accepts a byte that corre-
sponds to an entry in the command table (cmd) and a 4-byte command
argument (address). The function calls the ReadMedia and WriteSPI func-
tions introduced in Chapter 4.

The function ends after sending a command and receiving a response. If the
response will be followed by data to or from the card, the function leaves CS
low. Firmware can then call another function (SectorWrite or SectorRead,
presented later in this chapter) to send or receive data.
SDC_RESPONSE SendSDCCmd(byte cmd, dword address)

{

 CMD_PACKET CmdPacket;

 byte index;

 SDC_RESPONSE response;

 word timeout = 9;

 // Bring the card’s chip-select line low.

 SDC_CS = 0;

Chapter 5

114

 // Store a command byte, address, and CRC value in the CMD_PACKET structure.

 CmdPacket.cmd = sdmmc_cmdtable[cmd].CmdCode;

 CmdPacket.address = address;

 CmdPacket.crc = sdmmc_cmdtable[cmd].CRC;

 // Send the command byte, address bytes, and CRC byte.

 // The WriteSPI library function writes a byte on the SPI bus.

 WriteSPI(CmdPacket.cmd);

 WriteSPI(CmdPacket.addr3);

 WriteSPI(CmdPacket.addr2);

 WriteSPI(CmdPacket.addr1);

 WriteSPI(CmdPacket.addr0);

 WriteSPI(CmdPacket.crc);

 // Is the command's response type R1 or R1b?

 if (sdmmc_cmdtable[cmd].responsetype == R1 ||

 sdmmc_cmdtable[cmd].responsetype == R1b)

 {

 do

 {

 // Read a byte from the card until the byte doesn't equal FFh or a timeout occurs.

 response.r1._byte = ReadMedia();

 timeout--;

 } while ((response.r1._byte == 0xFF) && (timeout != 0));

 }

 // Is the command’s response type R2?

 else if (sdmmc_cmdtable[cmd].responsetype == R2)

 {

 do

 {

 // read the first bye of the response.

 // _byte0 transmits first.

 response.r2._byte0 = ReadMedia();

 timeout--;

 } while ((response.r2._byte0 == 0xFF) && (timeout != 0));

MultiMediaCard Protocol

 115

 // If the first byte was read, read the second byte.

 if (response.r2._byte0 != 0xFF)

 response.r2._byte1 = ReadMedia();

 }

 // Is the response type R1b?

 if (sdmmc_cmdtable[cmd].responsetype == R1b)

 {

 // The R1b response byte has been read.

 // Wait for not busy status by reading from the card until a byte doesn't equal 00h

 // or a timeout occurs..

 response.r1._byte = 0x00;

 for (index = 0; index < 0xFF && response.r1._byte == 0x00; index++)

 {

 timeout = 0xFFFF;

 do

 {

 response.r1._byte = ReadMedia();

 timeout--;

 } while ((response.r1._byte == 0x00) && (timeout != 0));

 }

 }

 // Generate 8 clock cycles.

 mSend8ClkCycles();

 // If no more data is expected for this command, deselect the card.

 if (!(sdmmc_cmdtable[cmd].moredataexpected))

 SDC_CS = 1;

 return(response);

}

Chapter 5

116

Reading the CSD Register

When initializing communications, the host must read the card’s CSD regis-
ter. The CSD union below defines the contents of the CSD register as 4
dwords or 16 bytes. For brevity, I didn’t include a union component with a
field for each of the CSD’s 37 items.
typedef union

{

 struct

 {

 DWORD _u320;

 DWORD _u321;

 DWORD _u322;

 DWORD _u323;

 };

 struct

 {

 byte _byte[16];

 };

} CSD;

The CSDRead function issues the SEND_CSD command and waits for the
card to send the register’s 16 bytes. Much of the function is similar to the
SendSDCCmd function above. A difference is that the function retrieves
data from the card after sending the command.
#define CSD_SIZE 16

#define DATA_START_TOKEN 0xFE // The Start Block token

CSD gblCSDReg;

SDC_Error CSDRead()

{

 dword address = 0x00;

 byte cmd = SEND_CSD;

 CMD_PACKET CmdPacket;

 byte data_token;

 word index;

 SDC_RESPONSE response;

 SDC_Error status = sdcValid;

 word timeout = 0x2ff;

MultiMediaCard Protocol

 117

 // Select the card.

 SDC_CS = 0;

 // Store a command byte, address, and CRC value in the CMD_PACKET structure.

 CmdPacket.cmd = sdmmc_cmdtable[cmd].CmdCode;

 CmdPacket.address = address;

 CmdPacket.crc = sdmmc_cmdtable[cmd].CRC;

 // Send the command byte, address bytes, and CRC byte.

 // The WriteSPI library function writes a byte on the SPI bus.

 WriteSPI(CmdPacket.cmd);

 WriteSPI(CmdPacket.addr3);

 WriteSPI(CmdPacket.addr2);

 WriteSPI(CmdPacket.addr1);

 WriteSPI(CmdPacket.addr0);

 WriteSPI(CmdPacket.crc);

 // Read a byte from the card until the byte doesn't equal FFh or a timeout occurs.

 do

 {

 response.r1._byte = ReadMedia();

 timeout--;

 } while ((response.r1._byte == 0xFF) && (timeout != 0));

 // A response of 00h means the command was accepted.

 if (response.r1._byte != 0x00)

 {

 status = sdcCardBadCmd;

 }

Chapter 5

118

 else

 {

 index = 0x2FF;

 //Wait for the data_start token or a timeout.

 do

 {

 data_token = ReadMedia();

 index--;

 } while ((data_token == SDC_FLOATING_BUS) && (index != 0));

 if ((index == 0) || (data_token != DATA_START_TOKEN))

 status = sdcCardTimeout;

 else

 {

 // A data start token was received.

 // Read the CSD register's 16 bytes.

 for (index = 0; index < CSD_SIZE; index++)

 {

 gblCSDReg._byte[index] = ReadMedia();

 }

 }

 // Generate 8 clock cycles to complete the command.

 mSend8ClkCycles();

 }

 // Deselect the card.

 SDC_CS = 1;

 return(status);

}

Reading a Sector
MultiMediaCard firmware reads data from the storage media in sectors,
which are typically 512 bytes. The SectorRead function and related code
below perform this function. The function accepts a 32-bit LBA that identi-

MultiMediaCard Protocol

 119

fies the sector to read (sector_addr) and a pointer to a buffer that will store
the data read from the card (buffer). The function returns a status code.
// This macro writes FFh twice to clock in two CRC bytes.

#define mReadCRC() WriteSPI(0xFF); WriteSPI(0xFF);

#define SDC_FLOATING_BUS 0xFF

#define SDC_BAD_RESPONSE SDC_FLOATING_BUS

#define SDC_SECTOR_SIZE 512

SDC_Error SectorRead(dword sector_addr, byte* buffer)

{

 byte data_token;

 word index;

 SDC_RESPONSE response;

 SDC_Error status = sdcValid;

 // Issue a READ_SINGLE_BLOCK command.

 // Specify the address of the first byte to read in the media.

 // To obtain the address of a sector’s first byte,

 // shift the sector address left 9 times to multiply by 512 (sector size).

 response = SendSDCCmd(READ_SINGLE_BLOCK, (sector_addr << 9));

 // A response of 00h indicates success.

 if (response.r1._byte != 0x00)

 {

 status = sdcCardBadCmd;

 }

 else

 {

 // The command was accepted.

 index = 0x2FF;

Chapter 5

120

 do

 {

 // Read from the card until receiving a response or a timeout.

 data_token = ReadMedia();

 index--;

 } while ((data_token == SDC_FLOATING_BUS) && (index != 0));

 if ((index == 0) || (data_token != DATA_START_TOKEN))

 // The card didn’t send a data start token.

 status = sdcCardTimeout;

 else

 {

 // The card sent a data start token.

 // Read a sector’s worth of data from the card.

 for (index = 0; index < SDC_SECTOR_SIZE; index++)

 {

 buffer[index] = ReadMedia();

 }

 // Read the CRC bytes.

 mReadCRC();

 }

 // Generate 8 clock cycles to complete the command.

 mSend8ClkCycles();

 }

 // Deselect the card.

 SDC_CS = 1;

 return(status);

}

Writing a Sector
MultiMediaCard firmware writes data to the storage media in sectors. The
SectorWrite function and related code below perform this function. The

MultiMediaCard Protocol

 121

function calls the ReadMedia and WriteSPI functions from Chapter 4 and
the SendSDCCmd function above.
// This macro writes FFh twice to send two CRC bytes.

// The code assumes CRC values are ignored (the default in SPI mode).

#define mSendCRC() WriteSPI(0xFF); WriteSPI(0xFF);

#define DATA_ACCEPTED 0b00000101

SDC_Error SectorWrite(dword sector_addr, byte* buffer)

{

 byte data_response;

 word index;

 SDC_RESPONSE response;

 SDC_Error status = sdcValid;

 // Issue a WRITE_SINGLE_BLOCK command.

 // Pass the address of the first byte to write in the media.

 // To obtain the address of a sector’s first byte,

 // shift the sector address left 9 times to multiply by 512 (sector size).

 response = SendSDCCmd(WRITE_SINGLE_BLOCK, (sector_addr << 9));

 // A response of 00h indicates success.

 if (response.r1._byte != 0x00)

 status = sdcCardBadCmd;

Chapter 5

122

 else

 {

 // The command was accepted.

 // Send a data start token.

 WriteSPI(DATA_START_TOKEN);

 // Send a sector’s worth of data.

 for(index = 0; index < 512; index++)

 WriteSPI(buffer[index]);

 // Send the CRC bytes.

 mSendCRC();

 // Read the card’s response.

 data_response = ReadMedia();

 if ((data_response & 0x0F) != DATA_ACCEPTED)

 {

 status = sdcCardDataRejected;

 }

 else

 {

 // The card is writing the data into the storage media.

 // Wait for the card to return non-zero (not busy) or a timeout.

 index = 0;

 do

 {

 data_response = ReadMedia();

 index++;

 } while ((data_response == 0x00) && (index != 0));

MultiMediaCard Protocol

 123

 if (index == 0)

 // The write timed out.

 status = sdcCardTimeout;

 }

 // The write was successful.

 // Generate 8 clock cycles to complete the command.

 mSend8ClkCycles();

 }

 // Deselect the card.

 SDC_CS = 1;

 return(status);

}

Initializing Communications
Before accessing a card’s media. the card’s host must initialize communica-
tions by sending a sequence of commands. Initializing a card consists of the
following actions by the host:

1. Configure the SPI port with a clock frequency of 400 kHz or less.

2. Enable the SPI port.

3. With CS high and DataIn high, generate clock cycles for the maxi-
mum of the power-supply ramp-up time, 1 millisecond, or 74 clock
cycles. With a 400-kHz clock, 1 millisecond requires 400 clock cycles.
The power-supply ramp-up time is the time required for the supply to
rise from the minimum valid supply voltage to the supply voltage the
card will use.

4. Issue the GO_IDLE_STATE command to select SPI mode.

5. Issue the SEND_OP_COND command repeatedly until the card
responds or a timeout.

6. Issue the SEND_CSD command to read the CSD register.

Chapter 5

124

The card is now ready for use in SPI mode. Firmware can perform these
additional actions as desired:

Increase the SPI port’s clock frequency. The CSD register specifies the
card’s maximum data-transfer rate.

Issue the CRC_ON_OFF command to enable CRC checking in the
card.

If necessary, issue the SET_BLOCK_LEN command to change the
block length for media reads and writes. The default is 512 bytes.

Read and store the state of the write-protect tab.

Issue block-read and block-write commands to access the media’s con-
tents.

Cards in MultiMediaCard-bus mode always use the CRC values. In SPI
mode, the card ignores the CRC values unless the host has issued a
CRC_ON_OFF command to enable CRC. All cards are in MultiMedi-
aCard-bus mode until the host issues a GO_IDLE_STATE command to
switch the card to SPI mode. So the GO_IDLE_STATE command must
have a valid CRC value, but for all following commands in SPI mode, the
host can use any stuff bits for the CRC if desired.

Card Information

The SDCSTATE union below is a byte that identifies the device as an SD
Card/MultiMediaCard and indicates if the card is write-protected:
typedef union _SDCstate

{

 struct

 {

 byte isSDMMC : 1; // set for an SD Card or MultiMediaCard

 byte isWP : 1; // set if write protected

 };

 byte _byte;

} SDCSTATE;

MultiMediaCard Protocol

 125

The IsWriteProtected function returns true if the card has a write-protect
tab that is set to write protect.
byte IsWriteProtected(void)

{

 if (MEDIA_WD) return TRUE;

 else return FALSE;

}

Delay Timer

A function that returns after a specific delay time is often useful for tasks
such as waiting for hardware to initialize. The Delayms function uses an
on-chip hardware timer to delay the number of milliseconds passed to the
function. When the time has elapsed, the function returns. This function is
very specific to the PICMicro architecture and accesses registers defined in
the compiler file p18f4550.h. Firmware for other chips can perform equiva-
lent functions using hardware timers in the chips.
#define SYSTEM_CLOCK (dword) 20000000 // Set to Fosc frequency.

#define CLKSPERINSTRUCTION (byte) 4

#define TMR1PRESCALER (byte) 8

#define TMR1OVERHEAD (byte) 5

#define MILLISECDELAY (word)((SYSTEM_CLOCK / CLKSPERINSTRUCTION /

 TMR1PRESCALER / (word)1000) - TMR1OVERHEAD)

void Delayms(byte milliseconds)

{

 T1CON = 0xB0; // Initialize the timer 1 control register.

 TMR1IE = 1; // Enable the timer 1 overflow interrupt.

 do {

 TMR1H = high(0xFFFF - MILLISECDELAY); // Load the timer registers.

 TMR1L = low(0xFFFF - MILLISECDELAY);

 TMR1IF = 0; // Clear the overflow flag.

 TMR1ON = 1; // Start the timer.

 while (!TMR1IF){;} // Wait for timer overflow.

 TMR1ON = 0; // Stop the timer.

 Nop(); // Additional delay for accuracy.

 Nop(); // Additional delay for accuracy.

 milliseconds--; // Decrement the number of milliseconds to delay.

 // Quit after the specified number of milliseconds has elapsed.

 } while (milliseconds > 0);

Chapter 5

126

Error:

// On error or completion of the delay, turn off the timer and disable its interrupt.

TMR1ON = 0;

TMR1IE = 0;

}

A Function for Initializing

The MediaInitialize function performs initialization tasks and returns status
in an SDC_Error structure. The function accepts a pointer to an SDC-
STATE structure and sets the states of the structure’s two members. The
function uses the 512-byte msd_buffer array introduced in Chapter 3 to
hold data read from the card’s storage media. The function calls the Open-
SPI function from Chapter 4.
SDC_Error MediaInitialize(SDCSTATE *Flag)

{

 SDC_Error CSDstatus = sdcValid;

 SDC_RESPONSE response;

 SDC_Error status = sdcValid;

 word timeout;

 Flag -> _byte = 0x0;

 // Deselect the card.

 SDC_CS = 1;

 // Open the SPI port.

 // Clock speed must be <= 400 kHz until the card is initialized

 // and the CSD register has been read.

 // MultiMediaCards require CKE = 0, CKP = 1,

 // and sampling DataOut in the middle of a clock cyle.

 OpenSPI(SPI_FOSC_64, MODE_11, SMPMID);

 // Allow the card time to initialize.

 Delayms(100);

MultiMediaCard Protocol

 127

 // Generate clock cycles for 1 millisecond as required by the MultiMediaCard spec.

 for (timeout = 0; timeout < 50; timeout++)

 mSend8ClkCycles();

 // Select the card.

 SDC_CS = 0;

 Delayms(1);

 // Issue the GO_IDLE_STATE command to select SPI mode.

 response = SendSDCCmd(GO_IDLE_STATE, 0x0);

 if (response.r1._byte == SDC_BAD_RESPONSE)

 {

 status = sdcCardInitCommFailure;

 goto InitError;

 }

 // A response of 01h means the card is in the idle state and is initializing.

 if (response.r1._byte != 0x01)

 {

 status = sdcCardNotInitFailure;

 goto InitError;

 }

 // Issue the SEND_OP_COND command until the card responds or a timeout.

 timeout = 0xFFF;

 do

 {

 response = SendSDCCmd(SEND_OP_COND, 0x0);

 timeout--;

 } while (response.r1._byte != 0x00 && timeout != 0);

 if (timeout == 0)

 {

 status = sdcCardInitTimeout;

 goto InitError;

 }

Chapter 5

128

 else {

 // The command succeeded.

 // Read the CSD register.

 CSDstatus = CSDRead();

 if (!CSDstatus)

 // The response was zero. The CSD was read successfully.

 // OK to increase the clock speed.

 OpenSPI(SPI_FOSC_4, MODE_11, SMPMID);

 else

 // Unable to read the CSD.

 status = sdcCardTypeInvalid;

 }

 // Issue the SET_BLOCKLEN command to set the block length to 512.

 // (Optional, since this is the default.)

 SendSDCCmd(SET_BLOCKLEN, 512);

 // Set a bit in the SDCSTATE structure if the card is write-protected.

 if (IsWriteProtected())

 Flag -> isWP = TRUE;

 // Read sector zero from the card into msd_buffer until success or a timeout.

 // Some cards require multiple attempts.

 for (timeout = 0xFF;

 timeout > 0 && SectorRead(0x0, (byte*)msd_buffer) != sdcValid;

 timeout--)

MultiMediaCard Protocol

 129

 // The attempt to read timed out.

 if (timeout == 0)

 {

 status = sdcCardNotInitFailure;

 goto InitError;

 }

 return(status);

InitError:

// On error or success, deselect the device.

SDC_CS = 1;

return(status);

}

This page intentionally left blank

 131

6

SCSI Commands
SCSI commands originated as a protocol for devices that use the Small
Computer Systems Interface (SCSI) parallel interface. The commands pro-
vide a framework for obtaining information about a storage device, control-
ling the device’s operation, and reading and writing blocks of data in the
storage media. Storage devices that use other hardware interfaces, including
USB, also use SCSI commands to perform these operations.

About the Commands
The SCSI commands cover a wide range of device types and functions.
Most devices need to support only a small number of the commands.

Specifications
As Chapter 3 explained, each command travels in a structure called the
command descriptor block (CDB), or command block for short. The first
byte of the CDB is the code that identifies the command. Several sources
provide specifications for commands used by mass-storage devices.

Chapter 6

132

The INCITS Technical Committee T10 (www.t10.org) has these specifica-
tions:

SCSI Architectural Model (SAM). Defines a reference model that applies to
all SCSI devices. The current version is SAM-3.

SCSI Primary Commands (SPC). Defines commands that apply to all SCSI
devices. The current version is SPC-3.

SCSI Block Commands (SBC). Defines commands used by hard drives,
flash drives, and other direct-access block devices. The current version is
SBC-3.

Multi-Media Commands (MMC). Defines commands used by CD and
DVD drives. The current version is MMC-4.

INCITS Technical Committee T13 (www.t13.org) has this specification:

ATA/ATAPI. Defines commands used by CD and DVD drives. The cur-
rent version is ATA/ATAPI - 7.

The SFF Committee (www.sffcommittee.com) has these specifications:

ATA Packet Interface for CD-ROMs (SFF-8020i). An earlier version of the
ATA/ATAPI specification.

ATAPI Removable Rewritable Media Devices (SFF-8070i). Commands that
apply to some floppy drives.

Working drafts of the documents from INCITS are available from
www.t10.org and www.t13.org. Approved standards are ANSI documents
sold by Global Engineering Documents (www.global.ihs.com).

Rather than repeating every detail about the command blocks from the
specifications, this chapter is more of a companion guide to the specification
documents. The guide explains the purpose and use of common commands
and provides application hints for implementing the commands in device
firmware.

Which Commands to Implement?
A question many firmware programmers have is which SCSI commands a
device must implement. Each device specifies a command set in the
response to a SCSI INQUIRY command, and the command set’s specifica-
tion lists mandatory commands. For example, a device that returns an

www.t10.org
www.t13.org
www.sffcommittee.com
www.t10.org
www.t13.org
www.global.ihs.com

SCSI Commands

 133

INQUIRY response with PERIPHERAL DEVICE TYPE = 00h (direct
access block device) and VERSION = 05h (SPC-3) should implement all
commands defined as mandatory in the SPC-3 specification and all manda-
tory commands in a SCSI block commands specification such as SBC-2 or
SBC-3. Table 6-1 shows the mandatory commands and some optional com-
mands for devices that use SCSI block commands. In practice, however,
many devices don’t implement every mandatory command.

The USB-IF is developing a USB Mass Storage Class Compliance Test Spec-
ification, which names required and optional SCSI and multimedia com-
mands for different peripheral device types. At this writing, a preliminary
version of the specification is available from the USB-IF. Also available is a
preliminary version of the USB-IF’s Command Verifier software (USBCV)
with mass-storage compliance tests. Check usb.org for the latest versions.

It’s also useful to learn what commands your device’s host(s) typically use
and to be sure to implement those commands in your device. Some develop-
ers concentrate on supporting these commands rather than implementing
every command a specification dictates. To learn what commands a host
issues, use a bus analyzer to observe bus traffic when your device or similar
devices are attached to a host.

In practice, to enable communications, a device should implement at mini-
mum these SCSI commands:

INQUIRY

READ CAPACITY(10)

READ(10)

REQUEST SENSE

TEST UNIT READY

WRITE(10) (for writable devices)

A specific host or device is likely to require commands in addition to these,
however. When a device claims to implement a command set, it’s reasonable
for a host to assume that the device supports all commands declared as man-
datory in that command set.

Chapter 6

134

Table 6-1: Mandatory SCSI commands and common optional SCSI commands
for USB mass-storage devices that comply with SBC-2 or SBC-3.
Command Code

(hex)
Required? Document

FORMAT UNIT 04 yes SBC

INQUIRY 12 yes SPC

MODE SELECT(6) 15 no SPC

MODE SELECT(10) 55 no SPC

MODE SENSE(6) 1A no SPC

MODE SENSE(10) 5A no1 SPC

PREVENT ALLOW MEDIUM REMOVAL 1E no SPC

READ(6) 08 yes2 SBC

READ(10) 28 yes SBC

READ(12) A8 no SBC

READ CAPACITY(10) 25 yes SBC

READ FORMAT CAPACITIES 23 no MMC

READ TOC/PMA/ATIP 43 no MMC

REPORT LUNS A0 yes (SPC-3) SPC

REQUEST SENSE 03 yes SPC

SEND DIAGNOSTIC 1D yes SPC

START STOP UNIT 1B no SBC

SYNCHRONIZE CACHE(10) 35 no SBC

TEST UNIT READY 00 yes SPC

VERIFY(10) 2F no SBC

WRITE(6) 0A yes2 SBC

WRITE(10) 2A no SBC

WRITE(12) AA no SBC
1Required for some bootable devices.
2Application clients should migrate to READ(10) and WRITE(10).

SCSI Commands

 135

On receiving an unsupported command, a device must not crash or hang.
The correct response to an unsupported command is this:

• Return 01h (command failed) in the CSW ‘s bCSWStatus field.
• In the sense data, set the SENSE KEY parameter to 05h (ILLEGAL

REQUEST) and set the ADDITIONAL SENSE CODE parameter to
20h (INVALID COMMAND OPERATION CODE), as described
below.

Sense Data
On experiencing a problem in executing a command or on receiving an
unsupported command, a device fills a structure with status information
and sets bCSWStatus in the CSW to 01h (command failed). The status
information is called the sense data. A REQUEST SENSE command can
request the sense data, which the device returns in the data-transport phase.

A device can also use sense data to announce other events that require atten-
tion by the host, such as the inserting of removable media. To signal the
event, the device sets the SENSE KEY field in the sense data to 06h (UNIT
ATTENTION).

The contents of the returned sense-data structure vary with the command,
the device type, and whether the DESC bit in the REQUEST SENSE com-
mand block requests fixed-format sense data (0) or descriptor-format sense
data (1). Fixed-format sense data uses a single defined structure to return
status information (Table 6-2). The format of descriptor-format sense data
varies with the descriptors being sent. Each descriptor is a structure with a
type of status information such as command-specific information, informa-
tion relating to an exception condition, or information relating to block
commands.

(In true SCSI communications, the device returns a status code after each
command, and a status of CHECK CONDITION indicates that the SCSI
host should issue a REQUEST SENSE command. USB communications
use the status code in the CSW instead.)

Chapter 6

136

Table 6-2: Fixed-format Sense Data has a defined structure.
Byte Description

0 bit 7: VALID. Set to 1 if the INFORMATION field contains valid information.
bits 6..0: RESPONSE CODE. Set to 70h for information on current errors. Set to 71h
for information on deferred errors (used with commands that use caching).

1 Obsolete.

2 Bit 7: FILEMARK. Used by streaming devices.
Bit 6: EOM. End of medium. Used by streaming devices.
Bit 5: ILI: Incorrect length indicator. Used with READ LONG, WRITE LONG, and
stream READ commands.
Bit 4: Reserved
Bits 3..0: SENSE KEY. Contains information describing the error.

3..6 INFORMATION. Device-specific or command-specific information.

7 ADDITIONAL SENSE LENGTH. The number of additional sense bytes that follow
this field. Maximum 244.

8..11 COMMAND-SPECIFIC INFORMATION

12 ADDITIONAL SENSE CODE (ASC). Provides additional information about the
error. Set to zero if unused.

13 ADDITIONAL SENSE CODE QUALIFIER (ASCQ). Provides additional informa-
tion related to the additional sense code. Set to zero if unused.

14 FIELD REPLACEABLE UNIT CODE. Identifies a failed component. Set to zero if
there is no component to identify.

15..17 If byte 15, bit 7 (SKSV) equals 1, the remainder of the field contains SENSE KEY
SPECIFIC information.

18..n Additional sense bytes (optional). Vendor specific.

SCSI Commands

 137

Fixed-format Sense Data
The RequestSenseResponse union enables accessing fixed-format sense data
as 18 generic bytes or as a structure with a series of named members:
typedef union {

 struct

 {

 byte _byte[18];

 };

 struct

 {

 unsigned ResponseCode:7;

 unsigned VALID:1;

 byte Obsolete;

 unsigned SenseKey:4;

 unsigned Resv:1;

 unsigned ILI:1;

 unsigned EOM:1;

 unsigned FILEMARK:1;

 DWORD Information;

 byte AddSenseLen;

 DWORD CmdSpecificInfo;

 byte ASC;

 byte ASCQ;

 byte FRUC;

 byte SenseKeySpecific[3];

 };

} RequestSenseResponse;

Chapter 6

138

Setting Default Values
The ResetSenseData function sets the values in the RequestSenseResponse
structure gblSenseData to default values:
RequestSenseResponse gblSenseData;

void ResetSenseData(void)

 {

 gblSenseData.ResponseCode = 0x70;

 gblSenseData.VALID = 0x0;

 gblSenseData.Obsolete = 0x0;

 gblSenseData.SenseKey = 0x0;

 gblSenseData.Resv = 0x0;

 gblSenseData.ILI = 0x0;

 gblSenseData.EOM = 0x0;

 gblSenseData.FILEMARK = 0x0;

 gblSenseData.Information._dword = 0x0;

 gblSenseData.AddSenseLen = 0x0a;

 gblSenseData.CmdSpecificInfo._dword = 0x0;

 gblSenseData.ASC = 0x0;

 gblSenseData.ASCQ = 0x0;

 gblSenseData.FRUC = 0x0;

 gblSenseData.SenseKeySpecific[0] = 0x0;

 gblSenseData.SenseKeySpecific[1] = 0x0;

 gblSenseData.SenseKeySpecific[2] = 0x0;

}

The sense codes can have assigned friendly names:
#define S_NOT_READY 0x2

#define S_MEDIUM_ERROR 0x3

#define S_ILLEGAL_REQUEST 0x5

#define S_UNIT_ATTENTION 0x6

#define ASC_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE 0x21

#define ASCQ_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE 0x00

#define ASC_MEDIUM_NOT_PRESENT 0x3a

#define ASCQ_MEDIUM_NOT_PRESENT 0x00

#define ASC_PERIPHERAL_DEVICE_WRITE_FAULT 0x03

#define ASCQ_PERIPHERAL_DEVICE_WRITE_FAULT 0x00

#define ASC_UNRECOVERED_READ_ERROR 0x11

#define ASCQ_UNRECOVERED_READ_ERROR 0x00

#define ASC_WRITE_PROTECTED 0x27

#define ASCQ_WRITE_PROTECTED 0x00

SCSI Commands

 139

Primary Commands
Each of the commands below is documented in the SCSI Primary Com-
mands (SPC) specification.

INQUIRY
The INQUIRY command requests a structure containing information
about the device. A device should be able to return the structure even when
the media isn’t ready to respond to other commands. All SBC devices must
support the INQUIRY command.

The data returned by the device in the data-transport phase is at least 36
bytes (Table 6-3). The data identifies the peripheral device type (PDT) and
SPC version number and contains a vendor identification number, product
identification number, product revision number, and other information
about the device’s abilities and supported protocols.

Table 6-4 lists common PDTs and their codes from the SCSI Primary Com-
mands document. Hard drives and flash-memory cards are type 00h:
direct-access block device. Devices with PDT = 0Eh use the reduced block
command (RBC) set, which is intended for block devices that have fewer
requirements and options compared to SBC devices. RBC might sound
appealing for some applications, but in practice the type is rarely used in
part because Windows doesn’t provide a driver for it. If you need to provide
a vendor-specific RBC driver, you may as well define the device as vendor
specific in the descriptors. That way, you’ll avoid confusion with any RBC
drivers a user may have loaded for another purpose.

As Chapter 3 explained, if the interface descriptor’s bInterfaceSubClass
doesn’t equal 06h (SCSI transparent command set), the PDT should match
the declared bInterfaceSubClass.

Note that the RMB parameter (bit 7 of byte 1) reports whether the device
has removable media. USB flash drives (thumb drives, pen drives, and simi-
lar devices) are removable devices with fixed media. However, some
Microsoft documentation recommends that flash drives declare that they
have removable media (RMB = 1), and many flash drives do so.

Chapter 6

140

Table 6-3: The response to an INQUIRY command is at least 36 bytes. The SPC
specification has more details on these fields.
Byte Description

0 Bits 7..5: PERIPHERAL QUALIFIER (000 = a device is connected to this logical unit)
Bits 4..0: PERIPHERAL DEVICE TYPE (PDT)

1 Bit 7: RMB (0 = non-removable media; 1 = removable media)
Bits 6..0: reserved

2 VERSION of SPC standard (5 = SPC-3; 4 = SPC-2)

3 Bits 7..6: obsolete
Bit 5: NORMACA (normal ACA bit support)
Bit 4: HISUP (hierarchical addressing support)
Bits 3..0: response data format (must = 2)

4 ADDITIONAL LENGTH (the number of additional bytes in the response). Equal to
(response length - 4). Set to 20h if returning 36 (24h) bytes.

5 Bit 7: SCCS (0 = no embedded storage array controller component present)
Bit 6: ACC (0 = no access controls coordinator present)
Bits 5..4: TPGS (0 = no support or vendor-specific support for asymmetric logical unit
access)
Bit 3: 3PC ((0 = no support for third-party copy commands)
Bits 2..1: reserved
Bit 0: PROTECT (0 = no support for protection information)

6 Bit 7: BQUE (0 = no support for basic task management)
Bit 6: ENCSERV (0 = no support for embedded enclosure services)
Bit 5: VS (vendor specific)
Bit 4: MULTIP (0 = device has a single port)
Bit 3: MCHNGR (0 = no support for media changer)
Bits 2..1: obsolete
Bit 0: ADDR16 (not used with USB interface)

7 Bit 7..6: obsolete
Bit 5: WBUS16 (not used with USB interface)
Bit 4: SYNC (not used with USB interface)
Bit 3: LINKED (0 = no support for linked commands)
Bit 2: obsolete
Bit 1: CMDQUE (0 = no support for full task management)
Bit 0: VS (vendor specific)

8..15 T10 VENDOR IDENTIFICATION, MSB first

16..31 PRODUCT IDENTIFICATION, MSB first

32..35 PRODUCT REVISION LEVEL, MSB first

SCSI Commands

 141

A vendor identification number is available at no charge from the T10 Tech-
nical Committee. The number consists of eight or fewer characters in the
range 21h–7Eh.

Following the first 36 bytes are optional fields with additional data, includ-
ing areas that vendor-specific drivers can use to obtain vendor-specific infor-
mation. Device firmware shouldn’t assume that the host will always request
exactly 36 bytes. The thirteen cases in Chapter 3 describe what a device
should do if it has more or fewer bytes to return than the host requests.

The Response

An InquiryResponse structure can hold the data a device returns in response
to an INQUIRY command:
typedef struct

{

 byte Peripheral;

 byte Removble;

 byte Version;

 byte Response_Data_Format;

 byte AdditionalLength;

 byte Sccstp;

 byte bqueetc;

 byte CmdQue;

 char vendorID[8];

 char productID[16];

 char productRev[4];

} InquiryResponse;

Table 6-4: Some of the Peripheral Device Types (PDTs) defined in the SCSI
Primary Commands document.
PDT (hex) Peripheral Device Type Specification1

00 Direct-access block device. Magnetic and flash drives. SBC-2

05 CD/DVD device MMC-4

07 Optical memory device (non-CD optical disk) SBC

0E Reduced block command (RBC) (simplified) direct-access
device

RBC

1Devices can use a later edition of a specification if available.

Chapter 6

142

The InquiryResponse data normally doesn’t change, so a device can store the
data in ROM:
const rom InquiryResponse inq_resp = {

0x00, // direct access block device, connected

0x80, // device is removable

0x04, // SPC-2 compliance

0x02, // response data format

0x20, // response has 20h + 4 bytes

0x00, // additional fields, none set

0x00, // additional fields, none set

0x00, // additional fields, none set

"Microchp", // 8 -byte T10-assigned Vendor ID

"Mass Storage ", // 16-byte product identification

"0001" // 4-byte product revision level

};

Sending the Response

The MSDInquiryHandler function copies an InquiryResponse structure to
msd_buffer (defined in Chapter 3) for sending to the host and sets the
CSWDDataResidue and CSWStatus fields of the command’s CSW.

The function calls the memcopypgm2ram function provided with the
Microchip C18 compiler. The function copies the response data from pro-
gram memory into RAM.
void MSDInquiryHandler(void)

{

byte i;

byte *buffer;

 // Copy sizeof(InquiryResponse) bytes from program memory beginning at

 // &inq_resp to RAM beginning at &med_buffer[0].

 memcpypgm2ram

 ((byte *)&msd_buffer[0],

 (byte *)&inq_resp,

 sizeof(InquiryResponse));

 msd_csw.dCSWDataResidue = sizeof(InquiryResponse);

 msd_csw.bCSWStatus = 0x00;

 return;

}

SCSI Commands

 143

MODE SELECT
A host can use the MODE SELECT command to specify parameters relat-
ing to the storage media, a logical unit, or the device itself. The information
is in structures called block descriptors and mode pages. There are two com-
mands that differ in the size and format of the mode-parameter header that
precedes any block descriptors and mode pages being sent. MODE
SELECT(6) has a 4-byte header, and MODE SELECT(10) has an 8-byte
header. Support for MODE SELECT is optional unless the device also sup-
ports MODE SENSE as explained below.

Mode page 08h is the caching mode page. The Windows mass-storage
driver attempts to read the page and if supported, send a page to disable
caching unless the user has selected optimize for performance for the volume
in Device Manager > Properties > Policies.

MODE SENSE
The MODE SENSE commands are the complements to the MODE
SELECT commands. A host can use MODE SENSE to request parameters
relating to the storage media, a logical unit, or the device itself. As with
MODE SELECT, there are two commands that differ in the size and format
of the mode-parameter header that precedes any block descriptors and mode
pages being returned. MODE SENSE(6) has a 4-byte header, and MODE
SENSE(10) has an 8-byte header.

The SPC specification says that a device that supports a MODE SENSE
command should support the corresponding MODE SELECT command,
and a device that supports a MODE SELECT command should support
the corresponding MODE SENSE command. The MODE SENSE com-
mand is optional for many SBC devices, but Windows and other hosts use
this command to request information from devices. Bootable devices must
support MODE SENSE(10).

Each MODE SENSE command block contains a page code and a subpage
code that together specify what information the host is requesting. The SBC
specification defines a variety of mode pages. When SUBPAGE CODE =
00h, the mode page uses the page_0 format. The page includes fields for the
page code, page length, and mode parameters. For other subpage codes, the
mode page uses the subpage format, which adds a field for a subpage code.

Chapter 6

144

When communicating with direct-access block devices (PDT = 00h), the
Windows mass-storage driver and other hosts commonly request these
mode pages:

PAGE CODE = 3Fh requests all supported mode pages.

PAGE CODE = 1Ch requests the informational exceptions control mode
page. This page contains information about how the device reports excep-
tion conditions due to vendor-specific events and conditions that result
from scans or self-tests a device performs in the background (using no bus
bandwidth).

PAGE CODE = 08h requests the caching mode page, which defines param-
eters that relate to a device’s use of its cache.

PAGE CODE = 05h is the flexible disk mode page (FDMP), which con-
tains parameters needed to convert between LBA and CHS addressing.
Some hosts refuse to try booting from devices that lack this page, possibly
because the boot code uses CHS addressing. The USB bootability specifica-
tion requires support for this page in all bootable devices with a PDT other
than 05h (CD/DVD drive). The bootability specification redefines mode
page 05h as a simplified version of the page defined in the original SBC
specification. (Note that the mode page is listed as obsolete in SBC-2 and
later but the USB version of the page is required for bootable USB devices.)

A response to a MODE SENSE command begins with a mode parameter
header (Table 6-5). Note that in byte 2, bit 7, an SBC device informs the
host whether the media is write-protected.

Following the header, an SBC device may send a mode parameter block
descriptor that specifies the number of logical blocks in the media and the
block size. A response can also contain one or more mode pages and/or
mode subpages.

On receiving a MODE SENSE command for an unsupported mode page, a
device should fail the command and return SENSE KEY = ILLEGAL
REQUEST and ADDITIONAL SENSE CODE = INVALID FIELD IN
COMMAND PACKET. Some devices with no data to send respond by
sending just the header. In response to a MODE SENSE(6) command, a
device with no data to return can return the header with MODE DATA
LENGTH = 3 and BLOCK DESCRIPTER LENGTH = 0.

SCSI Commands

 145

The MSDModeSenseHandler function prepares a response to a MODE
SENSE(6) command, writing data to return into msd_buffer and setting
fields in the command’s CSW:
void MSDModeSenseHandler()

{

 // Set values to return, from SPC spec, section 7.4.3 and SBC spec, section 6.3.1.

 msd_buffer[0] = 0x03; // The number of bytes that follow.

 msd_buffer[1] = 0x00; // The media type is SBC.

 msd_buffer[2] = 0x00; // Not write-protected, no cache-control-bit support.

 msd_buffer[3] = 0x00; // No mode-parameter block descriptors.

 msd_csw.bCSWStatus=0x0;

 msd_csw.dCSWDataResidue=0x04;

 return;

}

PREVENT ALLOW MEDIUM REMOVAL
The PREVENT ALLOW MEDIUM REMOVAL command requests the
device to prevent or allow users to remove the storage media from the
device. A 2-bit PREVENT field in the command is set to 00b to allow
media removal or 01b to prohibit removal. The command has no
data-transport phase. Support for this command is optional. Of course,
many devices have non-removable media or use flash-memory cards or other
media with no mechanism to prevent removal.

Table 6-5: The data-transport phase in a MODE SENSE(6) command begins
with this header.
Byte Description

0 MODE DATA LENGTH. The number of bytes that follow.

1 MEDIUM TYPE. 00h for SBC devices.

2 DEVICE-SPECIFIC PARAMETER. For SBC devices:
bit 7: WP. Set to 1 if the media is write-protected.
bits 6..4: reserved
bit 4: DPOFUA. Set to 1 if the device supports the DPO and FUA bits (used in caching)
bits 3..0: reserved

3 BLOCK DESCRIPTOR LENGTH. The length in bytes of all block descriptors in the
mode parameter list.

Chapter 6

146

Flash drives that fail this command when PREVENT = 01 have improved
performance. When the command fails, Windows doesn’t enable write cach-
ing. Write caching causes Windows to launch multiple threads that cause
random writes, which result in slow write performance on flash media.

REPORT LUNS
The REPORT LUNS command requests a list of the numbers of all logical
units that are present and that match the peripheral device type returned in
response to an INQUIRY command. The response can also optionally
include the numbers of logical units that currently have no device present. A
device should be able to respond to this command without having to access
the media and even when the device isn’t ready to respond to other com-
mands. The SBC-2, SBC-3, and SPC-3 specifications all list this command
as mandatory. The command is optional in SPC-2, however.

REQUEST SENSE
The REQUEST SENSE command requests a structure containing sense
data. The specification says that the ALLOCATION LENGTH parameter
in the request should always equal 252 bytes to enable devices to return all
of their sense data, including vendor-specific data. Windows hosts typically
request just the first 18 bytes, however. For this reason, device vendors often
use vendor-specific control requests to obtain additional sense data if
needed. The REQUEST SENSE command is mandatory for SBC devices.

The command descriptor block for this command is 6 bytes. However, the
Windows driver sets bCBWCBLength in the CBW to 0Ch instead of 06h.
This incorrect value doesn’t affect the number of bytes that transmit on the
bus because the CBW is always 31 bytes with 16 bytes reserved for the com-
mand descriptor block. Device firmware should accept the incorrect value
and ignore the additional declared 6 bytes.

SCSI Commands

 147

The MSDRequestSenseHandler function copies data from the gblSense-
Data array into msd_buffer for returning to the host. The function also sets
values in the CSW.
void MSDRequestSenseHandler(void)

{

 byte i;

 for (i = 0; i < sizeof(RequestSenseResponse); i++)

 msd_buffer[i] = gblSenseData._byte[i];

 msd_csw.dCSWDataResidue = sizeof(RequestSenseResponse);

 msd_csw.bCSWStatus = 0x0; // success

 return;

}

SEND DIAGNOSTIC
The SEND DIAGNOSTIC command requests the device to test itself, a
logical unit, or both. For SBC devices, support for a default, vendor-specific
self test is mandatory. The host requests the default test by setting SELF-
TEST = 1, SELF-TEST CODE = zero, and PARAMETER LIST
LENGTH = zero. On receiving the command, a device begins the self test
in the background (without using bus bandwidth). On completion of the
test, the device returns a CSW with status information.

While a background test is in progress, on receiving most commands, the
device should suspend testing within two seconds and respond to the com-
mand. SBC devices don’t need to service FORMAT UNIT or START
STOP UNIT commands while self-testing. To terminate testing, a host can
issue a SEND DIAGNOSTIC command with SELF-TEST CODE = 100b.

Hosts rarely use this command. Some devices support the command by
returning success immediately, without performing a test.

TEST UNIT READY
The host issues a TEST UNIT READY command to find out if a storage
device is ready for use. The command has no data-transport phase. If the
media isn’t ready, the device updates its sense data and returns a CSW with
the bCSWStatus field set to 01h to indicate that the command failed. The
host can then request sense data by issuing a REQUEST SENSE command.
All SBC devices must support this command.

Chapter 6

148

For devices with removable media, some hosts issue periodic TEST UNIT
READY commands to find out if the media is still present. A successful
TEST UNIT READY response doesn’t guarantee that the next READ or
WRITE command will succeed, however. Instead of periodic TEST UNIT
READY commands, a host can just attempt to read or write to the media as
needed. If the media has been removed, the READ or WRITE command
fails, and a REQUEST SENSE command can obtain the reason.

The MSDTestUnitReadyHandler function resets the sense data in the
gblSenseData structure and calls the DetectSDCard function from Chapter
5 to determine if a MultiMediaCard or SD Card is present. If a card isn’t
detected, the function sets data in the appropriate fields in the Request-
SenseResponse structure. The function also sets the CSWStatus and CSW-
DataResidue fields in the CSW.
void MSDTestUnitReadyHandler()

{

 msd_csw.bCSWStatus=0x0;

 ResetSenseData();

 if (!DetectSDCard()) {

 gblSenseData.SenseKey = S_UNIT_ATTENTION;

 gblSenseData.ASC = ASC_MEDIUM_NOT_PRESENT;

 gblSenseData.ASCQ = ASCQ_MEDIUM_NOT_PRESENT;

 msd_csw.bCSWStatus = 0x01;

 }

 msd_csw.dCSWDataResidue = 0x00;

 return;

}

Block Commands
Each of the commands below is documented in the SCSI Block Commands
(SBC) specification.

FORMAT UNIT
The FORMAT UNIT command requests a device to divide its storage
media into logical blocks that applications can access. If the host previously
sent a MODE SELECT command, the device should use the number of

SCSI Commands

 149

blocks and block length specified in that command. Otherwise the device
should use its current number of blocks and block length.

A device that uses MultiMediaCards or other formatted, removable media
might have no need to format its media, but the SBC specification lists the
command as mandatory. A host can use the command as a fast and reliable
method to erase the media.

READ
The READ and WRITE commands are where a host accesses a device’s stor-
age media. The host issues a READ command to request to read a block of
data from the device’s storage media. In the command block, the LOGICAL
BLOCK ADDRESS field specifies the LBA of the first requested block, and
the TRANSFER LENGTH field contains the number of requested blocks.

There are five READ commands: READ(6), READ(10), READ(12),
READ(16), and READ(32). The commands vary in the sizes of the logi-
cal-block-address and transfer-length fields and in the quantity and type of
status and control information included in the command block. READ(6)
and READ(10) are mandatory for SBC devices. The specification recom-
mends migrating all code from READ(6) to READ(10), but a host might
still attempt to use READ(6). The Windows USB mass-storage driver uses
READ(10).

On receiving a READ(10) command, a device should send the contents of
the requested blocks to the host in the data-transport phase. The device
doesn’t have to know or care what is in the requested blocks. All the device
needs is a block number and the number of blocks to return.

The MSDReadHandler function reads the block address and the number of
bytes to transfer specified in the CBW, handles any detected errors, sets
fields on the CSW, and calls the MSDDataIn function from Chapter 3 to
send the requested data.

The MSDReadHandler function uses the variable gblNumBLKS, which
contains the number of blocks in the volume. The section describing the
READ CAPACITY command later in this chapter shows how to obtain the
value.

Chapter 6

150

byte *ptrNextData;

void MSDReadHandler()

{

 byte Flags;

 word i;

 DWORD LBA;

 dword sectorNumber;

 SDC_Error status;

 WORD TransferLength;

 /// The command block stores the MSB first. Device firmware stores the LSB first.

 // The starting LBA to read is in bytes 2-5 of the command block.

 LBA.v[3] = gblCBW.CBWCB[2];

 LBA.v[2] = gblCBW.CBWCB[3];

 LBA.v[1] = gblCBW.CBWCB[4];

 LBA.v[0] = gblCBW.CBWCB[5];

 // The number of blocks to transfer is in bytes 7 and 8 of the CBW.

 TransferLength.v[1] = gblCBW.CBWCB[7];

 TransferLength.v[0] = gblCBW.CBWCB[8];

 // The data-transport phase is device to host.

 Flags = gblCBW.CBWCB[1];

 // Set default values in the CSW.

 msd_csw.bCSWStatus = 0x0; // Success.

 msd_csw.dCSWDataResidue = 0x0;

 if (LBA._dword + TransferLength._word > gblNumBLKS._dword) {

 // The requested blocks extend beyond the available blocks in the media.

 // Set bCSWStatus to “command failed.”

 // Store sense data to describe the error.

 msd_csw.bCSWStatus = 0x01;

 gblSenseData.SenseKey = S_ILLEGAL_REQUEST;

 gblSenseData.ASC = ASC_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;

 gblSenseData.ASCQ = ASCQ_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;

SCSI Commands

 151

 } else {

 // Read blocks from the media and send the contents to the USB host

 // until TransferLength = 0.

 while (TransferLength._word > 0) {

 // Decrement the number of blocks remaining.

 TransferLength._word--;

 // Copy the specified block's data into msd_buffer.

 status = SectorRead(LBA._dword, (byte*)&msd_buffer[0]);

 // Increment the LBA.

 LBA._dword++;

 if (status == sdcValid) {

 // The sector-read operation succeeded.

 // Prepare to send 512 bytes to the USB host.

 // Set fields in the CSW.

 msd_csw.bCSWStatus = 0x00;

 msd_csw.dCSWDataResidue = 0x200; // 512 bytes

 // The next block to read begins where this one ended.

 ptrNextData = (byte *)&msd_buffer[0];

 while (msd_csw.dCSWDataResidue > 0)

 // The MSDDataIn function sends the data to the USB host.

 // dCSWDataResidue is decremented as the data is sent.

 // Continue until dCSWDataResidue = 0.

 MSDDataIn();

 // Reset dCSWDataResidue.

 msd_csw.dCSWDataResidue = 0x0;

Chapter 6

152

 } else {

 // The command failed.

 // Store sense data to describe the error.

 msd_csw.bCSWStatus = 0x01;

 gblSenseData.SenseKey = S_MEDIUM_ERROR;

 gblSenseData.ASC = ASC_UNRECOVERED_READ_ERROR;

 gblSenseData.ASCQ = ASCQ_UNRECOEVERED_READ_ERROR;

 // Don't send any more data.

 msd_csw.dCSWDataResidue = 0x0;

 break;

 }

 } // End transfer length > 0

 } // End transfer length OK

 }

READ CAPACITY
The host uses a READ CAPACITY command to learn how many bytes a
device can store. In the data-transport phase, the device returns a structure
that contains the LBA of the last block in the media and the number of
bytes per block. Note that the command requests the LBA of the last block,
not the number of blocks in the media. The first LBA is zero, so the LBA of
the last block equals the number of blocks - 1.

There are two READ CAPACITY commands: READ CAPACITY(10) and
READ CAPACITY(16). The commands differ in the length of the fields in
the command block and response structure. SBC devices must support
READ CAPACITY(10).

A MultiMediaCard host uses information in the card’s CSD register to cal-
culate the LBA of the final block. The MultiMediaCard specification shows
how to do the calculations. The fields in the CSD register aren’t all
byte-aligned, so obtaining a value sometimes requires reading multiple bytes
and selecting bits from each to obtain the value of interest.
DWORD gblNumBLKS=0x00;

DWORD gblBLKLen=0x00;

SCSI Commands

 153

void MSDReadCapacityHandler()

{

 dword one = 0x1;

 dword C_size;

 dword C_mult;

 dword Mult;

 dword C_size_U;

 dword C_size_H;

 dword C_size_L;

 dword C_mult_H;

 dword C_mult_L;

 dword C_Read_Bl_Len;

 // The block length is in byte 5, bits 3..0 in the MultiMediaCard's CSD register.

 // Block length = 2^(C_Read_Bl_Len)

 // If block length = 512, C_Read_Bl_Len = 9 because 2^9 = 512.

 C_Read_Bl_Len = gblCSDReg._byte[5] & 0x0f;

 // Shift left C_Read_Bl_Len positions to get the block-length value.

 gblBLKLen._dword = one << C_Read_Bl_Len;

 // The C_size value is 12 bits.

 // The two MSbs are in byte 6, bits 1..0.

 // The next 8 bits are in byte 7.

 // The two LSbs are in byte 8, bits 7..6.

 C_size_U = gblCSDReg._byte[6] & 0x03;

 C_size_H = gblCSDReg._byte[7];

 C_size_L = (gblCSDReg._byte[8]&0xC0) >> 6;

 C_size = (C_size_U<<10) | (C_size_H<<2) | (C_size_L);

 // C_mult is a 3-bit value stored in two bytes.

 // The two MSbs are in byte 9, bits 1..0.

 // The LSb is in byte 10, bit 7.

 C_mult_H = gblCSDReg._byte[9] & 0x03;

 C_mult_L = (gblCSDReg._byte[10] & 0x80) >> 7;

 C_mult = (C_mult_H << 1) | C_mult_L;

Chapter 6

154

 // See the MultiMediaCard spec, section 5.3, for the calculations below.

 Mult = one << (C_mult + 2);

 // Return a value equal to the last LBA - 1.

 gblNumBLKS._dword = Mult * (C_size + 1) - 1;

 // Place gblNumBLKS and gblBLKLen in msd_buffer for sending to the host.

 msd_buffer[0] = gblNumBLKS.v[3];

 msd_buffer[1] = gblNumBLKS.v[2];

 msd_buffer[2] = gblNumBLKS.v[1];

 msd_buffer[3] = gblNumBLKS.v[0];

 msd_buffer[4] = gblBLKLen.v[3];

 msd_buffer[5] = gblBLKLen.v[2];

 msd_buffer[6] = gblBLKLen.v[1];

 msd_buffer[7] = gblBLKLen.v[0];

 // Set fields in the CSW.

 msd_csw.dCSWDataResidue = 0x08; // Number of bytes in the response.

 msd_csw.bCSWStatus = 0x00; // Success.

}

START STOP UNIT
A host issues the START STOP UNIT command to request to change the
device’s power condition to active, idle, or standby and to request the device
to load or eject its storage media. The command has no data-transport
phase. SBC devices aren’t required to support this command.

SYNCHRONIZE CACHE
A host sends a SYNCHRONIZE CACHE command to request the device
to ensure that the specified sectors on the media and in any non-volatile
cache contain the most recent data. The SYNCHRONIZE CACHE(10)
and SYNCHRONIZE CACHE(16) commands vary in the size of the fields
in the command block. This command has no data-transport phase. SBC
devices aren’t required to support this command.

SCSI Commands

 155

VERIFY
The VERIFY command requests the device to test one or more sectors. If
the BYTCHK bit in the command block equals zero, the device should
attempt to read from the specified locations. If BYTCHK = 1, the host
sends data in the data-transport phase, and the device should verify that the
received data matches what is stored in the device. If the media uses
error-checking protection information as specified in the response to an
INQUIRY command, the verify operation checks this information as well.

There are four VERIFY commands: VERIFY(10), VERIFY(12), VER-
IFY(16), and VERIFY(32). The commands vary in the size of the fields in
the command block. The VERIFY(32) command block also contains addi-
tional fields. Support for this command is optional for SBC devices.

WRITE
The WRITE commands are the complements of the READ commands.
The host issues a WRITE command to request to write a block of data to
the device. In the command block, the LOGICAL BLOCK ADDRESS
field specifies the LBA of the first block to write to, and the TRANSFER
LENGTH field contains the number of blocks to write.

There are five WRITE commands: WRITE(6), WRITE(10), WRITE(12),
WRITE(16), and WRITE(32). The commands vary in the sizes of the logi-
cal-block-address and transfer-length fields and in the quantity and type of
status and control information included in the command block. WRITE(6)
and WRITE(10) are mandatory for SBC devices (except of course for
read-only media). The specification recommends migrating all code from
WRITE(6) to WRITE(10), but a host might still attempt to use
WRITE(6). The Windows USB mass-storage driver uses WRITE(10).

After receiving a WRITE(10) command block, a device should receive the
data to write in the data-transport phase and should write the received data
to the specified locations in the storage media. The device doesn’t have to
know or care what is in the received blocks. All the device needs is a block
number and data to write to the block.

The MSDWriteHandler function gets the LBA and number of blocks to
write from the CBW in a WRITE(10) command. The function then calls

Chapter 6

156

the MSDDataOut function from Chapter 3 to write the received data to the
storage media.
void MSDWriteHandler()

{

 byte * adr;

 byte Flags;

 word i;

 DWORD LBA;

 dword sectorNumber;

 SDC_Error status = sdcValid;

 WORD TransferLength;

 // The command block stores MSB first. Device firmware stores LSB first.

 // The starting LBA to write to is in bytes 2-5 in the command block.

 LBA.v[3] = gblCBW.CBWCB[2];

 LBA.v[2] = gblCBW.CBWCB[3];

 LBA.v[1] = gblCBW.CBWCB[4];

 LBA.v[0] = gblCBW.CBWCB[5];

 // The number of blocks being written is in bytes 7-8 of the CBW.

 TransferLength.v[1] = gblCBW.CBWCB[7];

 TransferLength.v[0] = gblCBW.CBWCB[8];

 // Set bCSWStatus to a default value.

 msd_csw.bCSWStatus = 0x0; // Success.

SCSI Commands

 157

 while (TransferLength._word > 0) {

 // Read data received from the USB host and write the contents to the media

 // until TransferLength = 0.

 // Set dCSWDataResidue to the media's block size.

 msd_csw.dCSWDataResidue = 512;

 while (msd_csw.dCSWDataResidue > 0)

 // The MSDDataOut function reads data from the USB host.

 // dCSWDataResidue is decremented as the data is read.

 // Continue until dCSWDataResidue = 0.

 MSDDataOut();

 if (IsWriteProtected()) {

 // If the media is write protected, set the sense data

 // and bCSWStatus in the CSW.

 gblSenseData.SenseKey = S_NOT_READY;

 gblSenseData.ASC = ASC_WRITE_PROTECTED;

 gblSenseData.ASCQ = ASCQ_WRITE_PROTECTED;

 msd_csw.bCSWStatus = 0x01; // Command failed.

 } else {

 // The received data is in msd_buffer.

 // Write the data to the media beginning at the LBA specified in the CBW.

 status = SectorWrite((LBA._dword), (byte*)&msd_buffer[0]);

 }

Chapter 6

158

 if (status) {

 // The sector write failed.

 msd_csw.bCSWStatus = 0x01;

 // Store sense data to describe the error.

 gblSenseData.SenseKey = S_MEDIUM_ERROR;

 gblSenseData.ASC = ASC_PERIPHERAL_DEVICE_WRITE_FAULT;

 gblSenseData.ASCQ = ASCQ_PERIPHERAL_DEVICE_WRITE_FAULT;

 }

 // Increment the LBA. Decrement the number of blocks remaining to write.

 LBA._dword++;

 TransferLength._word--;

 if (TransferLength._word > 0){

 // There is more data to receive.

 // Configure the endpoint’s buffer descriptor to prepare for the data.

 MSD_BD_OUT.Cnt = MSD_OUT_EP_SIZE;

 MSD_BD_OUT.ADR = (byte*)&msd_buffer[0];

 } else {

 // All of the data has been received.

 // Configure the endpoint’s buffer descriptor to prepare for the next command.

 MSD_BD_OUT.Cnt = sizeof(msd_cbw);

 MSD_BD_OUT.ADR = (byte*)&msd_cbw;

 }

 } // End: while (TransferLength._word > 0)

 return;

}

SCSI Commands

 159

Multimedia Commands
Each of the commands below is documented in the Multimedia Commands
(MMC) specification.

READ FORMAT CAPACITIES
The READ FORMAT CAPACITIES command requests a structure con-
taining one or more descriptors that specify a number of blocks and a block
length that the media can be formatted for. The device returns the structure
in the data-transport phase. If the media is currently formatted, the first
descriptor in the structure contains the values in use. If the media is unfor-
matted, the first descriptor in the structure contains the values that will
result in the maximum storage capacity. One or more alternate descriptors
with different values can follow. This command is optional for SBC devices.

READ TOC/PMA/ATIP
Devices with CD or DVD media use the READ TOC/PMA/ATIP com-
mand to provide data from a table of contents (TOC), data from the pro-
gram memory area (PMA), and absolute time in Pre-Grove (ATIP) data.
The format of the response varies with the response type. The ATIP data
contains information required by CD burners. The ATIP format is defined
in “orange books” that Philips Electronics provides to companies with
whom Philips has a CD-information or license agreement. SBC devices
aren’t likely to need this command and aren’t required to support it.

Chapter 6

160

Handling Commands and Events
On receiving a command, firmware must decode the command and prepare
an appropriate response.

Decoding Commands
The SCSI command codes can have assigned friendly names:
#define INQUIRY 0x12

#define READ_FORMAT_CAPACITY 0x23

#define READ_CAPACITY 0x25

#define READ_10 0x28

#define WRITE_10 0x2a

#define REQUEST_SENSE 0x03

#define MODE_SENSE 0x1a

#define TEST_UNIT_READY 0x00

#define VERIFY 0x2f

#define STOP_START 0x1b

The MSDCommandHandler function decodes a received command code
and branches to one of the functions in this chapter to respond to the com-
mand. If the command isn’t supported, the code sets the sense data and
fields in bCSWStatus.
byte *ptrNextData;

void MSDCommandHandler(void)

{

 switch(gblCBW.CBWCB[0]) {

 case INQUIRY:

 MSDInquiryHandler();

 break;

 case READ_CAPACITY:

 MSDReadCapacityHandler();

 break;

 case READ_10:

 MSDReadHandler();

 break;

 case WRITE_10:

 MSDWriteHandler();

 break;

SCSI Commands

 161

 case REQUEST_SENSE:

 MSDRequestSenseHandler();

 break;

 case MODE_SENSE:

 MSDModeSenseHandler();

 break;

 case TEST_UNIT_READY:

 MSDTestUnitReadyHandler();

 break;

 case VERIFY:

 MSDVerifyHandler();

 break;

 case STOP_START:

 MSDStopStartHandler();

 break;

 default:

 // Use for all unsupported commands.

 ResetSenseData();

 gblSenseData.SenseKey=S_ILLEGAL_REQUEST;

 gblSenseData.ASC=ASC_INVALID_COMMAND_OPCODE;

 gblSenseData.ASCQ=ASCQ_INVALID_COMMAND_OPCODE;

 msd_csw.bCSWStatus=0x01;

 msd_csw.dCSWDataResidue=0x00;

 break;

 }

 // Reset the data pointer to the beginning of the buffer.

 ptrNextData=(byte*)&msd_buffer[0];

}

The UNIT ATTENTION Condition
When something changes that the host needs to know about before access-
ing the media, the device should generate a UNIT ATTENTION condi-
tion. Changes that require the UNIT ATTENTION condition include

Chapter 6

162

inserting removable media, a change in INQUIRY data, and a reset of the
device or a logical unit.

A device in the UNIT ATTENTION condition should fail all commands
except INQUIRY, REPORT LUNS, and REQUEST SENSE. On receiving
a command other than these, a device should return 01h (command failed)
in the bCSWStatus field of the CSW. The host then sends a REQUEST
SENSE command to obtain status information.

In preparing a response to the REQUEST SENSE command, the device sets
the SENSE KEY field to 06h (UNIT ATTENTION) and sets the ASC and
ASCQ fields of the sense data to describe the reason for the condition. After
returning the sense data, the device is no longer in the UNIT ATTEN-
TION condition.

Informing the Host about Media Changes
A device that interfaces to a MultiMediaCard or other removable media
should inform the USB host when a card is inserted. A device must also
inform the host if the host attempts to access the device when the media has
been removed or the device isn’t ready to perform read, write, or verify oper-
ations for another reason.

To inform the host that media has been inserted, a device can generate a
UNIT ATTENTION condition and set ASC = 28h and ASCQ = 00h,
which the SPC specification defines as NOT READY TO READY
CHANGE, MEDIUM MAY HAVE CHANGED.

On receiving a media-access command when the media is removed, a device
should set the SENSE KEY field to 02h (NOT READY) and set ASC = 3Ah
and ASCQ = 00h, which the SPC specification defines as MEDIUM NOT
PRESENT.

After a device reports that the media isn’t present, a host may send periodic
TEST UNIT READY commands to find out if media has been inserted.
After a device reports that the media has changed, the host can send com-
mands to learn about the new media.

In a similar way, a device that accesses files on its own (not via the USB host)
should inform the USB host when firmware has written to a file or made
other changes to a volume’s contents. A device can do so via the UNIT
ATTENTION condition as described above. Another option is to allow

SCSI Commands

 163

device firmware to access files on its own only when the device isn’t attached
to and enumerated by a USB host. For example, a data logger can collect
data in the field and store the data in files. When the device is brought in
from the field and attached to a USB host, the firmware no longer collects
and stores data on its own and instead responds to commands from the USB
host. Device firmware can use the presence of VBUS or successful enumera-
tion of an attached device to determine whether the firmware can access
files.

Reset Behavior
A device generates a UNIT ATTENTION condition after experiencing a
reset. The SCSI Architectural Model specification describes three conditions
that correspond to different reset types. The conditions are power on, hard
reset, and logical-unit reset. A device sets an ADDITIONAL SENSE
CODE value to indicate which type of reset occurred.

A power-on condition exists after power is applied. The power-on condition
causes a hard-reset condition. A transport protocol can define other events
that cause a device to enter the hard-reset condition. A hard reset in turn
causes the device to enter the logical-unit reset condition. Other logical-unit
reset events can cause the device to enter the logical-unit reset condition.
Unlike the power-on and hard reset, a logical-unit reset doesn’t reset
mode-page and other parameters to default values.

The USB specifications define two reset types for mass-storage devices: the
USB port reset and the Bulk-Only Mass Storage Reset request. The USB
specifications don’t map these resets to SCSI reset types and thus don’t spec-
ify SCSI behaviors on resetting. Devices typically map the USB port reset to
the SCSI hard reset. Some devices map the bulk-only mass-storage reset to
the hard reset, while others map the bulk-only reset to the logical-unit reset.
Problems can result if a host’s expectations don’t match a device’s behavior
after a reset.

This page intentionally left blank

 165

7

Media Structure
Flash drives and hard drives have different hardware but use many of the
same logical structures for storing and managing data. To write firmware
that formats the media or reads and writes files in formatted media, you
need to understand these structures and how to use the information in
them.

This chapter explains how information is organized in the storage media
and what information is stored in the master boot record sector that is the
first sector in most storage devices.

A Look Inside
The logical structures, addressing methods, and file systems described in this
book have their origins in the IBM PC, its derivatives, and the Microsoft
operating systems developed for use on these computers. Over the years, the
software components have evolved to support media with larger capacities
and new capabilities. Some of the developments, such as the logical block
addressing method, simplify the job of the mass-storage host and make it
easier for embedded systems to support storage media. Other developments

Chapter 7

166

add support for capacities and abilities that embedded systems are unlikely
to need. Windows and other operating systems support a variety of file sys-
tems, including options suitable for small embedded systems, so PCs and
embedded systems can access the same media without problems.

Components of Formatted Media
As explained in Chapter 1, bytes in storage media are grouped in blocks
called sectors. All of the sectors in the media have the same capacity, typi-
cally 512. Some file-system drivers support sector sizes that are multiples of
512.

Low-level formatting code allocates most of the sectors to one or more logi-
cal partitions, or volumes. (Figure 7-1) Formatting can be done by a PC, an
embedded system, or another computer that interfaces to the media.

In most storage devices, the first sector in the media (sector zero) is the mas-
ter boot record (MBR) sector. The sector contains an MBR structure, which
in turn contains a partition table that defines the locations of up to four par-
titions. Under Windows, each partition appears as a separate volume, or log-
ical drive with its own drive letter. The MBR sector also has an area that can

Figure 7-1: Storage media can be formatted with a master boot record and up
to four primary partitions.

Media Structure

 167

contain executable code. A computer that boots from the storage device
runs the executable code on boot up. In Windows systems, the Fdisk tool
can perform the low-level formatting that stores the MBR structure in the
first sector. Fdisk deletes all programs and data previously stored in the
media.

Each volume begins with a boot sector that contains information specific to
the volume’s file system. (Don’t confuse this boot sector with the mas-
ter-boot-record sector.) File-system drivers in embedded systems often use a
FAT file system. The term FAT refers to a family of file systems as well as the
file allocation tables that every FAT system contains. The two most com-
mon FAT file systems are FAT16 and FAT32. A third FAT system, FAT12,
is suitable only for smaller-capacity media and is uncommon these days even
in embedded systems. (Floppy drives use FAT12.)

Every FAT volume contains the following elements: a reserved region that
includes a boot sector, a FAT region that stores the FATs, and a file and
directory data region that contains data clusters for storing files and directo-
ries. FAT12 and FAT16 volumes store the root directory in a dedicated
root-directory region that precedes the data clusters, while FAT32 volumes
store the root directory in any available data clusters.

A word about licensing: due to patent protections, manufacturers of some
types of devices that implement FAT file systems may need to obtain a
license from Microsoft. The devices include removable solid-state media and
some consumer electronics devices. Microsoft provides source code and test
specifications to licensees. For more information, see
www.microsoft.com/mscorp/ip/tech/fat.asp.

Microsoft’s NTFS is an alternative to FAT file systems for PCs. Because
Microsoft hasn’t publicly released a specification for NTFS, the file system
isn’t practical for use in embedded systems that don’t use an operating sys-
tem with NTFS support.

FAT file systems store files and directories in data clusters. Each cluster con-
sists of one or more sectors. All clusters in a volume are the same size. Data
clusters can provide larger-capacity units for program code to work with
when storing and retrieving files.

The boot sector specifies what sectors are available for storing files and direc-
tories, what sectors contain the file allocation tables, and how many sectors

www.microsoft.com/mscorp/ip/tech/fat.asp

Chapter 7

168

are in a data cluster. The boot sector can also contain program code used in
booting the computer.The FATs hold a record of the data clusters used by
files.

The document that defines all three FAT file systems is a hardware white
paper titled FAT32 File System Specification from Microsoft. Chapter 8 has
more about FAT file systems.

Drives without an MBR Sector
Some storage devices don’t have an MBR sector. Media that requires only a
single volume might not want to waste 512 bytes on an MBR sector. Media
without an MBR sector begins with the volume’s boot sector.

For maximum compatibility with hosts, however, a device should include
the MBR sector. A host can find it challenging to determine whether a
device’s media contains an MBR. One approach is to read the locations that
would contain a partition table and attempt to determine if the contents
describe a valid partition. The first bytes in the media can also offer a clue.
In bootable FAT16 media without an MBR, the first three bytes are typi-
cally EBh 3Ch 90h. In bootable FAT32 media without an MBR, the first
three bytes are typically EBh 58h 90h. A MultiMediaCard or SD Card
straight from the package is formatted with an MBR sector.

Byte Order
The FAT file systems were developed for use on the x86 architecture in IBM
PCs and their derivatives. The architecture of x86 CPUs is little endian,
which means that multi-byte values are stored with the least significant byte
at the lowest address. For example, in the MBR sector, addresses 510 and
511 must contain the signature AA55h. Because the storage is little endian,
location 510 contains 55h (the least significant byte) and location 511 con-
tains AAh (the most significant byte).

The Master Boot Record Sector
Sector zero, the Master Boot Record (MBR) sector, contains three items: an
area for executable code, a partition table, and a boot signature (Figure 7-2).

Media Structure

 169

Executable Code
Bytes zero through 445 can contain executable code. When a PC boots, the
system BIOS jumps to the executable code in the MBR sector of a storage
device. The code searches the partition table for an active, or bootable, par-
tition, and on finding one, boots the computer by running code stored in
that partition’s first sector. Like any low-level program code, the code stored
in the MBR is specific to a CPU family. Executable code for a PC is useless
if the system’s CPU is a microcontroller with a different instruction set.

Embedded systems typically boot from a specific location in dedicated pro-
gram memory rather than from storage media such as a flash-memory card
or hard drive. An embedded-system host can ignore any executable code in
the MBR sector. Because the partition table is in the same location in the
MBR sector in all devices, firmware can read the information directly from
the table.

The Partition Table
The partition table enables defining one or more partitions, or logical vol-
umes, in the storage media. Many devices have just one volume. The parti-
tion table in the MBR sector has room for four 16-byte entries that each

Figure 7-2: The MBR sector contains a partition table that specifies the
location(s) of one or more primary partitions.

Chapter 7

170

specify the sectors that belong to a partition. The table is in bytes 446
through 509. An entry can begin at byte 446, 462, 478, or 494. Table 7-1
shows the contents of an entry.

Each partition entry has fields that define the partition’s starting location
when addressing via the CHS and LBA methods. The LBA field at byte 8
specifies the starting sector of the partition expressed as an offset from the
beginning of the media (the MBR sector). The CHS values are ignored
when using LBA. If a partition is bootable, executable code in the MBR may
use CHS addresses to locate boot code in the partition.

The partition-type field at byte 4 specifies a file system and also indicates
something about the partition’s size (Table 7-2). Over the years, Microsoft’s
operating systems have expanded their support for file systems and for parti-
tion sizes and addressing methods within the file systems. For example, par-
tition type 04h was added in MS-DOS 3.0 for FAT16 partitions of less than
32 MB. MS-DOS 4.0 added partition type 06h for FAT16 partitions
between 32 MB and 2 GB. Partition types 0Ch and 0Eh must support LBA
to enable PCs to use BIOS interrupt 13h to access the media. If the parti-
tion type is 00h, the entry is unused and the partition doesn’t exist.

The final item in a partition-table entry, byte 12, is the total number of sec-
tors in the partition. Most program code ignores this value and instead uses
an equivalent value stored by the file system.

Extended Partitions
Devices with multiple partitions can use extended partitioning, where one
of the partition-table entries is for an additional, extended, partition whose
first sector contains an extended boot record (EBR) structure with its own
partition table (Figure 7-3).

The partition table in the MBR contains information about the media’s pri-
mary partition(s). The partition table in an extended partition’s EBR can
store at most one entry for a secondary partition and one entry for an addi-
tional extended partition. The additional extended partition, if present, con-
tains its own EBR and partition table. The EBR sectors in extended
partitions contain a partition table and signature but not executable code.

Any device with more than four partitions must use extended partitioning.
Large-capacity FAT16 devices use extended partitioning when the available

Media Structure

 171

media is larger than the maximum allowed size for a FAT16 partition.
(Many implementations limit FAT16 partitions to 2 GB. Another solution
for large-capacity media is to use FAT32.) MS-DOS allows only one pri-
mary partition but supports extended partitions. Possibly because of this
limitation, some formatting routines use extended partitioning for a second
or third partition even though one partition table could hold all of the infor-

Figure 7-3: With extended partitions, a device can have more than four
partitions.

Chapter 7

172

mation. There is no defined limit to the number of extended partitions a
device can contain.

The Boot Signature
The boot signature is the final item in the MBR sector. Byte 510 (1FEh)
must equal 55h and byte 511 (1FFh) must equal AAh.

Table 7-1: A partition table entry contains information that enables the master
computer to access locations in the storage media.
Byte in the
Partition-table Entry

Size
(bytes)

Description

0 1 Boot indicator
00h = do not boot from this partition
80h = boot from this partition

1 1 CHS addressing: starting head number

2 2 CHS addressing:
bits 5..0: starting sector number
bits 7..6: starting cylinder number, bits 9...8
bits 15..8: starting cylinder number, bits 7..0

4 1 Partition type

5 1 CHS addressing: ending head number

6 2 CHS addressing:
bits 5..0: ending sector number
bits 7..6: ending cylinder number, bits 9...8
bits 15..8: ending cylinder number, bits 7..0

8 4 LBA: the sector number of the partition’s first sector,
expressed as an offset from the MBR sector (sector zero)

12 4 Total number of sectors in the partition

Media Structure

 173

Table 7-2: The partition-type item in the partition table indicates the file system
the partition uses.
Value (hex) File System Recommended Partition Size for Compatibility

00 – Unused entry

01 FAT12 <= 16 MB

04 FAT16 >= 16 MB and < 32 MB

05 extended partition 0 to 2 GB

06 FAT16 32 MB to 2 GB

0B FAT32 512 MB to 2 terabytes

0C FAT32 512 MB to 2 terabytes, must support LBA

0E FAT16 32 MB to 2 GB, must support LBA

0F extended partition 0 to 2 GB, must support LBA

This page intentionally left blank

 175

8

FAT File Systems
This chapter describes the FAT16 and FAT32 file systems and shows how to
obtain information about a file from the file allocation tables.

Inside a FAT16 Volume
Media with capacities from 16 MB to 2 GB can use the FAT16 file system.
Every FAT16 volume has these components:

• Reserved region, which contains the boot sector.
• FAT region, which contains two copies of the file allocation tables

(FATs).
• Root-directory region.
• File and directory data region, which can hold files and subdirectories.

These components are stored in sequence in the volume.

To format a volume, or logical drive, under Windows XP, right-click the
drive in Windows Explorer and click Format. The Window that appears

Chapter 8

176

(Figure 8-1) shows the media’s capacity and a combo box that enables select-
ing FAT (for FAT16) or FAT32. File systems that aren’t suitable for the
media don’t display in the combo box. The default allocation size (cluster
size) is likely to be the only option presented. You can also enter a Volume
label for the media. Click Start to format the volume. Another option is to
use the format command at a command prompt. The /a parameter enables
setting a cluster size. Type help format at the command prompt for a list of
supported parameters. Remember that formatting destroys all data in the
volume.

Reserved Region
The first region in a FAT16 volume is the reserved region, which consists of
a single sector called the boot sector. The boot sector begins at the LBA
value stored in the MBR sector’s partition table, in byte 8 of the volume’s
entry in the table. In media that doesn’t have a master boot record, the boot
sector is the first sector. The sector contains a BIOS Parameter Block (BPB),
an area reserved for boot code, and a boot signature.

Figure 8-1: Windows Explorer enables formatting logical drives.

FAT File Systems

 177

BIOS Parameter Block

Table 8-1 shows the first 62 bytes in a FAT16 boot sector. Technically, the
BIOS parameter block (BPB) consists of the data in bytes 11–35, while the
remaining bytes are included in every boot sector but are not part of the
BPB. A computer that is formatting a volume for FAT16 fills these locations
with appropriate values. The information in the BPB enables a computer to
locate the volume’s FATs, the root directory, and the file-and-directory data
region, also called the data area.

Byte 13 in the BPB specifies how many sectors are in a data cluster. Each
cluster holds data that belongs to a single file. Large files can use multiple
clusters. Any extra space at the end of a file’s final cluster is unavailable for
other uses. The choice of cluster size is a compromise between efficient
access and efficient use of the storage media. A large cluster size is more effi-
cient when accessing large files because the file-system software needs to
locate and access fewer clusters. A small cluster size wastes less space, espe-
cially if there are many very small files.

The number of data clusters determines what file system to use, as described
later in this chapter.

For maximum compatibility with mass-storage host software, several items
in a FAT16 boot sector have required or recommended values, shown in
Table 8-2. In theory all of the values except the number of reserved sectors
can vary, but straying from the recommended values may cause problems
with some hosts.

The location of the value that specifies the total number of sectors in the
volume varies depending on the volume’s capacity. If less than 32 KB, the
value is in the two bytes beginning at byte 19 in the BPB. If equal to or
greater than 32 KB, the value is in the four bytes beginning at byte 32. Pro-
gram code generally uses these values rather than the equivalent value stored
in the partition-table entry.

Offset zero can contain a jump instruction to boot code. For PCs, the
instruction is 80x86 machine code. FAT16 volumes typically contain EBh
3Ch 90h, which means jump ahead 60 bytes to the boot code, which begins
at byte 3Eh in the BPB. EBh is the jump instruction, 3Ch (60) is the num-
ber of bytes to jump, and 90h is a NOP (no operation).

Chapter 8

178

Table 8-1: The boot sector contains low-level information about the media’s
formatting. These are the fields for a FAT16 volume (Sheet 1 of 2).
Byte Description Size

(bytes)
Comments

0 Jump instruction to boot code. 3 For bootable media, byte zero contains
EBh or E9h for an x86 unconditional
jump. Set to 00h for non-bootable media.

3 String that identifies the operating
system that formatted the media

8 Use “MSWIN4.1” for maximum
compatibility.

11 Number of bytes per sector 2 Use 512 for maximum compatibility.
Other allowed values are 1K, 2K, 4K, 8K,
16K, 32K, and 64K.

13 Number of sectors per cluster 1 Allowed values are 1, 2, 4, 8, 16, 32, 64,
and 128. For maximum compatibility,
cluster size must be 32K or less.

14 Number of reserved sectors 2 Must be 1.

16 Number of FATs (identical copies) 1 Use 2 for maximum compatibility.

17 Maximum number of entries in the
root directory

2 Use 512 for maximum compatibility.

19 Total number of sectors if less than
32K

2 The total number of sectors in the media
if less than 32K. The count begins with
the boot sector and includes all regions.
Otherwise zero.

21 Media descriptor 1 Use F8h for non-removable media and
F0h for removable media. This value is
also stored in the first byte of cluster zero
but is generally unused in both locations.

22 Number of sectors per FAT 2 The number of sectors in one FAT.

24 Number of sectors per track 2 Not used in LBA.

26 Number of heads 2 Not used in LBA.

28 Number of hidden sectors 4 The number of hidden sectors that
precede the partition that contains this
FAT volume. Operating-system specific.
Zero if the media doesn’t have an MBR
sector.

32 Total number of sectors 4 The total number of sectors in the
volume if 32K or greater. The count
begins with the boot sector and includes
all regions. Otherwise zero.

36 Logical drive number of the
partition

1 Operating-system specific.

FAT File Systems

 179

The bytes beginning at offset 54 can store text that identifies the file system,
but program code shouldn’t rely on this text to identify the file system. As
I’ll explain later in this chapter, the choice of file system depends entirely on
the number of data clusters in the volume.

Boot Code

Locations 62 through 509 hold the boot code (448 bytes). As Chapter 7
explained, if the partition table indicates that a volume is bootable, on boot
up, the executable code in the MBR jumps to the boot code in the volume’s
boot sector. The boot code loads the operating system. Embedded systems
typically don’t boot from storage devices and can ignore this code.

Boot Signature

In a valid boot sector, byte 510 contains 55h and byte 511 contains AAh.
For media with sectors larger than 512 bytes, these locations remain the
same even though they aren’t the last bytes in the sector.

File Allocation Table Region
Following the reserved sector are two identical copies of the file allocation
table (FAT). A FAT16 table has a 16-bit entry for each data cluster in the

37 Reserved 1 00h.

38 Extended boot signature 1 Set to 29h if the three fields below are
present.

39 Volume serial number 4 Typically created using the date and time
of formatting.

43 Volume label 11 Text that identifies the volume. Most
software ignores this and instead uses the
volume label in the partition’s root
directory. The two labels should be
identical.

54 File system type 8 “FAT16”or “FAT”. Not used to determine
the file system type.

Table 8-1: The boot sector contains low-level information about the media’s
formatting. These are the fields for a FAT16 volume (Sheet 2 of 2).
Byte Description Size

(bytes)
Comments

Chapter 8

180

volume. Files that require multiple clusters use the FAT to maintain a record
of the clusters used by each file. Later in this chapter, I explain how program
code can use the FAT to locate the clusters used by a file. The second FAT is
a backup for use in repairing a damaged first copy.

Root Directory Region
In a FAT16 volume, the sectors following the FATs contain the root direc-
tory. The root directory typically can store up to 512 entries of 32 bytes
each. If the sector size is 512, the root directory requires 32 sectors. The root
directory contains information about the files and subfolders in the device’s
top-level directory. Note that the size of the root directory region limits the
number of entries a FAT16 root directory can store. As Chapter 9 explains,
files with long file names reduce the number of file entries the directory can
store.

File and Directory Data Region
The sectors after the root directory are grouped into data clusters. A data
cluster can consist of one or more sectors. Because the FAT has an entry for
each cluster and reserves the first two entries for other purposes, the first
data cluster is called cluster 2, with the rest following in sequence. Files and
subdirectories are stored in the clusters.

Each subdirectory is a directory much like the root directory and can con-
tain entries for files and additional subdirectories immediately below the
subdirectory. An embedded-system host might support only the root direc-
tory, ignoring any entries for subdirectories.

Table 8-2: Recommended and required values for fields in a FAT16 boot sector.
Byte Description Recommended Value

3 Identifying string “MSWin4.1”

11 Bytes per sector 512

14 Number of reserved sectors 1 (required)

16 FAT copies 2

17 Maximum root directory entries 512

FAT File Systems

 181

Inside a FAT32 Volume
FAT32 is an option for larger media that can’t use FAT16. A FAT32 system
has other advantages as well, such as no limit on root-directory size and the
availability of additional information for use in repairing damaged media
and finding free clusters quickly. Compared to FAT16, a FAT32 system
requires more storage space for the FATs because the entries are twice as
long.

Every FAT32 volume has these components:

• Reserved region, which contains the boot sector.
• FAT region, which contains two copies of the file allocation tables

(FATs).
• File and directory data region, which can hold the root directory, files,

and subdirectories.

These components are stored in sequence in the volume.

The sections that follow focus on the differences between FAT32 and
FAT16 and assume you’re familiar with the preceding information about
FAT16.

Reserved Region
The first region in a FAT32 volume is the reserved region, which consists of
the boot sector, an FSInfo structure containing information to help in find-
ing free clusters, and a backup copy of the boot sector.

The Boot Sector

As with FAT16, the boot sector begins at the LBA value stored in the vol-
ume’s entry in the partition table. Table 3-4 shows the first 90 bytes in a
FAT32 boot sector. Technically, the BIOS parameter block (BPB) consists of
the data in bytes 11–63, while the remaining bytes are part of the boot sec-
tor but not in the BPB.

Compared to FAT16, a FAT32 BPB has these differences:

• The number of reserved sectors in byte 14 is typically 32 rather than 1.
• The maximum number of entries in the root directory in byte 17 is

unused because FAT32 has no limit.

Chapter 8

182

Table 8-3: A volume’s boot sector contains low-level information about the
media’s formatting. These values are for a FAT32 volume (Sheet 1 of 2).
Byte Description Size

(bytes)
Comments

0 Jump instruction to boot code. 3 For bootable media, byte zero contains
EBh or E9h for an x86 unconditional
jump. Set to 00h for non-bootable media.

3 String that identifies the operating
system that formatted the media

8 Use “MSWIN4.1” for maximum
compatibility.

11 Number of bytes per sector 2 Use 512 for maximum compatibility.
Other allowed values are 1K, 2K, 4K, 8K,
16K, 32K, and 64K.

13 Number of sectors per cluster 1 Allowed values are 1, 2, 4, 8, 16, 32, 64,
and 128. For maximum compatibility,
cluster size must be 32K or less.

14 Number of reserved sectors 2 Includes all sectors that precede the FATs.
Typically 32.

16 Number of FATs (identical copies) 1 Use 2 for maximum compatibility.

17 Unused 2 0000h.

19 Unused 2 0000h.

21 Media descriptor 1 Use F8h for non-removable media and
F0h for removable media. This value is
also stored in the first byte of cluster 0
and is generally unused in both locations.

22 Unused 2 0000h.

24 Number of sectors per track 2 Not used in LBA.

26 Number of heads 2 Not used in LBA.

28 Number of hidden sectors 4 The number of hidden sectors that
precede the partition that contains this
FAT volume. Operating-system specific.

32 Total number of sectors 4 The total number of sectors in the
volume. The count begins with the boot
sector and includes all regions.

36 Number of sectors per FAT 4 The number of sectors in one FAT.

40 Flags 2 Bits 3..0: zero-based number of the active
FAT. Valid only if mirroring is disabled.
Bits 6..4: reserved
Bit 7: 0 if the FAT is mirrored at runtime
into all FATs; 1 if mirroring is disabled.

FAT File Systems

 183

• The total number of sectors is always at offset 32 because a FAT32 vol-
ume is always at least 32 KB.

• The number of sectors per FAT is in bytes 24h–27h.
• The cluster number of the root directory is at offset 44 because FAT32

has no dedicated location for the root directory.
• Byte 48 holds the location of the FSInfo structure and byte 50 holds the

location of the backup boot sector. FAT16 doesn’t have these compo-
nents.

• A Flags field at byte 40 indicates whether the file system maintains iden-
tical FATs or whether only one FAT should be considered valid. If only

42 Version number of the FAT32
volume

2 The high byte is the major revision num-
ber and the low byte is the minor revision
number. Use 0000h.

44 Cluster number of the first cluster
of the root directory.

4 Use 2 for maximum compatibility.

48 Sector number of the FSINFO
structure within the reserved
region

2 Usually 1.

50 The sector number of a backup
copy of the boot record within the
reserved area

2 Set to 6 for maximum compatibility. Set
to zero if no backup copy is available.

52 Reserved 12 Set all bytes to 00h.

64 Logical drive number of the parti-
tion

1 Operating-system specific.

65 Reserved 1 00h.

66 Extended boot signature 1 Set to 29h to indicate that the three fields
that follow are present.

67 Volume serial number 4 Typically created using the date and time
of formatting.

71 Volume label 11 Text that identifies the volume.

82 File system type 8 “FAT32”. Not used to determine the file
system type,

Table 8-3: A volume’s boot sector contains low-level information about the
media’s formatting. These values are for a FAT32 volume (Sheet 2 of 2).
Byte Description Size

(bytes)
Comments

Chapter 8

184

one FAT is considered valid, the Flags specify which one. A FAT16 BPB
has no Flags field.

• Some fields that have identical functions are stored in different locations
in FAT16 and FAT32 BPBs.

• The boot code, if present, begins at byte 90.

For maximum compatibility with mass-storage host software, several items
in a FAT32 boot sector have recommended values, as shown in Table 8-4. In
theory all of the values shown can vary, but straying from the recommended
values can cause problems with some hosts.

As in a FAT16 BPB, byte 13 stores the number of sectors per cluster.

A FAT32 boot sector can contain boot code in bytes 90–509 and the sector
must have a boot signature of AA55h in bytes 510–511. The jump instruc-
tion at offset 00h is typically EBh 58h 90h, which means jump ahead 88
bytes to the beginning of the boot code at 5Ah.

The FSInfo Structure

The FSInfo structure can contain information to help the master computer
find free clusters quickly. The structure is in the location specified in byte 48
in the BPB. The location is typically in reserved sector 1, immediately fol-
lowing the boot sector. Table 8-5 shows the contents of the FSInfo structure.

The Backup Boot Sector

Sectors 6–8 in the reserved region can store a backup copy of the three sec-
tors beginning with the volume’s boot sector. The backup is for use in media
repair if the original copy is damaged.

File Allocation Table Region
As with FAT16, following the reserved region are two copies of the file allo-
cation tables (FATs). A FAT32 table has a 32-bit entry for each data cluster
in the volume. The highest four bits are reserved, however. During format-
ting, all 32 bits of each entry are set to zero. After formatting, software that
reads and writes to the FAT should preserve the contents of the four high
bits.

The Flags field in the BPB specifies whether or not the FATs are mirrored. If
mirroring is enabled, the file-system driver maintains two identical copies of

FAT File Systems

 185

the FAT. If any portion of the area reserved for one of the FATs becomes
damaged, the value in the Flags field can disable mirroring and specify
which FAT the file system should use.

File and Directory Data Region
As with FAT16, the file-and-directory data region consists of data clusters
that can store files and subdirectories. In a FAT32 system, this region stores
the root directory. The first data cluster is cluster 2.

Selecting a File System
Which FAT file system a volume is formatted for depends entirely on the
number of data clusters in the volume. The data clusters include all of the
clusters beginning with cluster 2 in the file-and-directory data region. They
don’t include the MBR sector, reserved region, FAT region, or FAT16
root-directory sectors.

Cluster Sizes
The FAT32 specification says that a volume with fewer than 4085 data clus-
ters is formatted as FAT12, and a volume with 4085 to 65524 data clusters
is formatted as FAT16. Valid FAT12 cluster numbers are 2 to FEFh, so the
maximum number of FAT12 clusters is actually 4078. Valid FAT16 cluster
numbers are 2 to FFEFh, so the maximum number of FAT16 clusters is
actually 65518. A volume with 65527 or more data clusters is formatted as
FAT32.

Table 8-4: Recommended values for fields in a FAT32 boot sector.
Byte Description Recommended Value

3 Identifying string “MSWin4.1”

11 Bytes per sector 512

14 Number of reserved sectors 32

16 FAT copies 2

44 First cluster of the root directory 2

48 FSInfo sector 1

50 Location of backup copy of boot record 6

Chapter 8

186

Formatting software can select a file system by setting the cluster size so the
number of clusters is in the desired range. Because some existing FAT imple-
mentations don’t calculate the number of clusters correctly, Microsoft rec-
ommends formatting all volumes to have at least 16 clusters more than the
specified minimum and 16 clusters less than the specified maximum for the
file system. Also note that a few values are outside the recommended ranges
for any FAT file system.

Table 8-6 shows the cluster sizes Windows XP Professional uses for FAT16
and FAT32 volumes of different capacities. For maximum compatibility,
volumes smaller than 16 MB should use FAT12. Windows can’t format vol-
umes greater than 32 GB using FAT32 but can read volumes of this size if
formatted in another operating system.

The FAT32 specification describes a method for calculating the number of
data clusters in a volume. (It’s not as straightforward as you might think.)
Embedded systems that format storage media can do the calculations, or
they can just use the same cluster size as Windows for their volume size.

A Hardware Solution
Device firmware typically implements support for FAT file systems. Another
option is to interface to a chip that supports FAT communications. The
uALFATTM chip from GHI Electronics can access media formatted for the
FAT12, FAT16, and FAT32 file systems. A microcontroller can communi-

Table 8-5: The FSInfo structure contains information that can help the
file-system driver find free clusters quickly.
Byte Size (bytes) Description

0 4 FSI_LeadSig signature. Must equal 41615252h.

4 480 Reserved. Set all bytes to 00h.

484 4 FSI_StrucSig signature. Must equal 61417272h.

488 4 The number of the last known free cluster. Set to FFFFFFFh if
unknown.

492 4 The cluster number where the file-system driver should start looking
for free clusters. Set to FFFFFFFh if unknown

496 12 Reserved. Set all bytes to 00h.

508 4 FSI_TrailSig signature. Must equal AA550000h.

FAT File Systems

 187

cate with the chip using an asynchronous serial interface, SPI, or an I2C bus.
The chip also supports MultiMediaCard and SD-Card communications.

The chip responds to text commands. File commands enable opening, clos-
ing, reading, writing to, and deleting a file. Directory commands enable cre-
ating, changing, listing, and erasing a directory. Also supported are
commands for reading and writing directly to sectors in the storage media.
The chip requires +3.3V and +1.8V power supplies.

The uALFAT-SD development board includes a MultiMediaCard/SD-Card
connector and a regulator to convert 3.3V to 1.8V. A quick way to experi-
ment with the board is to insert a a MultiMediaCard or SD Card, connect
the board to a PC, and use a terminal program such as Windows’ Hyperter-
minal to send commands and receive responses.

To connect to a PC, connect the board’s asynchronous serial pins to the cor-
responding pins on a Maxim MAX3232 or similar RS-232 transceiver. If
your PC doesn’t have an RS-232 port, connect the transceiver’s RS-232 pins
to corresponding signals on an RS-232/USB converter. Or use an FTDI
Chip USB UART to interface the uAFLAT with a PC’s USB port.

Table 8-6: The data-cluster size varies with the file system and storage capacity.
(Source: Windows XP Professional Resource Kit)
Volume Size FAT16 Cluster Size FAT32 Cluster Size

16 MB–32 MB 512 bytes Not supported

33 MB–64 MB 1 KB 512 bytes

65 MB–128 MB 2 KB 1 KB

129 MB–256 MB 4 KB 2 KB

257 MB–512 MB 8 KB 4 KB

513 MB–1024 MB 16 KB 4 KB

1025 MB–2 GB 32 KB 4 KB

2 GB–4 GB 64 KB1 4 KB

4 GB–8 GB Not supported 4 KB

8 GB–16 GB Not supported 8 KB

16 GB–32 GB Not supported 16 KB
1Not supported by all FAT16 file systems.

Chapter 8

188

The File Allocation Table
The file allocation table contains an entry for each data cluster in a volume.
In a FAT16 volume, each entry is 16 bits. In a FAT32 volume, each entry is
32 bits, with the lower 28 bits used to store a cluster number.

The First Two Entries
The first two entries in the FAT don’t store cluster information. In entry
zero, the lowest byte should match the media-type byte in byte 21 in the
BPB. (The media-type byte is generally unused. To find out whether a
device has removable media, a host can send an INQUIRY command and
check the RMB bit in the response, as described in Chapter 6.) All other bits
are set to 1.

Formatting a volume sets entry 1 in a FAT16 table to a value from FFF8h to
FFFFh. The mass-storage host can set the two highest bits of the entry to
indicate error conditions. Bit 15 may be set to zero to indicate a dirty vol-
ume, which means that the system shut down or the device was removed
before all pending writes completed. Bit 14 may be set to zero to indicate
that the file system’s driver had an I/O error the last time the media was
made available.

For entry 1 in a FAT32 table, bits 15..0 are the same as for FAT16, and bits
27..16 are 1s.

Data Clusters
Entry 2 in a FAT is the first entry for a data cluster. The first data cluster in
the volume is thus called cluster 2. There is no data cluster 0 or data cluster
1. The other clusters follow cluster 2 in sequence, to a maximum of FFEFh
(FAT16) or FFFFFEFh (FAT32). Table 8-7 shows the meanings of values in
FAT entries.

The series of clusters used by a file is called a cluster chain (Figure 8-2). A
file’s directory entry contains the number of the file’s first cluster. If a file in
a FAT16 volume requires only one cluster, the FAT entry for that cluster
contains a value from FFF8h to FFFFh. These values, called end-of-clus-

FAT File Systems

 189

ter-chain (EOC) markers, indicate that the cluster is the last cluster used by
a file or directory. For example, if the file’s only cluster is 0008h, entry
0008h in the FAT contains an EOC marker.

If a file requires two clusters, the FAT entry for the file’s first cluster contains
the number of the file’s next cluster and the entry for the second cluster con-
tains an EOC marker. For example, if a file uses clusters 0004h and 0005h
in sequence, entry 0004h contains 0005h, and entry 0005h contains an
EOC marker.

In a similar way, if a file requires more than two clusters, the FAT entry for
each cluster except the last contains the number of the file’s next cluster, and
the entry for the last cluster contains an EOC marker. For example, if a file
uses clusters 0003h, 0006h, 0007h, and 0009h in sequence, entry 0003h
contains 0006h, entry 0006h contains 0007h, entry 0007h contains 0009h,
and entry 0009h contains an EOC marker. A file whose clusters aren’t con-
tiguous is called a fragmented file.

A FAT32 table works the same way except the entries are 32 bits with the
highest four bits ignored.

Using the FAT is essential for large files, but an embedded system that
doesn’t need large files could choose to support files that fit in single clusters
only.

Figure 8-2: The FAT keeps a record of the clusters used by a file. FAT16 entries
are 2 bytes.

Chapter 8

190

Accessing the FAT
The PIC18F4550 FAT16 firmware that follows shows how to convert a
data-cluster number to a logical block address, how to read and write to the
FAT, how to find a file’s next cluster, and how to find an empty cluster.

Volume Information
A DISK structure can hold in information about a volume and its FAT:
#define FAT16 2

#define FAT32 3

typedef struct

{

 byte* buffer; // pointer to a buffer equal to one sector

 dword firsts; // LBA of the volume’s first sector

 dword fat; // LBA of the volume’s FAT

 dword root; // LBA of the volume’s root directory

 dword data; // LBA of the volume’s data area

 word maxroot; // maximum number of entries in the root directory

 dword maxcls; // maximum number of data clusters in the volume

 word fatsize; // number of sectors in the FAT

 byte fatcopy; // number of copies of the FAT

 byte SecPerClus; // number of sectors per cluster

 byte type; // type of FAT (FAT16, FAT32)

 byte mount; // TRUE if the media is mounted, FALSE if not mounted)

} DISK;

Table 8-7: A FAT entry tells whether a cluster is available, bad, or in use and if
in use, the number of the next cluster in a file or directory, if any.
FAT16 Range (hex) FAT32 Range (hex)

(ignore bits 28--31)
Description

0000 0000000 available cluster

0001 0000001 reserved cluster

0002--FFEF 0000002--FFFFFEF the number of the next cluster in
the file

FFF0--FFF6 FFFFFF0--FFFFFF6 reserved (not currently defined)

FFF7 FFFFFF7 bad cluster

FFF8--FFFF FFFFFF8--FFFFFFF the file’s last cluster (EOC marker)

FAT File Systems

 191

File Information
A FILE structure can store information about a file, including its location in
a volume and a location currently being accessed in the file. (Chapter 9 has
more about directories, and Chapter 10 has more about accessing files.)
// A short file name has 11 or fewer characters, not counting the dot.

#define FILE_NAME_SIZE 11

typedef struct

{

 unsigned write :1; // Set if the file was opened for writing.

 unsigned FileWriteEOF :1; // Set if writing and have reached the end of the file.

}FileFlags;

typedef struct

{

 DISK *dsk; // a DISK structure for the volume containing the file

 word cluster; // number of the first file’s cluster

 word ccls; // current cluster

 word sec; // current sector in the current cluster

 word pos; // current byte location in the current sector

 dword seek; // current byte location in the file

 dword size; // file size

 FileFlags Flags; // write mode and end-of-file indicators

 word time; // last update time

 word date; // last update date

 char name[FILE_NAME_SIZE]; // file name

 word entry; // position of the file’s entry in its directory

 word chk; // FILE structure checksum = ~(entry + name[0])

 word attributes; // file’s attributes

 word dirclus; // first cluster of the file’s directory

 word dirccls; // current cluster of the file’s directory

} FILE;

A FILEOBJ is a pointer to a FILE structure:
typedef FILE * FILEOBJ;

Functions in this chapter use these defines:
#define CLUSTER_FAIL 0xffff

#define LAST_CLUSTER 0xfff8

#define LAST_CLUSTER_FAT16 0xfff8

Chapter 8

192

Obtaining a Cluster’s Logical Block Address
A file’s directory entry and FAT entries store cluster numbers. To read data
from the storage media, firmware must specify a logical block address. The
Cluster2Sector function accepts a pointer to a DISK structure and a cluster
number and returns the LBA of the cluster’s first sector.
dword Cluster2Sector(DISK *dsk, word cluster)

{

 dword sector;

 // Data clusters 0 and 1 don’t exist.

 // If cluster = 0 or 1, assume it’s the root directory.

 if (cluster == 0 || cluster == 1)

 sector = dsk -> root + cluster;

 else

 // The data area begins with cluster 2.

 // Subtract 2 from the cluster number to get the cluster number within the data area.

 // Multiply the result by the number of sectors per cluster to get the sector number

 // within the data area.

 // Add the number of the first sector in the data area to get the absolute sector

 // number for the cluster.

 sector = ((cluster - 2) * dsk -> SecPerClus) + dsk -> data;

 return(sector);

}

Reading from the FAT
The FATread function accepts a pointer to a DISK structure (dsk) and a
cluster number (ccls), reads the FAT entry for that cluster, and returns the
value read, which is the number of the next cluster in the file or directory or
an EOC marker. The function calls the SectorRead function from Chapter
5.

The function uses the RAMreadW macro to read a word at the address spec-
ified by a base address (a) plus an offset(f):
#define RAMreadW(a, f) *(word *)(a + f)

FAT File Systems

 193

word FATread(DISK *dsk, word ccls)

{

 word c;

 word d;

 dword l;

 word p;

 byte q;

 // Get the address of the file’s current cluster.

 // The address is two bytes, LSB first.

 p = ccls;

 // The LBA of the FAT sector containing the cluster’s data is the FAT’s starting address

 // plus the high byte of the current cluster.

 // (Each sector contains 256 two-byte entries.)

 l = dsk -> fat + (p >> 8);

 // Read the sector.

 if (SectorRead(l, dsk -> buffer) != sdcValid)

 return CLUSTER_FAIL;

 // To get the value stored in the cluster’s entry,

 // read 2 bytes in the buffer of retrieved data

 // beginning at offset = low byte of current cluster’s address << 1.

 // Shift left 1 (multiply by 2) because each entry is 2 bytes.

 c = RAMreadW(dsk -> buffer, ((p & 0xFF) << 1));

 if (c >= LAST_CLUSTER_FAT16)

 // The entry is an EOC marker.

 c = LAST_CLUSTER;

 return c;

}

Chapter 8

194

Writing to the FAT
The FATwrite function accepts a pointer to a DISK structure (dsk), a cluster
number (cls), and a value to write to the FAT entry for the cluster (v). The
function gets the LBA of the sector containing the entry to write to, reads
the sector into a buffer, writes the value to the entry, and writes the sector
back to the storage media. The function calls the SectorRead and Sector-
Write functions from Chapter 5.

The function uses the RAMwrite macro to write a value (d) to the address
specified by a base address (a) plus an offset(f):
#define RAMwrite(a, f, d) *(a + f) = d

word FATwrite(DISK *dsk, word cls, word v)

{

 byte c;

 byte i;

 dword l

 dword li;

 word p;

 byte q;

 // Each entry is 2 bytes.

 // To get the offset of the entry in the FAT, multiply the cluster number by 2.

 p = cls * 2;

 // To get the sector containing the entry, divide the entry’s offset by 512 .

 l = dsk -> fat + (p >> 9);

 // To get the offset within the sector, set bits 9-16 of the entry’s offset to zero.

 p &= 0x1ff;

 // Read the sector into a buffer.

 if (SectorRead(l, dsk->buffer) != sdcValid)

 return FAIL;

FAT File Systems

 195

 // Copy the passed value (v) into the FAT entry for the passed cluster number (cls)

 // in the buffer. The LSB is at the lower offset.

 RAMwrite(dsk -> buffer, p, v);

 RAMwrite(dsk -> buffer, p+1, (v >> 8));

 // Write the edited buffer to both FAT copies

 for (i = 0, li = l; i < dsk -> fatcopy; i++, li += dsk -> fatsize)

 if (SectorWrite(l, dsk -> buffer) != sdcValid)

 return FAIL;

 if (c >= LAST_CLUSTER_FAT16)

 // The entry is an EOC marker.

 c = LAST_CLUSTER;

 return c;

}

Finding a File’s Next Cluster
The FILEget_next_cluster function can find the next cluster in a file. The
function accepts a FILEOBJ pointer to a FILE structure (fo) and a number
(n) that specifies how many clusters beyond the current cluster to look. The
function sets the FILE structure’s ccls member to the requested cluster num-
ber. If n = 1, the function sets ccls to point to the cluster following the cur-
rent cluster value in the passed file structure.
#define CE_GOOD 0 // No error.

#define CE_BAD_SECTOR_READ 7 // Error in reading a sector.

#define CE_FAT_EOF 60 // Attempt to read beyond the FAT’s EOF.

#define CE_INVALID_CLUSTER 9 // The cluster number > maxcls.

byte FILEget_next_cluster(FILEOBJ fo, word n)

{

 word c;

 word c2;

 DISK *disk;

 byte error = CE_GOOD;

Chapter 8

196

 // Save the FILE structure’s dsk member.

 disk = fo -> dsk;

 do {

 // Save the file’s current cluster number.

 c2 = fo -> ccls;

 // Read the next cluster number from the FAT entry for the current cluster.

 if ((c = FATread(disk, c2)) == FAIL)

 error = CE_BAD_SECTOR_READ;

 else

 {

 if (c >= disk -> maxcls)

 {

 // The cluster number is greater than the volume’s last cluster’s number.

 // Set a return value but then check to see if the entry is an EOC marker.

 error = CE_INVALID_CLUSTER;

 }

 c2 = LAST_CLUSTER;

 if (c >= c2)

 {

 // The entry is an EOC marker, so the current cluster is the file’s last one.

 error = CE_FAT_EOF;

 }

 }

 // The cluster number is valid. Store the new current cluster number.

 fo -> ccls = c;

 // Quit on finding the desired cluster or on error.

 } while (--n > 0 && error == CE_GOOD);

 return(error);

}

FAT File Systems

 197

Performing Sequential Reads
The FATReadQueued function is identical to the FATread function above
except that it’s optimized for doing multiple, sequential reads of the FAT.
The function reads a sector from the media only if the entry to read is the
first one in a sector. Otherwise, the function assumes that the passed DISK
structure’s buffer member contains the sector with the entry to read.
word FATReadQueued(DISK *dsk, word ccls)

{

 word c;

 word d;

 dword l;

 word p;

 byte q;

 // Save the passed cluster number.

 p = ccls;

 // Each sector holds 256 two-byte entries.

 // If the LSB of the cluster number = 0, the FAT entry is in a new sector.

 if ((ccls & 0xFF) == 0x00)

 {

 // Get the sector number.

 // The LBA of the FAT sector containing the cluster’s data is the FAT’s starting

 // address plus the high byte of the current cluster’s address.

 // (Each sector contains 256 two-byte entries.)

 l = dsk -> fat + (p >> 8);

 // Read the sector containing the entry.

 if (SectorRead(l, dsk -> buffer) != sdcValid)

 return CLUSTER_FAIL;

 }

 // To find the number of the next cluster,

 // read 2 bytes in the buffer of retrieved data

 // beginning at offset = low byte of current cluster’s address << 1.

 // Shift left 1 (multiply by 2) because each entry is 2 bytes.

 c = RAMreadW(dsk -> buffer, ((p & 0xFF) << 1));

Chapter 8

198

 if (c >= LAST_CLUSTER_FAT16)

 // The entry is an EOC marker.

 c = LAST_CLUSTER;

 return c;

}

Finding an Empty Cluster
To find an empty cluster in the FAT, firmware reads entries until finding an
entry that contains 0000h.

The FATfindEmptyCluster function accepts a FILEOBJ pointer to a FILE
structure and returns the number of an available cluster. The function starts
looking at the cluster immediately following the file structure’s current clus-
ter number (ccls). If ccls is the file’s final cluster and the function is looking
for a cluster to append to the file, the new cluster will be the one following
the current cluster if possible. The firmware thus avoids creating fragmented
files when not required.
#define CLUSTER_EMPTY 0x0000

#define END_CLUSTER 0xFFFE

word FATfindEmptyCluster(FILEOBJ fo)

{

 word c;

 word curcls;

 DISK *disk;

 word value = 0x0;

 // Save the DISK structure and current cluster number.

 disk = fo -> dsk;

 c = fo -> ccls;

 // Cluster 2 is the first cluster.

 if (c < 2)

 c = 2;

 curcls = c;

FAT File Systems

 199

 // Read the FAT entry for the current cluster.

 FATread(disk, c);

 // Starting at the cluster immediately following the current cluster number,

 // scan through the FAT looking for an empty cluster.

 while (c)

 {

 c++;

 // If we get to the end of the FAT, start from the beginning.

 if (value == END_CLUSTER || c >= disk -> maxcls)

 c = 2;

 // If we get to the current cluster, there are no empty entries.

 if (c == curcls)

 {

 c = 0;

 break;

 }

 // Read an entry.

 if ((value = FATReadQueued(disk, c)) == CLUSTER_FAIL)

 {

 c = 0;

 break;

 }

 // Quit the loop on finding an empty cluster.

 if (value == CLUSTER_EMPTY)

 break;

 }

 return(c);

This page intentionally left blank

 201

9

Directories
This chapter explains how directories store information and shows how to
access and store information in directories and subdirectories. The code in
this chapter uses the FILE and DISK structures from Chapter 8.

The Contents of an Entry
The root directory contains a 32-byte entry for each file in the root directory
and each subdirectory directly under the root directory. These entries are
sometimes called DOS 8.3 entries or just 8.3 entries because each can store a
file name no longer than eight characters before the dot and three characters
after the dot (for example, MYFILE01.TXT). The limitation dates to the
MS-DOS operating system.

If the file-system driver supports long file names, any name that doesn’t fit in
an 8.3 entry is stored in one or more additional 32-byte entries that precede
the 8.3 entry, and the 8.3 entry stores a short version of the file name. An
8.3 entry uses upper-case text only, so another use for long-file-name entries
is to support lower-case text.

Chapter 9

202

Every file and subdirectory has a directory entry. The root directory doesn’t
have an entry.

File Entries
Table 9-1 shows the contents of a directory entry. The essential fields are the
DOS 8.3 fields. The additional fields are optional for many applications.

The File Name

The file-name field at byte zero contains the characters before the dot. The
file-extension field at byte 8 contains the characters after the dot. (The dot
isn’t stored in the directory.) All text is upper case.

In an entry that contains a file name, any unused locations in the file-name
and extension fields should contain the code for a space (20h).

In an unused entry, the first byte in the file-name field is 00h or E5h. The
value 00h means that all of the entries that follow in the directory are also
available.

An 8.3 name has several limitations:

• Each character code in the file name and extension is eight bits. Original
8.3 entries in PCs use character codes from the system’s OEM code page,
which defines character codes for a geographical region.

• All text characters are stored as upper case.
• An 8.3 file name must begin with a letter or a number. In addition to

upper-case letters and numbers, a name can contain spaces and any of
these characters:

$ % ’ - _ @ ~ ‘ ! ()

• Windows doesn’t allow any of these as file names: CON, AUX, COM1–
COM4, LPT1–LPT3, PRN, NUL.

Attributes

The Attributes field at byte 11 contains six bits that provide information
about the entry. Table 9-2 lists the bits and their meanings. If bits 0–3 are all
1s, the entry is a long-file-name entry.

Directories

 203

Table 9-1: The main directory entry for a file has 32 bytes.
Byte Length

(bytes)
 Description DOS 8.3

(original)

0 8 Short file name. The file name before the dot using the
system’s OEM code page. Eight characters maximum,
upper case only.

yes

8 3 File extension. The file name after the dot using the
OEM code page. Three characters maximum, upper
case only.

yes

11 1 Attributes. yes

12 1 Reserved for Windows NT. Set to zero on formatting. no

13 1 File creation time, hundredths of a second portion.
Valid values are 0–199.

no

14 2 File creation time, hour, minute, seconds portion:
 bits 15..11 hours, valid range 0–23
 bits 10..5 minutes, valid range 0–59
 bits 4..0 seconds / 2, valid range 0–29

no

16 2 File creation date:
 bits 15..9 years since 1980, valid range 0–127
 bits 8..5 month, valid range 1–12
 bits 4..0 day, valid range 1–31

no

18 2 Last accessed date:
 bits 15..9 years since 1980, valid range 0–127
 bits 8..5 month, valid range 1–12
 bits 4..0 day, valid range 1–31

no

20 2 For FAT16, zero.
For FAT32, the high word of the file or directory’s first
cluster.

no

22 2 Last modified time:
 bits 15..11 hours, valid range 0–23
 bits 10..5 minutes, valid range 0–59
 bits 4..0 seconds / 2, valid range 0–29

yes

24 2 Last modified date:
 bits 15..9 years since 1980, valid range 0–127
 bits 8..5 month, valid range 1–12
 bits 4..0 day, valid range 1–31

yes

26 2 For FAT16, the number of the file or directory’s first
cluster.
For FAT32, the low word of the file or directory’s first
cluster.

yes

28 4 File size in bytes. yes

Chapter 9

204

Date and Time Fields

Three sets of data-and-time fields can store when a file was created, when
the file was last modified, and when the file was last accessed.

On file creation, the file-modified date and time fields (bytes 22–25) store
the current date and time. Every time the file’s contents are modified, the
file-system driver should update the values to the current date and time. The
time is specified in units of two seconds. These fields were in the original 8.3
entries, and every system that has a real-time clock should store values in
these fields on creating or modifying a file. When copying or moving a file,
this date and time should remain unchanged.

The file-creation date and time fields (bytes 13–17) store the date and time
when a file was created. As with the file-modified time, one field stores the
time with a resolution of two seconds. An additional time field stores hun-
dredths of a second (0–199). The two values added together give the time.
These fields weren’t part of the original 8.3 entries.When copying a file, the
copy’s entry should have the current date and time. When moving a file, the

Table 9-2: The attribute bits in a directory entry provide additional information
about a file.
Bit Name Meaning When Set to 1

01 R: read only The file can’t be written to. (Some hosts allow writing after
prompting “Are you sure?”)

11 H: hidden Hide the file’s directory listing from view unless the user has
requested to view hidden files.

21 S: system The file is a critical system file. Hide the file’s directory listing
from view unless the user has requested to view system files.

31 V: volume The entry is for the volume label. A volume can have only one
entry with this attribute. The entry must be in the root directory.
The cluster number for this entry is zero.

4 D: directory The entry is for a directory rather than for a file.

5 A: archive The file hasn’t been backed up since the last write operation to the
file. The file-system driver should set this bit to 1 on creating,
renaming, or writing to a file. Backup utilities can set the bit to zero
to indicate that the file has been backed up.

6 – Always zero.

7 – Always zero.
1If bits 0–3 are all set to 1, the entry is a long-file-name entry.

Directories

 205

creation date and time should remain unchanged. If unused, these fields
should contain zeros.

The file-last-accessed date (bytes 18–19) stores the date when the file was
last accessed. Many applications don’t update this value or do so in inconsis-
tent ways, so the stored information is of little use. If unused, these fields
should contain zeros.

The FAT32 specification says that the file-modified date and time are
required. The other dates and times are optional. An embedded system
should support the file-modified fields if possible.

First Cluster

The first-cluster entry at offset 26 is the number of the file’s first data cluster
(FAT16) or the low word of the file’s first data cluster (FAT32). For FAT32
volumes, offset 20 contains the high word of the file’s first data cluster. The
first data cluster in the data area is cluster 2, so the first-cluster number must
be 2 or greater.

File Size

The file size field at offset 28 stores the size of the file in bytes.

Directory Entries
A directory entry is the same as a file entry with these exceptions:

Bit 1 in the Attributes field is set to 1 to indicate that the entry is for a
directory.
The file-size field is zero.

In a FAT16 partition, the root directory follows the FATs. In a FAT32 parti-
tion, the root directory typically begins in cluster 2 in the data area. Offset
44 in a FAT32 volume’s boot sector contains the cluster number where the
root directory begins.

The first two entries in a subdirectory are the dot and dotdot entries:
.

..

Chapter 9

206

To help in understanding these entries, assume that a volume has a directory
called sub1, and that sub1 has a subdirectory called sub2. Figure 9-1 shows
the directory entries.

The dot entry points to the current subdirectory, sub2. The entry’s file name
is a dot followed by seven spaces (“. ”). The file size is zero. The contents
of the date and time fields and the directory’s high and low cluster numbers
match the values in sub1’s directory entry for sub2.

The dotdot entry points one level up, to the sub1 subdirectory in the exam-
ple. The entry’s file name is two dots followed by six spaces (“.. ”). The
file size is zero. The contents of the date and time fields are the same as in
the dot entry. The high and low cluster numbers match the values for the
directory one level up. These values are the cluster number in sub1’s dot
entry. If sub1 is the root directory, the cluster number is zero.

The Volume Label Entry
A volume’s root directory contains the one and only volume-label entry. The
entry’s fields have the same meanings as they do for files with two excep-
tions: bit 0 in the Attributes field is set to 1 to indicate that the entry is for a
volume label, and for names longer than 8 characters, the file-system soft-
ware doesn’t insert a dot between the file-name and file-extension fields.
(Long-file-name entries also set the volume bit but are not volume entries.)
Most software uses this volume label rather than the label stored in the par-

Figure 9-1: Directory entries for a subdirectory with three files and one
subdirectory. The first two entries are the dot and dotdot entries.

Directories

 207

tition’s boot sector. The volume-label entry doesn’t display in the root direc-
tory’s directory listing.

Subdirectory Entries
A directory entry with the directory attribute equal to 1 and the volume
attribute equal to zero defines a subdirectory under the directory. A subdi-
rectory can use any available data clusters.

A small embedded system might support only the root directory, ignoring
any subdirectory entries in the root directory and any files stored in subdi-
rectories. Firmware that doesn’t support subdirectories can avoid overwriting
any inaccessible files and directories created by another host because the
FATs identify the clusters as in use.

Handling Long File Names
In a file system that supports long file names, a file or directory name can be
as long as 255 characters including one or more dots and extensions. A file’s
complete path has a maximum of 260 characters, however, so volumes with
many levels of directories must use shorter names.

Each entry for an item with a long file name (LFN) has an 8.3 entry pre-
ceded by one or more 32-byte LFN entries. Systems that don’t support long
file names use the 8.3 entry and ignore the LFN entries. Under Windows,
typing dir /x at a command prompt shows both the short and long file
names.

A small embedded system might choose to support 8.3 file names only.
Because every file with a long file name also has an 8.3 file name, a system
can access any file using 8.3 file names. If a system that supports only 8.3
file names renames a file that had a long file name, the checksums in the
LFN entries will almost always be invalid so the 8.3 file name will be the
only valid name.

LFN Entries
Table 9-3 shows the fields in an LFN entry. Each entry stores up to 13 Uni-
code characters. Each character code is two bytes.

Chapter 9

208

A long file name can have lower-case characters, a leading dot (.myfile.txt),
multiple dots (myfile.v1.txt), and spaces (my file.txt). Trailing dots (myfile.)
and trailing spaces (myfile) are ignored. Any character that is valid in an 8.3
entry is valid in a long file name. Long file names allow a few additional
character codes as well.

Unused character locations should contain FFFFh. The name should end in
a null (0000h) if there is room in the final long-file-name entry.

The first byte in an LFN entry is the Ordinal field. In the LFN entry that
immediately precedes the file’s 8.3 entry, the Ordinal field contains 1. In the
next LFN entry above, the Ordinal field contains 2, and so on up to a maxi-
mum of 20. In the Ordinal field with the highest number, bit 6 is set to 1 to
indicate that the entry is the last one for the item.

Table 9-3: Each long-file-name entry can store up to 13 characters.
Byte Size (bytes) Description

0 1 Ordinal field: the order of this entry in the series of
LFN entries

1 2 Unicode character 1

3 2 Unicode character 2

5 2 Unicode character 3

7 2 Unicode character 4

9 2 Unicode character 5

11 1 Attributes. Must have bits 0–3 set.

12 1 Type. Set to zero to indicate a LFN entry.

13 1 Checksum

14 2 Unicode character 6

16 2 Unicode character 7

18 2 Unicode character 8

20 2 Unicode character 9

22 2 Unicode character 10

24 2 Unicode character 11

26 2 Cluster. Must equal zero. Included for
compatibility with disk utilities.

28 2 Unicode character 12

30 2 Unicode character 13

Directories

 209

Figure 9-2 shows a directory entry for a file named “This is a long file
name.txt”. The entry at 00C0h contains the 8.3 file name and extension
(“THISIS~1” and “TXT”). The entry at 00A0h contains the first 13 charac-
ters in the long file name: “This ”, “is a l”, “on”. The entry at 0080h con-
tains the next 13 characters: “g fil”, “e name”, and “.t”. The entry at 0060h
contains the final two characters: “xt”, with the remaining character loca-
tions set to FFFFh.

The characters in the LFN entry with the highest ordinal number appear
first in the file name, with the rest following in sequence. The entry that fol-
lows the LFN entry with an ordinal number of 1 is the 8.3 entry.

In the attributes field, bits 0–3 are all set to 1 to indicate that the entry is a
long-file-name entry. The cluster field is maintained for compatibility with
the 8.3 entries and should equal zero.

The Checksum
A checksum field matches an LFN entry with its 8.3 entry. The LFNCheck-
sum function shows how to compute the checksum. The function accepts
an 11-character 8.3 file name (without the dot) and returns the checksum.
int LFNChecksum(char * ShortFileName){

 int Bit7;

 int Character;

 int Checksum = 0;

Figure 9-2: A file with the name “This is a long file name.txt” requires four
32-byte entries. The 8.3 file name is THISIS~1.TXT.

Chapter 9

210

 // Step through the 11 characters in the short file name.

 for (Character = 0; Character < 11; ++Character){

 // Save bit 0’s value in Bit7.

 if (1 & Checksum) {

 Bit7 = 0x80; }

 else {

 Bit7 = 0x0; }

 // Shift the checksum right.

 Checksum = Checksum >> 1;

 // Add bit 7 to the result.

 Checksum = Checksum | Bit7;

 // Add the next character in the file name.

 Checksum += ShortFileName[Character];

 // Truncate the result to 8 bits.

 Checksum = Checksum & 0xFF;

 }

 // The result after stepping through all 11 characters is the checksum.

 return(Checksum);

}

Creating a Short File Name
To convert a long file name to a short file name to store in an 8.3 entry, fol-
low these steps:

1. Delete any spaces.

2. Delete any dots except the last dot before the extension, if present.

Directories

 211

3. Truncate the name portion (before the dot) to six characters.

4. If there is an extension, truncate it to three characters.

5. Convert all characters from Unicode to ANSI or another 8-bit character
set.

6. Convert all characters to upper case.

7. Convert any illegal 8.3 characters to underscores (_).

8. The seventh character is a tilde (~).

9. Set the eighth character to the lowest number that results in a unique file
name, beginning with 1.

For example, the long file name johnsmith.txt becomes JOHNSM~1.TXT,
and the long file name johnsmythe.txt in the same directory becomes
JOHNSM~2.TXT. If the number following the ~ is greater than 9, the
name preceding the ~ must be truncated further to enable creating a unique
short file name. When five or more names have the same initial characters
and extensions, Windows XP Professional uses a slightly different method to
create the short file names.

Using Directories
Device firmware that supports a file system must be able to read information
from directory entries and create and update directory entries when a file is
created or written to. The code that follows performs these functions.

Storing an Entry
A DIRENTRY structure can store a directory entry’s 32 bytes:
#define DIR_NAMESIZE 8

#define DIR_EXTENSION 3

#define NULL 0

#define FALSE 0

#define TRUE !FALSE

Chapter 9

212

typedef struct __DIRENTRY

{

 char DIR_Name[DIR_NAMESIZE]; // name

 char DIR_Extension[DIR_EXTENSION]; // extension

 byte DIR_Attr; // attributes

 byte DIR_NTRes; // reserved by NT

 byte DIR_CrtTimeTenth; // time created, tenths of second portion

 word DIR_CrtTime; // time created

 word DIR_CrtDate; // date created

 word DIR_LstAccDate; // last access date

 word DIR_FstClusHI; // high word of entry's first cluster number

 word DIR_WrtTime; // last update time

 word DIR_WrtDate; // last update date

 word DIR_FstClusLO; // low word of entry's first cluster number

 dword DIR_FileSize; // file size

}_DIRENTRY;

typedef _DIRENTRY * DIRENTRY;

Reading an Entry
The Cache_File_Entry function returns a DIRENTRY structure containing
the 32 bytes of a directory entry. The function accepts a pointer to a FILE
structure (fo), a pointer to the number of the entry within its directory
(curEntry), and a value (ForceRead) that helps the code decide whether to
read a sector from the media or use the data in the passed FILE structure’s
dsk -> buffer member.

If ForceRead is true, the function retrieves a sector from the storage media.
If ForceRead is false, the function reads a sector from the storage media only
if an entry is the first one in a sector. Otherwise the function uses the data in
the passed buffer. Firmware can thus call the function repeatedly to retrieve
a directory’s entries in sequence while reading from the media only when
beginning a new sector. The FindEmptyEntries function in Chapter 10 uses
the ForceRead parameter in this way.

In the passed file structure, the dirclus member must contain the number of
the first cluster of the entry’s directory. If ForceRead is false, the dirccls
member must contain a directory-cluster number where the code should
begin looking for the entry. To begin looking at the beginning of the direc-
tory, dirccls should equal dirclus.

Directories

 213

This function is the most complicated one in this book. Examine the com-
ments carefully to understand it.
// A 512-byte sector can hold sixteen 32-byte directory entries.

#define DIRENTRIES_PER_SECTOR 0x10

DIRENTRY Cache_File_Entry(FILEOBJ fo, word * curEntry, byte ForceRead)

{

 word ccls;

 word cluster;

 DIRENTRY dir;

 DISK *dsk;

 byte numofclus;

 byte offset2;

 dword sector;

 // Save the file structure’s DISK member.

 dsk = fo -> dsk;

 // Save the number of the first cluster of the file’s directory.

 cluster = fo -> dirclus;

 // Save the number of the directory cluster to begin looking for the file in.

 // This value is unused if ForceRead is true.

 ccls = fo -> dirccls;

 // Get the number of the entry’s sector within the directory.

 // A sector can hold 16 directory entries. Shift right 4 times to get the entry number.

 // For example, if curEntry < 10h, it’s the directory’s first sector and offset2 = 0.

 // If curEntry >= 10h and < 20h, it’s the directory’s second sector and offset2 = 1.

 offset2 = (*curEntry >> 4);

 offset2 = offset2; // emulator issue

 if (cluster != 0)

 // It’s not the root directory.

 // To get the number of the entry’s sector within its cluster,

 // divide the sector number obtained above by the number of sectors per cluster.

 // The remainder (offset2) is the sector’s number within its cluster.

Chapter 9

214

 // (The first sector is sector 0.)

 offset2 = offset2 % (dsk -> SecPerClus);

 if (ForceRead || (*curEntry & 0xf) == 0)

 {

 // ForceRead is true OR the entry is the first one in a sector ((*curEntry & 0xf) == 0).

 // If either Condition 1 or Condition 2 below is true,

 // don’t assume that ccls is the cluster to begin looking in for the entry to read.

 // Instead, read the entry’s cluster number from the FAT:

 // Condition 1: ForceRead is true.

 // Condition 2: the entry IS in a cluster’s first sector (offset2 = 0)

 // AND the entry ISN’T in the directory’s first cluster (*curEntry > 16).

 if ((offset2 == 0 && (*curEntry) > DIRENTRIES_PER_SECTOR) || ForceRead)

 {

 if (cluster == 0)

 {

 // It’s the root directory. The current cluster = 0.

 ccls = 0;

 }

 else

 {

 // It’s not the root directory.

 if (ForceRead)

 // Get the number of curEntry’s cluster within its directory:

 // (curEntry / directory entries per cluster)

 // directory entries per cluster =

 // ((directory entries / sector) * (sectors / cluster))

 numofclus =

 ((word)(*curEntry) /

 (word)(((word)DIRENTRIES_PER_SECTOR)

 * (word)dsk -> SecPerClus));

Directories

 215

 else

 // The entry is in a cluster’s first sector

 // AND the entry’s cluster isn’t the first one in the directory

 // AND it’s not the root directory.

 // Get the next cluster number.

 numofclus = 1;

 // To find the cluster containing curEntry,

 // get the directory’s cluster numbers from the FAT until reaching the

 // cluster specified by numofclus or the directory’s last cluster.

 // On entering the loop, ccls = the passed dsk -> dircclus member.

 while (numofclus)

 {

 // Read the next cluster number from the current cluster’s FAT entry.

 ccls = FATread(dsk, ccls);

 if (ccls >= LAST_CLUSTER)

 // There is no next cluster.

 break;

 else

 numofclus--;

 }

 }

 } // End: read a cluster number from the FAT.

 // We have a cluster number for the entry, either retrieved from the FAT

 // or obtained from the passed FILE structure.

 // If ccls is an EOC marker (LAST_CLUSTER code),

 // the directory doesn’t have as many clusters as we thought. We can’t get the entry.

 if (ccls < LAST_CLUSTER)

 {

 // The current cluster isn’t the last one in the file.

 // We need to read a sector from the media.

 // Store the cluster number in the FILE structure.

 fo -> dirccls = ccls;

Chapter 9

216

 // Get the LBA of the cluster’s first sector.

 sector = Cluster2Sector (dsk, ccls);

 // If it’s the root directory (cluster 0), be sure that curEntry’s sector isn’t

 // at or beyond the start of the volume’s data area.

 // (curEntry’s sector = the cluster’s initial sector (sector) +

 // the number of the sector in the cluster containing curEntry (offset2))

 if (ccls == 0 && (sector + offset2) >= dsk->data)

 {

 dir = ((DIRENTRY)NULL);

 }

 else

 {

 // The sector is in a valid location

 // (either the root-directory area or the volume’s data area).

 // Read the data in the sector containing curEntry.

 // sector = the cluster’s first sector.

 // offset2 = the number of the sector within the cluster.

 if (SectorRead(sector + offset2, dsk->buffer) != sdcValid)

 dir = ((DIRENTRY)NULL);

 else

 {

 // The sector read was successful.

 // Get the requested entry.

 if (ForceRead)

 // The directory entry is in the DISK structure’s buffer member.

 // ((*curEntry) % DIRENTRIES_PER_SECTOR) =

 // the number of the entry within the sector.

 dir = (DIRENTRY)((DIRENTRY)dsk -> buffer)

 + ((*curEntry) % DIRENTRIES_PER_SECTOR);

Directories

 217

 else

 // ForceRead is false, so the entry is the first one in the DISK

 // structure’s buffer member.

 // (from the if (ForceRead | (*curEntry & 0xf) == 0) test above)

 dir = (DIRENTRY)dsk -> buffer;

 }

 } // End: read an entry from the media

 } // End: a valid cluster was found

 else

 // The cluster number wasn’t valid.

 dir = ((DIRENTRY)NULL);

 }

 else

 // ForceRead is false AND curEntry isn’t the first entry in the sector.

 // OK to read the directory entry directly from the passed DISK structure’s buffer.

 // (No need to read a sector from the storage media.)

 // ((*curEntry) % DIRENTRIES_PER_SECTOR) =

 // the number of the entry within the sector.

 dir =

 (DIRENTRY)((DIRENTRY)dsk -> buffer) +

 ((*curEntry) % DIRENTRIES_PER_SECTOR);

 return(dir);

}

Getting the Main Entry
The LoadDirAttrib function returns a file’s 8.3 entry in DIRENTRY struc-
ture. The function accepts a FILEOBJ pointer to a FILE structure (fo) and a
pointer to the number of the file’s entry in its directory (fHandle). The func-
tion ignores any long-file-name entries.

The function calls the Cache_File_Entry function in this chapter. In the
passed file structure, the dirclus member must contain the number of the
first cluster of the file’s directory.

Chapter 9

218

#define ATTR_LONG_NAME 0x0f

#define DIR_DEL 0xE5 // deleted entry

#define DIR_EMPTY 0 // all entries that follow are empty

#define NULL 0

DIRENTRY LoadDirAttrib(FILEOBJ fo, word *fHandle)

{

 DIRENTRY dir;

 byte a;

 // Get the directory entry and store the sector with the entry

 // in the FILE structure’s dsk -> buffer member.

 dir = Cache_File_Entry(fo, fHandle, TRUE);

 // Read the first character of the file name.

 a = dir -> DIR_Name[0];

 if (a == DIR_EMPTY)

 dir = (DIRENTRY)NULL; // The entry is empty.

 if (dir != (DIRENTRY)NULL)

 {

 if (a == DIR_DEL)

 dir = (DIRENTRY)NULL; // The entry is deleted.

 else

 {

 // The entry exists. Get the directory’s attributes.

 a = dir -> DIR_Attr;

Directories

 219

 // Get the first entry that isn’t a long-file-name entry.

 while (a == ATTR_LONG_NAME)

 {

 (*fHandle)++;

 // Retrieve a directory entry and get the attributes.

 // The ForceRead parameter is false

 // to prevent unnecessary sector reads.

 dir = Cache_File_Entry(fo, fHandle, FALSE);

 a = dir -> DIR_Attr;

 }

 }

 }

 return(dir);

}

Updating an Entry
The Write_File_Entry function accepts a FILEOBJ pointer to a FILE struc-
ture and a pointer to the number of the file’s entry in its directory (curEn-
try). The FILE structure’s dsk -> buffer member must contain the contents
of the sector to be written, and the dirccls member must contain the num-
ber of the entry’s directory cluster. The function calculates the sector to
write to and writes the contents of the buffer to the storage media.

The function calls the SectorWrite function from Chapter 5 and the
Cluster2Sector function from Chapter 8.
byte Write_File_Entry(FILEOBJ fo, word *curEntry)

{

 word ccls;

 DISK *dsk;

 byte offset2;

 dword sector;

 byte status;

 // Save the FILE structure’s dsk member and directory cluster.

 dsk = fo -> dsk;

 ccls = fo -> dirccls;

Chapter 9

220

 // A sector can hold 16 directory entries.

 // Shift right 4 times to get the number of the sector within the directory.

 // If curEntry < 10h, it’s the directory’s first sector and offset2 = 0.

 // If curEntry >= 10h and < 20h, it’s the directory’s second sector and offset2 = 1.

 offset2 = (*curEntry >> 4);

 // If it’s not the root directory,

 // divide the sector number obtained above by the number of sectors per cluster.

 // The remainder (offset2) is the sector number within the cluster.

 if (ccls != 0)

 offset2 = offset2 % (dsk -> SecPerClus);

 // Get the sector number of the passed directory cluster.

 sector = Cluster2Sector(dsk, ccls);

 // Write the data in dsk -> buffer to the entry’s sector in the media.

 if (SectorWrite(sector + offset2, dsk -> buffer) != sdcValid)

 status = FALSE;

 else

 status = TRUE;

 return(status);

}

Updating the Time and Date
The IncrementTimeStamp function accepts a DIRENTRY structure (dir)
and writes time and date information in the fields that hold the file’s
last-modified time and date.

The function emulates a real-time clock for systems that don’t have one. The
function increments the time in units of two seconds on each write. A sys-
tem with a real-time clock should of course obtain the current values from
the clock and store these in the DIRENTRY structure.

Directories

 221

void IncrementTimeStamp(DIRENTRY dir)

{

 byte seconds;

 byte minutes;

 byte hours;

 byte day;

 byte month;

 byte year;

 // Get the time and date information from the passed DIRENTRY structure.

 seconds = (dir -> DIR_WrtTime & 0x1f);

 minutes = ((dir -> DIR_WrtTime & 0x07E0) >> 5);

 hours = ((dir -> DIR_WrtTime & 0xF800) >> 11);

 day = (dir -> DIR_WrtDate & 0x1f);

 month = ((dir -> DIR_WrtDate & 0x01E0) >> 5);

 year = ((dir -> DIR_WrtDate & 0xFE00) >> 9);

 // Increment the time.

 // Seconds is in units of 2 seconds (0-29).

 if (seconds < 29)

 seconds++;

 else

 {

 seconds = 0x00; // It’s a new minute.

 if (minutes < 59)

 {

 minutes++;

 }

 else

 {

 minutes = 0; // It’s a new hour.

 if (hours < 23)

 {

 hours++;

 }

Chapter 9

222

 else

 {

 hours = 0; // It’s a new day.

 if (day < 28)

 {

 day++;

 }

 else

 {

 day = 1; // It’s a new month. (Assumes 28 days/month.)

 if (month < 12)

 {

 month++;

 }

 else

 {

 month = 1; // It’s a new year.

 year++;

 }

 }

 }

 }

 }

 dir->DIR_WrtTime = (word)(seconds);

 dir->DIR_WrtTime |= ((word)(minutes) << 5);

 dir->DIR_WrtTime |= ((word)(hours) << 11);

 dir->DIR_WrtDate = (word)(day);

 dir->DIR_WrtDate |= ((word)(month) << 5);

 dir->DIR_WrtDate |= ((word)(year) << 9);

}

 223

10

File Operations
After the storage media has been formatted with a file system, firmware can
create, read, modify, and delete files. This chapter presents firmware that
performs these operations.

The code in this chapter uses the FILE and DISK structures introduced in
Chapter 8 and the DIRENTRY structure introduced in Chapter 9.

The functions that access files use return values of type CETYPE:
typedef byte CETYPE;

#define CE_GOOD 0 // No error

#define CE_NOT_INIT 6 // Card isn’t initialized due to an error

#define CE_BAD_SECTOR_READ 7 // Error in reading a sector

#define CE_WRITE_ERROR 8 // Couldn’t write to the sector

#define CE_FILE_NOT_FOUND 10 // Couldn’t find the file

#define CE_DIR_FULL 17 // All of the entries are in use

#define CE_DISK_FULL 18 // All of the clusters are full

#define CE_WRITE_PROTECTED 22 // The card is write protected

#define CE_BADCACHEREAD 28 // Sector read failed

#define CE_EOF 61 // End of file reached

Chapter 10

224

Cluster Operations
In creating and writing to files, a mass-storage host must be able to allocate
clusters to files. A host might also want to erase the contents of a cluster.
The following functions show how to perform these operations.

Erasing a Cluster
Deleting a file typically just removes the directory entry and marks the file’s
cluster(s) as available. The clusters may still contain data from the deleted
file. When allocating an available cluster to a new file, the host may want to
erase the cluster’s contents by writing zero to each of the cluster’s bytes.

The EraseCluster function accepts pointer to a DISK structure (disk) and a
cluster number to erase (cluster) and returns a status code. The function
calls the SectorWrite function from Chapter 5 and the Cluster2Sector func-
tion from Chapter 8.
byte EraseCluster(DISK *disk, word cluster)

{

 byte index;

 byte NumofSectors;

 dword SectorAddress;

 // Get the LBA of the passed cluster number.

 SectorAddress = Cluster2Sector(disk, cluster);

 // Set the buffer's data to zeroes.

 memset(disk -> buffer, 0x00, SDC_SECTOR_SIZE);

 // Write the buffer's contents to the sector in the storage media.

 for (index = 0; index < disk -> SecPerClus && error == CE_GOOD; index++)

 {

 if (SectorWrite(SectorAddress++, disk -> buffer) != sdcValid)

 error = CE_WRITE_ERROR;

 }

 return(error);

}

File Operations

 225

Reserving an Available Cluster
The FILECreateHeadCluster function reserves an available cluster, which
the host can then allocate to a file. The function accepts a pointer to a FILE
structure (fo) and a pointer to a variable that will contain the number of a
reserved, empty cluster (cluster). The function returns a status code.

The function calls the FATfindEmptyCluster and FATwrite functions from
Chapter 8, the LoadDirAttrib function from Chapter 9, and the EraseClus-
ter function above.
CETYPE FILECreateHeadCluster(FILEOBJ fo, word *cluster)

{

 word curcls;

 DISK *disk;

 // Save the FILE structure’s dsk member.

 disk = fo -> dsk;

 // Use the FAT to find an available cluster.

 *cluster = FATfindEmptyCluster(fo);

 if (*cluster == 0)

 error = CE_DISK_FULL;

 else

 {

 // Mark the cluster as in use and the last one in the chain.

 if (FATwrite(disk, *cluster, LAST_CLUSTER_FAT16) == FAIL)

 error = CE_WRITE_ERROR;

 // Erase the cluster's contents.

 if (error == CE_GOOD)

 {

 error = EraseCluster(disk,*cluster);

 }

 }

 return(error);

}

Chapter 10

226

Allocating a File’s First Cluster
The CreateFirstCluster function stores a cluster number in a file’s directory
entry. The function accepts a pointer to a FILE structure (fo) and returns a
status code. The function calls the LoadDirAttrib and Write_File_Entry
functions from Chapter 9 and the FILECreateHeadCluster function above.
CETYPE CreateFirstCluster(FILEOBJ fo)

{

 word cluster;

 DIRENTRY dir;

 CETYPE error;

 word fHandle;

 // Save the number of the file’s entry in the directory.

 fHandle = fo -> entry;

 // Allocate a cluster for the file.

 if ((error = FILECreateHeadCluster(fo, &cluster)) == CE_GOOD)

 {

 // Get the file's directory entry.

 dir = LoadDirAttrib(fo, &fHandle);

 // Store the file's cluster number in the directory entry.

 dir -> DIR_FstClusLO = cluster;

 // Write the entry to the directory.

 if (Write_File_Entry(fo, &fHandle) != TRUE)

 error = CE_WRITE_ERROR;

 }

 return(error);

}

Allocating Additional Clusters
If a write operation needs additional storage beyond the clusters allocated to
a file, the host must find a new available cluster and allocate it to the file.
Another situation where the host needs to allocate an additional cluster is

File Operations

 227

when adding an entry to a subdirectory whose cluster(s) are full. The
FILEallocate_new_cluster function can perform these tasks.

The function accepts a FILEOBJ pointer to a FILE structure, finds an avail-
able cluster, adds the cluster to the file’s cluster chain in the FAT, sets the
FILE structure’s ccls member to the new cluster’s number, and returns a sta-
tus code. The function calls the FATfindEmptyCluster and FATwrite func-
tions from Chapter 8.
byte FILEallocate_new_cluster(FILEOBJ fo)

{

 word c;

 word curcls;

 DISK *dsk;

 // Save the FILE structure’s dsk and ccls members.

 dsk = fo -> dsk;

 c = fo -> ccls;

 // Find an empty cluster.

 c = FATfindEmptyCluster(fo);

 if (c == 0)

 return CE_DISK_FULL;

 // Mark the cluster as used and as the last one in the chain.

 FATwrite(dsk, c, LAST_CLUSTER_FAT16);

 // Write the cluster’s number in the FAT entry for the FILE structure’s ccls member.

 curcls = fo -> ccls;

 FATwrite(dsk, curcls, c);

 // Set the FILE structure’s ccls member to the new, empty cluster’s number.

 fo -> ccls = c;

 return CE_GOOD;

}

Chapter 10

228

Managing Files
To prepare to read or write to a file, a host must obtain information about
the file from the file’s directory entry. A host might also need to create or
delete a file. The functions that follow show how to perform these opera-
tions.

Obtaining File Information
The Fill_File_Object function reads information from a file’s directory entry
and stores the information in a FILE structure. The function accepts a
pointer to a FILE structure (fo) and a pointer to the number of the file’s
entry in its directory (fHandle). The function returns a status code. The
FILEfind function later in this chapter shows how to find the number of a
file’s directory entry.

The function calls the Cache_File_Entry function from Chapter 9.
Cache_File_Entry is called with ForceRead false, so in the FILE structure
passed to the function, the dsk -> buffer member must contain the sector
with the file’s directory entry (unless it’s the first entry in a sector), the
dirclus member must contain the number of the first cluster in the file’s
directory, and the dirccls member must contain the dirclus value or another
directory-cluster number where the code should begin looking for the entry.

Defines
#define DIR_DEL 0xe5 // deleted entry

#define DIR_EMPTY 0 // last entry in a directory

#define FOUND 0 // directory entry match

#define NOT_FOUND 1 // directory entry not found

#define NO_MORE 2 // no more files found

File Operations

 229

The Function
byte Fill_File_Object(FILEOBJ fo, word *fHandle)

{

 byte a;

 byte character;

 DIRENTRY dir;

 byte index;

 byte status;

 dword temp;

 byte test = 0;

 // Get the file’s directory entry.

 // Assumes that fo -> dsk -> buffer contains the sector containing the entry to read

 // (unless it’s the first entry in a sector).

 dir = Cache_File_Entry(fo, fHandle, FALSE);

 // Read the first character of the file name from the entry.

 a = dir -> DIR_Name[0];

 if (dir == (DIRENTRY)NULL || a == DIR_EMPTY)

 {

 status = NO_MORE; // The entry doesn’t exist or is empty.

 }

 else

 {

 if (a == DIR_DEL)

 status = NOT_FOUND; // The entry is deleted.

 else

 {

 status = FOUND;

Chapter 10

230

 // An entry exists. Store the entry’s name in the file structure’s name member.

 for (index=0; index < DIR_NAMESIZE; index++)

 {

 character = dir -> DIR_Name[index];

 fo -> name[test++] = character;

 }

 // If the entry has an extension, store it in the file’s structure’s name member.

 character = dir -> DIR_Extension[0];

 if (character != ' ')

 {

 for (index = 0; index < DIR_EXTENSION; index++)

 {

 character = dir->DIR_Extension[index];

 fo -> name[test++] = character;

 }

 }

 // Store the passed entry number.

 fo -> entry = *fHandle;

 // Store the entry’s file size.

 fo -> size = (dir -> DIR_FileSize);

 // Store the entry’s initial cluster number.

 temp = (dir -> DIR_FstClusHI << 16);

 temp |= dir -> DIR_FstClusLO;

 fo -> cluster = temp;

 // Store the entry’s date and time.

 fo -> time = (dir -> DIR_WrtTime);

 fo -> date = (dir -> DIR_WrtDate);

File Operations

 231

 // Store the entry’s attributes.

 a = dir->DIR_Attr;

 fo -> attributes = a;

 } // End: the entry isn’t deleted

 } // End: an entry exists

 return(status);

}

Finding a File
The FILEfind function searches for a specific file in a directory or for an
empty entry. The function accepts two FILEOBJ pointers to FILE struc-
tures. One structure (foCompareTo) contains a file name to search for and
the other (fodest) will hold information about a file or empty entry if found.
The third parameter (cmd) indicates whether to search for an entry that
matches the file name in foCompareTo (1) or an empty entry (2). The func-
tion returns a status code.

The function calls the Cache_File_Entry function from Chapter 9 and the
Fill_File_Object function above. In the passed file structure, the dirclus
member must contain the number of the first cluster in the directory to
search.
#define ATTR_MASK 0x3f

#define ATTR_HIDDEN 0x02

#define ATTR_VOLUME 0x08

#define FOUND 0 // directory entry match

CETYPE FILEfind(FILEOBJ foDest, FILEOBJ foCompareTo, byte cmd)

{

 word attrib;

 byte character;

 word fHandle = 0;

 byte index;

 byte state;

 CETYPE statusB = CE_FILE_NOT_FOUND;

 byte test;

Chapter 10

232

 // Set the destination FILE structure’s current cluster to the directory’s cluster.

 foDest -> dirccls = foDest -> dirclus;

 // Read a directory entry.

 if (Cache_File_Entry(foDest, &fHandle, TRUE) == NULL)

 {

 statusB = CE_BADCACHEREAD;

 }

 else

 {

 // Read entries until finding the file or the end of the directory.

 while (1)

 {

 if (statusB!=CE_GOOD)

 {

 // Store information about the file.

 state = Fill_File_Object(foDest, &fHandle);

 if (state == NO_MORE)

 {

 // The entry doesn’t exist or is empty.

 break;

 }

 }

 else

 {

 // There was a problem in reading the file information.

 break;

 }

 if (state == FOUND)

 {

 // An entry was found. Read the attributes.

 attrib = foDest -> attributes;

 attrib &= ATTR_MASK;

File Operations

 233

 // If the entry is for a volume ID or hidden file, skip it.

 if ((attrib != ATTR_VOLUME) && (attrib & ATTR_HIDDEN) != ATTR_HIDDEN)

 {

 statusB = CE_GOOD;

 character = (byte)'m'; // random value

 // Look for a name match.

 for (index = 0; (statusB == CE_GOOD) && index < DIR_NAMECOMP; index++)

 {

 // Get a character from the found file’s name.

 character = foDest -> name[index];

 // Get the corresponding character from the file name we’re searching for.

 test = foCompareTo -> name[index];

 if (tolower(character) != tolower(test))

 // Quit the loop if a character doesn’t match.

 statusB = CE_FILE_NOT_FOUND;

 }

 }

 } // End: An entry was found.

 else

 {

 // An empty or deleted entry was found.

 if (cmd == 2)

 statusB = CE_GOOD;

 }

 // Increment the number of the entry in the directory.

 fHandle++;

 } // End: loop until found or end of directory.

 } // End: Cache_File_Entry was successful.

 return(statusB);

}

Chapter 10

234

Creating a Directory Entry
After finding an empty entry, a host can store information about a new file
or subdirectory. The PopulateEntries function accepts pointers to a FILE
structure (fo), a file name (name), and the number of the file’s entry in its
directory (fHandle). The function stores the file name and other informa-
tion in the entry and returns a status code.

The function calls the Cache_File_Entry and Write_File_Entry functions
from Chapter 9. In the passed file structure, the dirclus member must con-
tain the number of the first cluster in the entry’s directory.

#define ATTR_ARCHIVE 0x20

#define DIR_NAMECOMP (DIR_NAMESIZE + DIR_EXTENSION) // 11

byte PopulateEntries(FILEOBJ fo, char *name , word *fHandle)

{

 byte csum;

 DIRENTRY dir;

 byte error = CE_GOOD;

 byte index;

 byte nameptr;

 byte temp;

 // Get the file’s directory entry.

 // The FILE structure’s dirclus member is the first cluster

 // of the directory containing the entry to read.

 dir = Cache_File_Entry(fo, fHandle, TRUE);

 // Copy information into the entry.

 strncpy(dir -> DIR_Name, name, DIR_NAMECOMP);

 dir -> DIR_Attr = ATTR_ARCHIVE;

 dir -> DIR_NTRes = 0x00;

File Operations

 235

 // A system with a real-time clock would retrieve these values from the clock

 // instead of using these fixed values.

 dir -> DIR_CrtTimeTenth =0x64; // creation time, hundredths of a second (1 sec.)

 dir -> DIR_CrtTime = 0x43C5; // creation time (8:30:10)

 dir -> DIR_CrtDate = 0x34B0; // creation date (5/16/2006)

 dir -> DIR_LstAccDate = 0x34B0; // last access date

 dir -> DIR_FstClusHI = 0x0000; // high word of this enty's first cluster number

 dir -> DIR_WrtTime = 0x43C6; // last modified time (8:30:12)

 dir -> DIR_WrtDate = 0x34B0; // last modified date

 dir->DIR_FstClusLO = 0x0000; // low word of this entry's first cluster number

 dir->DIR_FileSize = 0x0; // file size

 // Save information in the file structure.

 fo -> size = dir -> DIR_FileSize;

 fo -> time = dir -> DIR_CrtTime;

 fo -> date = dir -> DIR_CrtDate;

 fo -> attributes = dir -> DIR_Attr;

 fo -> entry = *fHandle;

 // Write the entry to the directory.

 Write_File_Entry(fo,fHandle);

 return(error);

}

Finding an Available Entry
To create a file, the host must find an available entry in the directory the file
will reside in. The FindEmpyEntries function performs this task. The func-
tion accepts a pointer to a FILE structure (fo) that contains the number of a
directory’s first cluster and a pointer to a variable that will hold the number
of the found entry within the directory (fHandle). To start at the beginning
of the directory, fHandle should equal zero. In the passed file structure, the
dirclus member must contain the number of the first cluster in the directory
to search. The function returns a status code. The function calls the
Cache_File_Entry function from Chapter 9 and the
FILEAllocate_New_Cluster function above. (The FILEfind function in this
chapter can also find an available directory entry.)

Chapter 10

236

byte FindEmptyEntries(FILEOBJ fo, word *fHandle)

{

 byte a;

 byte amountfound;

 word bHandle;

 DIRENTRY dir;

 byte status = NOT_FOUND;

 // Call Cache_File_Entry with the ForceRead parameter = TRUE

 // to read the directory’s sector from the media into fo -> dsk -> buffer.

 // fHandle contains the number of the entry to read in the directory.

 if ((dir = Cache_File_Entry(fo, fHandle, TRUE)) == NULL)

 {

 status = CE_BADCACHEREAD;

 }

 else

 {

 while (status == NOT_FOUND)

 {

 amountfound = 0;

 bHandle = *fHandle;

 // Look for a deleted or empty entry.

 do

 {

 // Get an entry.

 // Set the ForceRead parameter FALSE so the function reads from the media

 // only when necessary (when starting a new sector).

 dir = Cache_File_Entry(fo, fHandle, FALSE);

 // Read the first character of the file name.

 a = dir -> DIR_Name[0];

 // Increment the entry number.

 (*fHandle)++;

File Operations

 237

 // Stop looking on finding a deleted or empty entry

 // or on reaching the end of the cluster.

 } while ((a == DIR_DEL || a == DIR_EMPTY) && (dir != (DIRENTRY)NULL)

 && (++amountfound < 1));

 if (dir == NULL)

 {

 // It was the cluster's last entry.

 // Get the cluster number of the directory.

 a = fo -> dirccls;

 if (a == 0)

 // It’s the root directory.

 // The root directory is full and can’t be expanded in FAT16.

 status = NO_MORE;

 else

 {

 // It’s not the root directory. Save the current cluster number.

 fo -> ccls = a;

 // Allocate a new cluster to the directory.

 if (FILEallocate_new_cluster(fo) == CE_DISK_FULL)

 status = NO_MORE;

 else

 {

 // The first entry (and all entries) in a new cluster are empty.

 status = FOUND;

 }

 }

 } // End: It’s the cluster’s last entry.

Chapter 10

238

 else

 {

 if (amountfound == 1)

 {

 // An empty cluster was found.

 status = FOUND;

 }

 }

 } // End: while (status == NOT_FOUND)

 // Save the number of the found entry.

 *fHandle = bHandle;

 } // End: search for an entry.

 if (status == FOUND)

 return(TRUE);

 else

 return(FALSE);

}

Creating a File
The CreateFileEntry function creates a new entry for a file in a directory.
The function accepts pointers to a FILE structure (fo) and a variable that
will hold the number of the file’s entry in its directory (fHandle). The func-
tion also allocates a cluster for the file. The function returns a status code.

The function calls the FindEmptyEntries, PopulateEntries, and CreateFirst-
Cluster functions from this chapter. The FILE structure’s name member
holds the name of the file to create.
CETYPE CreateFileEntry(FILEOBJ fo, word *fHandle)

{

 CETYPE error = CE_GOOD;

 byte index;

 char name[11];

 byte size;

File Operations

 239

 // Save the file’s name from the FILE structure.

 for (index = 0; index < FILE_NAME_SIZE; index ++)

 {

 name[index] = fo -> name[index];

 }

 if (error == CE_GOOD)

 {

 *fHandle = 0;

 // Find an empty entry in the directory.

 if (FindEmptyEntries(fo, fHandle))

 {

 // Store the file's data in the entry.

 if ((error = PopulateEntries(fo, name ,fHandle)) == CE_GOOD)

 {

 // Allocate a cluster to the file.

 error = CreateFirstCluster(fo);

 }

 }

 else

 {

 error = CE_DIR_FULL;

 }

 }

 return(error);

}

Deleting a File
To delete an existing file in the FAT16 file system, the storage media’s host
must do the following:

1. Search the file’s directory for the entry containing the name of the file to
delete.

2. Save the cluster number from the file’s directory entry.

3. Mark the directory entry as deleted by storing E5h in the entry’s first byte.

Chapter 10

240

4. Examine the FAT entry for the saved cluster number. If the entry isn’t an
EOC marker, save the cluster number and store 0000h in the entry to mark
it as available.

5. Repeat step 4 until finding an EOC marker. Replace the EOC marker
with 0000h.

The FAT_erase_cluster_chain function accepts a cluster number (cluster)
and a pointer to a DISK structure (dsk) and stores 0000h in all FAT entries
in the chain beginning with the passed cluster number. The function calls
the FATread and FATwrite functions from Chapter 8.
byte FAT_erase_cluster_chain (word cluster, DISK *dsk)

{

 word c;

 word c2;

 enum _status {

 Good,

 Fail,

 Exit

 } status;

 status = Good;

 // Valid cluster numbers start at 2.

 if (cluster == 0 || cluster == 1)

 {

 status = Exit;

 }

 else

 {

 while (status == Good)

 {

 // Get the FAT entry for the passed cluster number.

 if (c = FATread(dsk, cluster)) == FAIL)

 status = Fail;

File Operations

 241

 else

 {

 // Valid cluster numbers start at 2.

 if (c == 0 || c == 1)

 {

 status = Exit;

 }

 else

 {

 c2 = LAST_CLUSTER;

 if (c >= c2)

 // The cluster is the last one in the chain.

 status = Exit;

 // Erase the fat entry by storing an empty-cluster code in the entry.

 if (FATwrite(dsk, cluster, CLUSTER_EMPTY) == FAIL)

 status = Fail;

 // Set the current cluster to the value read from the FAT entry.

 cluster = c;

 }

 }

 } // End: while not the end of the chain and no error.

 }

 if (status == Exit)

 // All of the FAT entries in the chain have been erased.

 return (TRUE);

 else

 return(FALSE);

}

The FILEerase function erases a file’s directory entry and if requested, the
FAT entries for all of the file’s clusters. The function accepts a FILEOBJ

Chapter 10

242

pointer to a file structure (fo), a pointer to a directory entry (fHandle), and a
value (EraseClusters) that indicates whether the function should erase the
FAT entries for all of the file’s clusters.

In the passed file structure, the dirclus member must contain the number of
the first cluster in the directory with the file entry. The function calls the
Cache_File_Entry from Chapter 9 and the FAT_erase_cluster_chain func-
tion above. The function returns a status code.
CETYPE FILEerase(FILEOBJ fo, word *fHandle, byte EraseClusters)

{

 byte a;

 word clus;

 DIRENTRY dir;

 DISK *disk;

 CETYPE status = CE_GOOD;

 // Save the DISK structure.

 disk = fo -> dsk;

 // Set the directory’s current cluster number to the directory’s first cluster.

 clus = fo -> dirclus;

 fo -> dirccls = clus;

 // Read the sector containing the entry to erase.

 dir = Cache_File_Entry(fo, fHandle, TRUE);

 // Was a non-empty, non-deleted entry returned?

 a = dir->DIR_Name[0];

 if (dir == (DIRENTRY)NULL || a == DIR_EMPTY)

 {

 status = CE_FILE_NOT_FOUND;

 }

 else

 {

 if (a == DIR_DEL)

 status = CE_FILE_NOT_FOUND;

File Operations

 243

 else

 {

 a = dir->DIR_Attr;

 // Mark the entry as deleted.

 dir->DIR_Name[0] = DIR_DEL;

 // Save the number of the entry's first cluster.

 clus = dir->DIR_FstClusLO;

 // Write the revised directory entry to delete the file.

 if (status != CE_GOOD || !(Write_File_Entry(fo, fHandle)))

 status = CE_ERASE_FAIL;

 else

 {

 if (EraseClusters)

 {

 // Erase the FAT entries for the file's clusters.

 status =

 ((FAT_erase_cluster_chain(clus, disk)) ? CE_GOOD : CE_ERASE_FAIL);

 }

 }

 } // End: a not empty, not deleted entry was returned

 } // End: a not empty entry was returned

 return (status);

}

Opening a File
The FILEopen function performs several actions to prepare a file for reading
or writing. The function retrieves a file’s directory entry, copies information
from the entry into a FILE structure, initializes other members of the FILE
structure, reads the file’s first sector into the file structure’s dsk -> buffer
member, and sets the file structure’s FLAGS.write member to indicate
whether the file is open for reading or writing.

Chapter 10

244

The function accepts a pointer to a file structure (fo), a pointer to the num-
ber of the file’s entry in its directory (fHandle), and a character that specifies
whether to open the file for append (a), read (r), or write (w). In the passed
file structure, the dirclus member must contain the number of the first clus-
ter in the file’s directory.

The function calls the SectorRead function from Chapter 5, the
Cluster2Sector function from Chapter 8, the Cache_File_Entry function
from Chapter 9, and the Fill_File_Object function from this chapter.

After calling the function, firmware can use the information in the FILE
structure to perform operations on the file’s contents.
CETYPE FILEopen (FILEOBJ fo, word *fHandle, char type)

{

 DISK *dsk;

 CETYPE error = CE_GOOD;

 dword l;

 byte r;

 // Save the FILE structure’s dsk member.

 dsk = (DISK *)(fo -> dsk);

 if (dsk -> mount == FALSE)

 error = CE_NOT_INIT; // The media isn’t available.

 else

 {

 // Get the file’s directory entry and store the directory’s sector

 // in the dsk -> buffer member of the file structure (fo).

 Cache_File_Entry(fo, fHandle, TRUE);

 // Fill the file structure with information from the directory entry.

 r = Fill_File_Object(fo, fHandle);

 if (r != FOUND)

 error = CE_FILE_NOT_FOUND;

File Operations

 245

 else

 {

 // A file was found.

 // Initialize FILE structure members.

 fo -> seek = 0; // Byte offset in the file.

 fo -> ccls = fo -> cluster; // The current cluster = the file’s first cluster.

 fo -> sec = 0; // The sector in the cluster.

 fo -> pos = 0; // The byte in the sector.

 // Determine the LBA of the file’s current cluster.

 l = Cluster2Sector(dsk, fo -> ccls);

 // Read the cluster’s first sector into the DISK structure’s buffer member.

 if (SectorRead(l, dsk -> buffer) != sdcValid)

 error = CE_BAD_SECTOR_READ;

 // Set the FILE structure’s flags.

 fo -> Flags.FileWriteEOF = FALSE;

 if (type == 'w' || type == 'a')

 {

 // Open the file for writing or appending.

 fo -> Flags.write = 1;

 }

 else

 {

 // Open the file for reading.

 fo -> Flags.write = 0;

 }

 } // End: a file was found.

 } // End: the media is available.

 return (error);

}

Chapter 10

246

Reading from a File
The FILEopen function above can prepare to read from a file. Because stor-
age media typically requires reading complete sectors, each read from the
media reads a sector’s worth of data even if the firmware requires just one or
a few bytes.

Tasks
To read a file’s contents, firmware must perform the following actions
(shown in Figure 10-1):

1. Get the file’s size and the number of the file’s first cluster from the direc-
tory entry and convert the cluster number to an LBA sector number.

2. Read data from the cluster’s sector(s).

Figure 10-1: A mass-storage master performs these actions to read the
contents of a file.

File Operations

 247

3. To read more data, get the next cluster number from the current cluster’s
FAT entry, convert the cluster number to an LBA sector number, and read
the data in the cluster’s sector(s).

4. Repeat step 3 as needed until a FAT entry indicates that the entry’s cluster
is the last cluster in the file.

Performing a Read Operation
The fread function reads data from a file into a buffer. The function accepts
a FILEOBJ pointer to a FILE structure (fo), a pointer to a buffer to store the
data to be read (dest), and the number of bytes to read (count). The func-
tion returns a status code. In the FILE structure, pos is the offset to begin
reading from within the sector, seek is the offset to begin reading from
within the file, ccls is the number of the cluster to read from, and sec is the
number of the sector to read within the cluster. The function returns a status
code.

The RAMread macro reads a byte at an address (a) plus an offset (f) in
RAM:
#define RAMread(a, f) *(a + f)

The fread function calls the SectorRead function from Chapter 5 and the
Cluster2Sector and FILEget_next_cluster functions from Chapter 8.
CETYPE fread (FILEOBJ fo, void *dest, word count)

{

 DISK *dsk;

 CETYPE error = CE_GOOD;

 dword l;

 word pos;

 dword seek;

 dword size;

 dword temp;

 dsk = (DISK *)fo -> dsk;

 temp = count;

Chapter 10

248

 // Save the offset to begin reading from within the current sector,

 // the offset to read from within the file, and the file’s size.

 pos = fo -> pos;

 seek = fo -> seek;

 size = fo -> size;

 // Get the sector number of the file’s current cluster.

 l = Cluster2Sector(dsk, fo -> ccls);

 // Add the number of the current sector within the cluster.

 l += (word)fo -> sec;

 // Read the sector’s data.

 if (SectorRead(l, dsk->buffer) != sdcValid)

 error = CE_BAD_SECTOR_READ;

 // Read from the file until finished or an error.

 while (error == CE_GOOD && temp > 0)

 {

 if (seek == size)

 // It’s the end of the file.

 error = CE_EOF;

 else

 {

 // If we’ve reached the end of a sector, load another sector.

 if (pos == SDC_SECTOR_SIZE)

 {

 // Reset the offset within the sector.

 pos = 0;

File Operations

 249

 // Increment the sector number.

 fo -> sec++;

 // The sector number (sec) should be a value between 0 and SecPerClus - 1.

 // If sec = SecPerClus, the sector is the first sector in a new cluster.

 if (fo -> sec == dsk -> SecPerClus)

 {

 // Get the next cluster in the file and start in the cluster’s first sector.

 fo -> sec = 0;

 error = FILEget_next_cluster(fo, 1);

 }

 if (error == CE_GOOD)

 {

 // Get the sector number of the current cluster, which may have changed.

 l = Cluster2Sector(dsk,fo -> ccls);

 // Add the number of the current sector within the cluster.

 l += (word)fo -> sec;

 // Read the sector’s data.

 if (SectorRead(l, dsk -> buffer) != sdcValid)

 error = CE_BAD_SECTOR_READ;

 }

 } // End: load new sector

 if (error == CE_GOOD)

 {

 // A sector’s data is in the DISK structure’s buffer member.

 // Copy a byte from the specified offset (pos) in the DISK structure’s buffer

 // to the dest buffer.

 *(char *)dest = RAMread(dsk -> buffer, pos++);

Chapter 10

250

 dest = dest + 1; // Increment the dest buffer offset.

 seek++; // Increment the number of the byte to copy.

 (temp)--; // Decrement the number of bytes remaining to copy.

 }

 } // End: if not end of file

 } // while no error and more bytes to copy

 // Save the offset within the sector.

 fo->pos = pos;

 // Save the offset within the file.

 fo->seek = seek;

 return(error);

}

Writing to a File
The FILEopen function in this chapter can prepare to write to a file.
Because storage media typically requires writing complete sectors, each write
to the media writes a sector’s worth of data. To write to a portion of a sector,
firmware reads the sector’s contents into a buffer, changes the data in the
desired location(s), and writes the entire buffer back to the storage media. As
Chapter 1 explained, to write to the media, a MultiMediaCard’s controller
may need to erase an entire erase block that contains multiple sectors and
write the data back to the erased sectors, including the new data.

Tasks
To write to an empty file, firmware must perform the following actions
(shown in Figure 10-2):

1. Allocate a cluster in the FAT, store the cluster number in the file’s direc-
tory entry, and convert the cluster number to an LBA sector number.

2. Write data to the cluster’s sector(s).

3. To write more data, search the FAT for an available cluster, store the clus-
ter number in the FAT entry for the file’s current cluster, store an EOC

File Operations

 251

marker in the new cluster’s FAT entry, convert the cluster number to an
LBA sector number, and store the additional data in the cluster’s sector(s).

4. Repeat step 3 as needed until all of the file’s data has been written.

5. Update the file’s directory entry.

To append data to an existing file, before writing to the file, firmware can
get the file’s size from the directory entry and use the value to calculate the
sector and offset to begin writing to the file. To overwrite a file that uses
multiple clusters, firmware can use the FAT to find the clusters already allo-
cated to the file.

Performing a Write Operation
The fwrite function writes a specified number of bytes beginning at a speci-
fied location in a file. The function accepts a FILEOBJ pointer to a FILE

Figure 10-2: A mass-storage master performs these actions to write to an
empty file.

Chapter 10

252

structure (fo), a pointer to a buffer containing the data to write (src), and
the number of bytes to write (count). In the FILE structure, pos is the offset
to begin writing to within the sector, seek is the offset to begin writing to
within the file, ccls is the number of the cluster to write to, and sec is the
number of the sector to write to within the cluster. The function returns a
status code.

The function calls the IsWriteProtected, SectorRead, and SectorWrite func-
tions from Chapter 5, the FILEget_next_cluster and Cluster2Sector func-
tions and RAMWrite macro from Chapter 8, and the
FILEallocate_new_cluster function from this chapter. To enable writing to
the file, Flags.write must be true. The File_Open function in this chapter
sets this value.
CETYPE fwrite(FILEOBJ fo, void * src, word count)

{

 DISK * dsk;

 CETYPE error = CE_GOOD;

 dword l;

 word pos;

 byte sectorloaded = FALSE;

 dword seek;

 dword size;

 word tempo;

 // To enable writing, Flags.write must be true and IsWriteProtected must return false.

 if (fo->Flags.write)

 {

 if (!IsWriteProtected())

 {

 // It’s OK to write to the media.

 tempo = count;

 // Save the file structure’s dsk structure, the offset within the current sector,

 // and the absolute offset in the file.

 dsk = fo -> dsk;

 pos = fo -> pos;

 seek = fo -> seek;

File Operations

 253

 // Get the sector number of the file’s current cluster.

 l = Cluster2Sector(dsk,fo -> ccls);

 // Add the number of the current sector within the cluster.

 l += (word)fo -> sec;

 // Read the sector.

 if (SectorRead(l, dsk->buffer) != sdcValid)

 error = CE_BAD_SECTOR_READ;

 sectorloaded = TRUE;

 // Save the file’s size.

 size = fo -> size;

 // Write to the file until finished or an error.

 while (error == CE_GOOD && tempo > 0)

 {

 if (seek == size)

 {

 // It’s the end of the file. Set the flag.

 fo -> Flags.FileWriteEOF = TRUE;

 }

Chapter 10

254

 // If we’ve reached the end of a sector, write the data to the media and

 // load another sector.

 if (pos == SDC_SECTOR_SIZE)

 {

 if (sectorloaded)

 {

 // The DISK structure’s buffer member contains data to be written.

 // Copy the data to the storage media.

 if (SectorWrite(l, dsk -> buffer) != sdcValid)

 error = CE_WRITE_ERROR;

 }

 // Reset the offset within the sector.

 pos = 0;

 // Increment the sector number.

 fo -> sec++;

 // The sector number (sec) must be a value between 0 and SecPerClus - 1.

 // If sec = SecPerClus, the sector is the first sector in a new cluster.

 if (fo -> sec == dsk -> SecPerClus)

 {

 // Reset the sector number for the new cluster.

 fo -> sec = 0;

 if (fo -> Flags.FileWriteEOF)

 // It’s the end of the file. Allocate a new cluster for additional data.

 error = FILEallocate_new_cluster(fo);

 else

 // Not the end of the file. Get the next cluster allocated to the file.

 error = FILEget_next_cluster(fo, 1);

 }

File Operations

 255

 if (error == CE_DISK_FULL)

 {

 return error;

 }

 if (error == CE_GOOD)

 {

 // Read the next sector from the media.

 // Get the sector number of the file’s current cluster.

 l = Cluster2Sector(dsk, fo -> ccls);

 // Add the number of the current sector within the cluster.

 l += (word)fo -> sec;

 // Read the new sector’s data.

 if (SectorRead(l, dsk -> buffer) != sdcValid)

 error = CE_BAD_SECTOR_READ;

 sectorloaded = TRUE;

 }

 } // End: write a sector to the media and read the next sector.

 if (error == CE_GOOD)

 {

 // A sector’s data is in the DISK structure’s buffer member.

 // Copy a byte from the passed buffer (src) to the

 // specified offset (pos) in the DISK structure’s buffer.

 RAMwrite (dsk -> buffer, pos++, *(char *)src);

 // Increment the offset of the byte to write.

 src = src + 1;

 // Increment the offset of the byte within the file.

 seek++;

Chapter 10

256

 // Decrement the number of bytes remaining to write.

 tempo--;

 }

 if (fo -> Flags.FileWriteEOF)

 // The data was appended to the file, so increment the file size.

 size++;

 } // End: write to the file (except for the last sector).

 // If no error, write the final sector’s data to the media.

 if (error == CE_GOOD)

 {

 // Get the sector number of the current cluster.

 l = Cluster2Sector(dsk, fo -> ccls);

 // Add the number of the current sector within the cluster.

 l += (word)fo -> sec;

 // Copy data from the DISK structure’s buffer item to the storage media.

 if (SectorWrite(l, dsk->buffer) != sdcValid)

 error = CE_WRITE_ERROR;

 }

 // Save the position within the current sector, the byte number within the file,

 // and the file size.

 fo->pos = pos;

 fo->seek = seek;

 fo->size = size;

 }

 else

 error = CE_WRITE_PROTECTED;

 }

File Operations

 257

 else

 error = CE_WRITE_ERROR;

 return(error);

}

Closing a File
When finished writing to a file, firmware must update the file’s directory
entry. The fclose function handles this task. The function accepts a FILE-
OBJ pointer to a FILE structure for the file and returns a status code.

The function calls the LoadDirAttrib, IncrementTimeStamp, and
Write_File_Entry functions from Chapter 9.
CETYPE fclose(FILEOBJ fo)

{

 CETYPE error = CE_GOOD;

 DIRENTRY dir;

 word fHandle;

 // Set fHandle to the number of the file’s entry in its directory.

 fHandle = fo -> entry;

 // Nothing to do if the file wasn’t opened for writing.

 if (fo -> Flags.write)

 {

 // Get the file’s attributes.

 dir = LoadDirAttrib(fo, &fHandle);

 // Update the time and date.

 IncrementTimeStamp(dir);

 // Set the DIRENTRY structure’s DIR_FileSize member to the file’s size.

 dir -> DIR_FileSize = fo -> size;

Chapter 10

258

 // Write the file’s entry in its directory.

 if (Write_File_Entry(fo, &fHandle))

 error = CE_GOOD;

 else

 error = CE_WRITE_ERROR;

 // The file is no longer open for writing.

 fo -> Flags.write = FALSE;

 }

 return(error);

}

 259

11

Embedded Hosts
With support for mass storage, just about any USB host can communicate
with off-the-shelf mass-storage devices, including hard drives and flash
drives. This chapter looks at what’s involved in designing and programming
an embedded system that functions as a USB host. Much of this informa-
tion can be helpful to device designers as well, especially the information
about common device problems that hosts experience.

Inside an Embedded Host
As Chapter 1 explained, a host’s function is in many ways a mirror image of
a device’s function. All USB hosts must detect device attachment and
removal and manage power and bus traffic. Chip vendors typically provide
example firmware for performing these tasks.

On detecting a device with an interface descriptor that specifies the
mass-storage class, a host that supports mass storage should examine the
interface descriptor and the device’s response to a SCSI INQUIRY com-
mand to learn which SCSI command set the device claims to support. The
host can then proceed with other mass-storage communications. A host that

Chapter 11

260

supports a file system can also create, read, write to, and delete files on its
own.

OTG Devices and Conventional Hosts
A USB host in an embedded system can be a conventional USB host or an
On-The-Go device. A system that never functions as a USB device must
function as a conventional host. If the system must function as a USB host
and device at the same time, the system must contain separate SIEs for the
USB host and device functions. The SIEs can be on a single chip or different
chips. If the system functions as both a USB host and device but not both at
the same time, the system can be an OTG device.

Conventional hosts and OTG hosts have different requirements in some
areas. Support for external hubs is required in a conventional host and
optional in an OTG device. A conventional host must provide 500 mA per
port (or 100 mA if battery powered), while an OTG device needs to provide
just 8 mA per port unless a supported peripheral requires more. A conven-
tional host must provide bus power at all times, while an OTG device can
switch off bus power when unneeded.

General Host Functions
The host enumerates each device to learn about its capabilities. To enumer-
ate a device, a host typically issues the following standard USB requests:

Set Address. To set the device’s address on the bus.

Get Descriptor (device). To read the device descriptor.

Get Descriptor (configuration). To read the configuration descriptor and
subordinate descriptors, including the interface and endpoint descrip-
tors.

Set Configuration. To configure the device and enable communications.

The host can also request any string descriptors the device supports, includ-
ing the descriptor containing the serial number.

Figure 11-1 shows bus events and host requests directed to a newly attached
USB flash drive on a Windows XP host. The host requests some descriptors
multiple times and resets the bus after the first Get Descriptor request. This

Embedded Hosts

 261

is one example of host communications. Hosts aren’t required to use this
exact sequence of requests. The device doesn’t need to know or care why the
host is sending a request or resetting the bus and shouldn’t assume anything
about what a host will do next. The device just needs to respond appropri-
ately when something happens.

Mass Storage Functions
After enumeration, a host can use USB requests and SCSI commands to
learn more about a device and to prepare to read and write to the storage
media. Figure 11-2 shows communications from a Windows host after com-

Figure 11-1: Requests sent by a Windows host to enumerate a mass-storage
device. (Screen capture from Ellisys USB Explorer.)

Chapter 11

262

pleting enumeration. These requests and commands are typical for Win-
dows XP, but hosts aren’t required to use this exact sequence:

Get Max LUN. This USB class-specific request asks for the highest LUN
number supported by the device. Devices with single LUNs are the only
ones allowed to stall this request. The host can use the commands below to
initialize communications with each logical unit from zero up to the value
returned.

INQUIRY. The host requests 36 bytes of data about a logical unit.

READ FORMAT CAPACITIES. The host requests a structure containing
one or more descriptors that specify a number of blocks and a block length
that the media can be formatted for.

READ CAPACITY(10). The host requests the highest LBA supported by
the logical unit and the number of bytes in that logical block (typically 512).

READ(10). The host reads sector zero, which should be either an MBR sec-
tor with a partition table or a FAT boot sector (assuming the volume is for-
matted for a FAT file system).

Figure 11-2: Commands used by a Windows host after enumerating a flash
drive. (Screen capture from Ellisys USB Explorer.)

Embedded Hosts

 263

MODE SENSE(6) with PAGE CODE = 1Ch and SUBPAGE CODE =
00h. The host requests the Informational Exceptions Control Mode page in
page_0 format.

MODE SENSE(6) with PAGE CODE = 3Fh and SUBPAGE CODE =
00h. The host requests all mode pages with subpage = 00h in page_0 for-
mat.

TEST UNIT READY. The host requests a CSW and checks the value in
bCSWStatus to determine if the logical unit is ready for use. If bCSWStatus
= 00h, the logical unit is ready. If the value isn’t zero, the host can issue a
REQUEST SENSE command to learn more.

READ(10). The host can use additional READ commands to read the boot
sector, root directory, and other information in a volume.

Handling Non-compliant Devices
Not every mass-storage device complies perfectly with the mass-storage
specifications. The mass-storage drivers in Windows and Linux include
many work-arounds to enable communicating with non-compliant devices.
An embedded host that wants to communicate with a variety of off-the-shelf
devices will need to implement many of these work-arounds. If you’re writ-
ing device firmware, you’ll want to avoid these errors.

In Linux, the source file unusual_devs.h in the USB mass-storage driver lists
non-compliant devices and shows what the operating system does to enable
communicating.

Below are some behaviors found in non-compliant devices.

Descriptor Problems

The device’s bInterfaceSubClass is FFh instead of 06h or another value
defined by the USB mass-storage specifications.

The device’s bInterfaceProtocol is invalid (should be 50h for bulk-only
transport).

The device has no serial number or the serial number has invalid characters
as defined in the bulk-only transport specification.

Multiple devices with the same Vendor ID and Product ID have the same
serial number.

Chapter 11

264

Different device or firmware revisions have the same bcdDevice value.

Control Transfer Problems

A device with multiple LUNs doesn’t implement the Get Max LUN request.

When the endpoint isn’t halted, receiving a Clear Feature
(ENDPOINT_HALT) request for the endpoint causes the device to crash.

On receiving a Clear Feature (ENDPOINT_HALT) request followed by a
Get Status (ENDPOINT) request, the device crashes.

The device doesn’t implement the Bulk-only Mass Storage Reset request
properly. To work around this failure, a host might need to issue a Set Port
Feature (PORT_RESET) request to the device’s hub port.

On receiving a Set Interface request, the device doesn’t reset the data toggles
for the bulk endpoints.

General Problems with Commands

The device has a single LUN but responds to commands for any LUN.

The signature in the CSW is incorrect.

The device returns no data or incorrect data in the dCSWDataResidue field.

The data-transport phase fails unless there is a delay of up to 120 µsecs.
between the end of the command-transport phase and the beginning of the
data-transport phase.

After completing enumeration, the device requires a few seconds before it
responds properly to received CBWs.

In commands where the device may return variable-length data in the
data-transport phase, after returning all available data but less than the
requested amount of data, the device returns 01h (failed) in the bCSWSta-
tus field of the CSW.

The device can only do transfers of 32 KB, or can only do transfers of 32 KB
or less, or returns invalid dCSWDataResidue data in the CSW for transfers
greater than 32 KB.

Embedded Hosts

 265

Problems with Specific SCSI Commands

Specific commands challenge some devices:

INQUIRY

The device crashes if the ALLOCATION LENGTH parameter doesn’t
equal 36.

The device returns an incorrect value in the VERSION field (byte 2). See
the SPC specification or other relevant command-set documents for the cor-
rect values for your device.

The device returns 05h (SPC-3) in the VERSION field but the device
doesn’t support the REPORT LUNS command (mandatory for SPC-3).

The device returns an incorrect value in the ADDITIONAL LENGTH
parameter.

When a UNIT ATTENTION condition exists, the device fails the com-
mand and returns a sense key of UNIT ATTENTION. (The device should
perform the command and should not report or clear the UNIT ATTEN-
TION condition.)

MODE SENSE

The device crashes if the ALLOCATION LENGTH parameter doesn’t
equal 192.

When the PAGE CODE parameter equals 3Fh (Return all subpage 00h
mode pages in page_0 format), the device crashes.

The device doesn’t implement all mode pages required by relevant specifica-
tions.

The device doesn’t implement all mandatory versions of the command.
Read/write devices that are bootable and that don’t have a PDT of 05h
(CD/DVD drive) must support MODE SENSE(10).

PREVENT ALLOW MEDIUM REMOVAL

On receiving the command, the device stops functioning or behaves as if the
storage media is removed even if it isn’t.

READ

The device doesn’t implement all mandatory versions of the command.
Devices that comply with SBC-2 or SBC-3 should implement both
READ(6) and READ(10).

Chapter 11

266

READ CAPACITY

The LOGICAL BLOCK ADDRESS field contains an incorrect value (the
correct value + 1) because the device is reporting the number of sectors
rather than the LBA of the highest sector.

REQUEST SENSE

In devices with removable media, when the media changes, the device
doesn’t set the SENSE KEY to 06h (UNIT ATTENTION) to indicate the
change (required by SBC-2 and SBC-3).

START STOP UNIT

On receiving the command, the device crashes.

WRITE

The device doesn’t implement all mandatory versions of the command.
Writable devices that comply with SBC-2 or SBC-3 should implement both
WRITE(6) and WRITE(10).

Host Options
PCs and other desktop computers are USB hosts that have drivers for com-
municating with mass-storage devices. Several vendors offer USB host-con-
troller chips for use in embedded systems. Just about any of these chips is
suitable for use in a mass-storage host. Many can function as a conventional
host or as an OTG device. To speed up project developing, look for a devel-
opment kit with mass-storage support or use an embedded operating system
that has a mass-storage driver included or available from a third party.

Cypress EZ-HOST
Cypress Semiconductor offers the CY4640 Mass Storage Reference Design
Kit for the CY7C67300 EZ-Host microcontroller.

Embedded Hosts

 267

The chip has two host/device SIEs and four USB transceivers that allow the
device to have any of these configurations:

1 to 4 hosts
1 or 2 devices
1 host and 1 device
1 OTG device and one device-only function
1 OTG device and up to two additional hosts

In a mass-storage host application, the chip can be configured to function as
a mass-storage host, as an OTG device that can function as a mass-storage
host and device, or as a mass-storage host and device at the same time.

The development board also has an IDE interface that connects to a daugh-
ter board that can hold a small hard drive. With a drive attached, the devel-
opment board can function as a USB drive.

The kit includes a GNU C compiler, assembler, linker, debugger, a develop-
ment environment, and utilities. Example firmware supports FAT file sys-
tems and USB host communications with mass-storage devices.

Host Software
Several sources offer software for use in embedded systems functioning as
mass-storage hosts. Windows CE 5.0 includes a USB host mass-storage
driver. Linux includes mass-storage drivers and is suitable for some embed-
ded applications. Other sources offer USB host stacks for use with a variety
of embedded-system operating systems, host controllers, and CPU architec-
tures. Sources for host stacks with mass-storage support include Accelerated
Technology, Intoto, Jungo Ltd., Micro Digital, On Time Software, and
SoftConnex.

A Mass-storage Host Module
Another approach to designing an embedded host is the USBwizTM chip
from GHI Electronics. This is the same company that offers the uALFAT
chip described in Chapter 8. The USBwiz is a Philips LPC2138 ARM pro-
cessor programmed to support FAT file systems and several USB device
classes, including mass storage. The chip interfaces to a Philips ISP1160
USB host controller chip.

Chapter 11

268

The USBwiz-OEM (Figure 11-3) is a circuit board that contains a USBwiz,
an ISP1160, a MultiMediaCard/SD-card connector, and dual USB connec-
tors for attaching devices. The USBwiz uses a +3.3V supply. The USB-
wiz-OEM board requires a +5V supply and has an on-board 3.3V regulator.

Microcontrollers can communicate with the USBwiz using an asynchronous
serial interface, SPI, or an I2C bus. The USBwiz responds to commands sent
in text mode, with commands and values sent as ANSI text, or in framed
mode, with commands and values sent as binary values. In text mode, this
command reads E8h bytes from a file opened with handle 0:
RF #0 E8

This command prepares the USBwiz to receive 10h bytes to be written to a
file opened with handle 0Bh:
WF #B 10

On receiving the command above, the USBwiz returns a prompt character
("). The microcontroller writes the 16 bytes to the USBwiz, and the USBwiz
returns a prompt character (") to indicate that the data was received. Framed
mode also supports reading and writing to sectors in the storage media. File
commands enable opening, closing, reading, writing to, and deleting a file.
Directory commands enable creating, changing, listing, and erasing a direc-
tory.

Figure 11-3: The USBwiz-OEM board enables just about any microcontroller to
access USB drives and flash-memory cards.

Embedded Hosts

 269

The USBwiz can interface directly to MultiMediaCard/SD Cards, and the
host controller can communicate with USB drives. The USBwiz assigns
drive letter A: to a connected MultiMediaCard/SD Card and drive letters B:
to K: in sequence to a USB drive’s logical units.

A quick way to experiment with the USBwiz-OEM is to attach a flash drive,
connect the board’s serial port to a PC, and use a terminal program such as
Windows’ Hyperterminal to send commands and receive responses. To con-
nect to a PC, connect the board’s asynchronous serial-port pins to the corre-
sponding pins on a Maxim MAX3232 or similar RS-232 transceiver. If your
PC doesn’t have an RS-232 port, connect the transceiver’s RS-232 pins to
corresponding pins on an RS-232/USB converter. Or use an FTDI Chip to
interface the USBwiz to a PC’s USB port.

This page intentionally left blank

 271

Index

A
absolute time in Pre-Groove (ATIP),

reading, 159
Accelerated Technology, 38, 267
Accept Device Specific Command (ADSC)

request, 46
ACK code, 33
addressing methods, 10
allocating clusters, 226–227
ATA/ATAPI, controllers supporting, 38
ATA (Parallel AT Attachment) interface,

13
ATAPI (ATA with Packet Interface)

interface, 13
ATIP (absolute time in Pre-Groove),

reading, 159
attributes, directories, 202–204
Autorun/Autoplay support, 77

B
backup boot sector, 184
bAlternateSettings field, 51
bcdDevice field, 48
bcdUSB field, 47
bConfigurationValue field, 49
bDescriptorType field

configuration descriptors, 49
device descriptors, 47
endpoint descriptors, 53
interface descriptors, 51
string descriptors, 55

bDeviceClass field, 47

bDeviceProtocol field, 47
bDeviceSubclass field, 47
bEndpointAddress field, 53
bInterfaceClass field, 51
bInterfaceNumber field, 51
bInterfaceProtocol field, 52–53
bInterfaceSubClass field, 51–52
bInterval field, 53–54
BIOS parameter block (BPB)

FAT16, 177–179
FAT32, 181–184

bLength field
configuration descriptors, 49
device descriptors, 47
endpoint descriptors, 53
interface descriptors, 51
string descriptors, 55

block descriptors, SCSI commands, 143
block commands, SCSI, 148–158
block storage devices, definition, 5
bmAttributes field

configuration descriptors, 50
endpoint descriptors, 53

bMaxPacketSize0 field, 47
bMaxPower field, 50
bNumConfiguration field, 49
bNumEndpoints field, 51
bNumInterfaces field, 49
Bootability document, 45–46
boot code, FAT16 file system, 179
boot directory region, FAT16 file system,

180

Index

272

boot sector
FAT16, 176, 178–179
FAT32, 181–184

boot signature, 172–173, 179
BPB (BIOS parameter block)

FAT16, 177–179
FAT32, 181–184

bString field, 55
Bulk-Only Mass Storage Reset, 46, 61, 163
Bulk-Only Transport document, 45–46
bulk transfers, 32
bus current requirements, 50
bus speeds, 31
bus voltage detection, 29
byte order, 168

C
cable plugs, USB, 28
cache, synchronizing, 154
caching mode page, 143, 144
Cache_File_Entry function, 212–217
capacity of media, determining, 152–154
CBI (Control/Bulk/Interrupt) Transport

document, 45–46
CBW (command block wrapper), 56–60
CDB (command descriptor block), 58,

131–132
CD/DVDs

absolute time in Pre-Groove (ATIP),
reading, 159

as mass-storage devices, 8
controllers, 38
program memory area (PMA), reading,

159
table of contents (TOC), reading, 159

CF. See CompactFlash.
CF+ cards, 24
checksum field, 209–210
chip-select input, MultiMediaCard, 80

class, mass storage. See mass-storage class.
classes, MultiMediaCard commands, 99–

101
clock line, MultiMediaCard, 80
closing files, 257–258
Cluster2Sector function, 192
cluster chains, 188–190
clusters

allocating,, 226–227
definition, 167
empty, finding, 198–199
erasing, 224
file allocation table (FAT), 188–190
finding, 195–196
reserving, 225
sizes, 185–186

CMD_PACKET union, 112
command block wrapper (CBW), 56–60
command descriptor block (CDB), 58,

131–132
command response. See SCSI commands.
commands. See MultiMediaCard

commands; requests; SCSI
commands.

command status wrapper (CSW), 60–62
Command Verifier software (USBCV)),

133
CompactFlash

description, 22–23
formats, 24
illustration, 23
interfacing, 23
licensing fees, 24
as mass-storage devices, 22–24
packages, 23
PCMCIA mode, 23
power levels, 23
protocols, 24
True IDE Mode, 23

configuration descriptor, 49–50

Index

 273

compliance testing, 133
configuration descriptor, 49–50
configuring an SPI port, 83–85, 88–89
Control/Bulk/Interrupt (CBI) Transport

document, 45–46
controllers

ATA/ATAPI support, 38
for CD/DVDs, 38
choosing, 37–38
CY7C68300B EZUSB AT2LP bridge,

38
firmware options, 38
flash memory support, 37–38
for hard drives, 38
ISP1583 Hi-Speed Universal Serial

Bus peripheral, 38
low-level protocols, 27
PIC18F4550, 39–43
PICmicro, 39–43
serial interface engine (SIE), 27
TUSB6250 USB 2.0 to ATA/ATAPI

Bridge Controller, 38
USB97C202 ATA/ATAPI chip, 38
USB2228 flash memory chip, 37

control requests, 46
control transfers, 32
copy protection, 11
CreateFileEntry function, 238–239
CreateFirstCluster function, 226
CSDRead function, 116–118
CS pin function, 80, 82
CSW (command status wrapper), 60–62
current requirements. See power.
CY7C68300B EZUSB AT2LP bridge, 38
CY4640 Mass Storage Reference Design

Kit, 266–267
cylinders, hard drives, 8–9
Cypress Semiconductor, 38, 266–267

D
data clusters. See clusters.
data_error tokens, 98–99
DataIn pin function, 80, 82
data lines, SPI, 80
DataOut pin function, 80, 82
data packets, 32–33
data reliability, flash memory, 15
data_response tokens, 98–99
data toggle, 33–34
data tokens, 98
data transfers, flash-memory cards

default states, 86
reading a byte, 91–92
registers, 87–88
SPI on PIC18F4550, 86–88
writing a byte, 89–91

date and time fields, directories, 204–205,
220–222

decoding SCSI commands, 160–161
Delayms function, 125–126
delay timer, MultiMediaCard commands,

125–126
descriptors

definition, 34
embedded host problems, 263
fields

bAlternateSettings, 51
bcdDevice, 48
bcdUSB, 47
bConfigurationValue, 49
bDescriptorType

configuration descriptors, 49
device descriptors, 47
endpoint descriptors, 53
interface descriptors, 51
string descriptors, 55

bDeviceClass, 47
bDeviceProtocol, 47

Index

274

bDeviceSubclass, 47
bEndpointAddress, 53
bInterfaceClass, 51
bInterfaceNumber, 51
bInterfaceProtocol, 52–53
bInterfaceSubClass, 51–52
bInterval, 53–54
bLength

configuration descriptors, 49
device descriptors, 47
endpoint descriptors, 53
interface descriptors, 51
string descriptors, 55

bmAttributes
configuration descriptors, 50
endpoint descriptors, 53
bMaxPacketSize0, 47
bMaxPower, 50
bNumConfiguration, 49
bNumEndpoints, 51
bNumInterfaces, 49
bString, 55
configuration descriptors, 49–50
device descriptors, 47–49
endpoint descriptors, 53–54
iConfiguration, 50
idProduct, 48
idVendor, 48
iInterface, 53
iManufacturer, 48
interface descriptors, 51–53
iProduct, 49
iSerialNumber, 49
string descriptors, 54–55
wLANGID[0...n], 55
wMaxPacketSize, 53
wTotalLength, 49

mass-storage class
configuration, 49–50
device, 47–49

endpoint, 53–54
example, 35–36
interface, 51–53
string, 54–55
types of, 46–47

DetectSDCard function, 108
device descriptors field, 47–49
devices, storage. See also devices, USB;

media; specific device types.
block storage, definition, 5
capacity, determining, 152–154
classes, specifying, 47
definition, 1
format capacity, determining, 159
formatting storage, 148–149
hardware requirements, 4–5
implementing, 30–31
logical units, requesting number of,

146
media change detection, 162–163
media types, 3
power status, changing, 154
protocols, 47
reading from, 149–151
ready status, testing, 147–148
requesting information about, 139–

142
required functions, 5
responsibilities, 29–31
sectors, testing, 155
self test, 147
sense data, requesting, 146–147
stream, definition, 5
structure of. See media structure.
UNIT ATTENTION condition, 161–

162
uses for, 1–4
writing to, 155–158

devices, USB
bus voltage detection, 29

Index

 275

connecting to hosts, 27
descriptors, mass-storage class, 47–49
endpoint zero, maximum packet size,

47
error checking, 30
On-The-Go (OTG), 27, 31
power from hosts, 28
power management, 30
serial number, 49
vendor ID, 48

directories
attributes, 202–204
checksum field, 209–210
date and time fields, 204–205, 220–

222
directory entries, 205–206
DOS 8.3 file names, 201–202. See also

long file names.
dot and dotdot entries, 205–206
file entries, 202–205
file-name field, 202
first-cluster entry, 205
long file names, 207–211. See also

DOS 8.3 file names.
main entry, 203, 217–219
reading an entry, 212–217
short file names. See DOS 8.3 file

names.
storing an entry, 211–212
subdirectory entries, 207
updating an entry, 219–220
volume label entry, 206–207

directory entries, 205–206
DiskOnKey. See flash drives.
DISK structure, 190
DOS 8.3 file names, 201–202, 210–211.

See also long file names.
dot and dotdot entries, 205–206
drive mechanisms, 8–9
drivers, mass storage device, 38

drivers, mass storage host
embedded, 267
Linux, 77
Windows, 76

duplicate data protection, 33–34
DVDs. See CD/DVDs.

E
ECC (error correcting code), 15
electrical power. See power.
embedded hosts. See also hosts.

commands, 262–263
control transfer problems, 264
conventional hosts versus OTG

devices, 260
CY4640 Mass Storage Reference

Design Kit, 266–267
descriptor problems, 263
device problems, handling, 264–265
enumerating devices, 260–261
EZ-HOST, 266–267
hardware requirements, 5–6
mass-storage functions, 261–263
mass-storage host chip, 267–269
noncompliant devices, 263–266
On-The-Go (OTG) devices, 260
required functions, 6
software for, 267
USBwiz, 267–269

endian, little, 47, 168
endpoint descriptors, 53–54
endpoints

buffer descriptors, PICMicro, 40–43
communications, bulk

preparing to send data, 64–66
receiving data, 67
sending data, 63–64
sending the CSW, 67–68
transfer management, 69–72

Index

276

description, 31–32
endpoint zero, maximum packet size,

47
number of, 51
PIC18F4550 microcontroller, 39–43

enumeration, 28, 260–261
EraseCluster function, 224
erasing

clusters, 224
flash memory, 11, 14
hard drives, 11
mass-storage devices, 11

error checking, 29–30
error codes, 33, 113
error correcting code (ECC), 15
executable code section, MBR, 169
extended partitions, 170–172
EZ-HOST, 266–267

F
FAT12 file system, 167, 185–186. See also

file systems.
FAT16 file system. See also FAT32; file

systems.
BIOS parameter block (BPB), 177–

179
boot code, 179
boot directory region, 180
boot sector, 176, 178–179
boot signature, 179
file allocation table region, 179–180
file and directory data region, 180
formatting, 175–176
media structure, 167
reserved region, 176

FAT32 file system. See also FAT16; file
systems.

backup boot sector, 184

BIOS parameter block (BPB), 181–
184

boot sector, 181–184
file allocation table region, 184–185
file and directory data region, 185
FSInfo structure, 184
reserved region, 181–184

FAT32 File System Specification, 168
FAT_erase_cluster_chain function, 240–

241
FATfindEmptyCluster function, 198–199
FATread function, 192–193
FATReadQueued function, 197–198
FATwrite function, 194–195
fclose function, 257–258
FDMP (flexible disk mode page), 144
fees. See licensing.
FILEallocate_new_cluster function, 227
file allocation table region

FAT16, 179–180
FAT32, 184–185

file and directory data region
FAT16, 180
FAT32, 185

file-backed USB storage gadget (FSG)
driver, 38

FILECreateHeadCluster function, 225
file entries, directories, 202–205
FILEerase function, 241–243
FILEfind function, 231–233
FILEget_next_cluster function, 195–196
file information, file allocation table (FAT),

191
file-name field, directories, 202
FILEopen function, 243–246, 250–257
files

accessing from USB devices, 25
closing, 257–258
clusters

allocating, 226–227

Index

 277

erasing, 224
reserving, 225

creating, 238–239
creating directory entries, 234–235
deleting, 239–243
finding, 231–233
finding available entries, 235–238
getting information about, 228–231
opening, 243–246
reading from, 246–250
writing to, 250–257

file systems. See also FAT16; FAT32.
cluster chains, 188–190
cluster sizes, 185–186
file allocation table (FAT)

data clusters, 188–190
description, 188–190
DISK structure, 190
file information, 191
FILE structure, 191
finding empty clusters, 198–199
finding next file cluster, 195–196
logical block address (LBA),

getting, 192
reading from, 192–193, 197–198
sequential reads, 197–198
volume information, 190
writing to, 194–195

hardware solution, 186–187
media structure, 167
selecting, 185–187

Fill_File_Object function, 228–231
FindEmptyEntries function, 235–238
firmware-controlled ports, SPI, 86
first-cluster entry, directories, 205
fixed-format sense data, 137
flash drives

AutoPlay and, 77
caching, 146
description, 3–10

enumerating, 260–261
power, 30
removable media and, 12, 139
SCSI commands, 132, 141, 261–263
USBwiz and, 269

flash memory
accessing, 9
considerations for using, 15–16
controllers supporting, 37–38
data reliability, 15
definition, 13
disadvantages of, 14
erasing, 11, 14
error correcting code (ECC), 15
extending life of, 14–15
Multi-level Cell (MLC), 14
NAND flash, 14
New SLC, 14
NOR flash, 14
Old Single-level Cell (SLC), 14
options for, 15–16
read/write page size, 11
technology, 14
verifying read data, 15
wear leveling, 14–15

flash-memory cards
chip-select input, 80
clock lines, 80
configuring, 83–85, 88–89
configuring the SPI port, 88–89
data lines, 80
data transfer

default states, 86
reading a byte, 91–92
registers, 87–88
SPI on PIC18F4550, 86–88
writing a byte, 89–91

definition, 5
example circuit, 80–83
firmware-controlled ports, 86

Index

278

host programming, 83–86
interface, 79–83
as mass-storage devices, 7–8
Serial Peripheral Interface (SPI), 79–83
signals and power, 80
types, 5

flexible disk mode page (FDMP), 144
floppy drives

bInterfaceSubClass code, 52
FAT12 and, 167
interrupt transfers and, 32
specifications, 46, 53, 132

format command, Windows, 176
formatting

device storage, 148–149
FAT16 file system, 175–176
media, 166–168

FORMAT UNIT command, 148–149
fread function, 247–250
Freescale Semiconductor, 79
FSG (file-backed USB storage gadget)

driver, 38
FSInfo structure, FAT32 file system, 184
functions

Cache_File_Entry, 212–217
Cluster2Sector, 192
CreateFileEntry, 238–239
CreateFirstCluster, 226
CSDRead, 116–118
Delayms, 125–126
DetectSDCard, 108
DOS 8.3 file names, 210–211
EraseCluster, 224
FAT_erase_cluster_chain, 240–241
FATfindEmptyCluster, 198–199
FATread, 192–193. See also

FATReadQueued function.
FATReadQueued, 197–198. See also

FATread function.
FATwrite, 194–195

fclose, 257–258
FILEallocate_new_cluster, 227
FILECreateHeadCluster, 225
FILEerase, 241–243
FILEfind, 231–233
FILEget_next_cluster, 195–196
FILEopen, 243–246, 250–257
Fill_File_Object, 228–231
FindEmptyEntries, 235–238
fread, 247–250
fwrite, 251–257
IncrementTimeStamp, 220–222
IsMeaningfulCBW, 59–60
IsValidCBW, 59
IsWriteProtected, 125
LFNChecksum, 209–210
LoadDirAttrib, 217–219
MediaInitialize, 126–129
memcopypgm2ram, 142
MSDCommandHandler, 160–161
MSDDataIn, 64–66
MSDDataOut, 67
MSDInquiryHandler, 142
MSDModeSenseHandler, 145
MSDReadHandler, 149–153
MSDRequestSenseHandler, 147
MSDTestUnitReadyHandler, 148
MSDWriteHandler, 155–158
OpenSPI, 126–129
PopulateEntries, 234–235
PrepareCSWData, 62
ProcessIO, 69–72
RAMread, 192–193, 247–250
RAMwrite, 194–195
ReadMedia, 91
ReadSPI, 91
ResetSenseData, 138
SectorRead, 118–120
SectorWrite, 120–123
SendCSW, 67–68

Index

 279

SendData, 63–64
SendSDCCmd, 113–118, 121–123
SocketInitialize, 108
USBDriverService, 63
Write_File_Entry, 219–220
WriteSPI, 90

fwrite function, 251–257

G
Get Max LUN request, 46
GHI Electronics, 267
Global Engineering documents, 132

H
handshake packets, 32–33
hard drives

ATA with Packet Interface (ATAPI)
interface, 13

capacity, 8–9
controllers, 38
cost effectiveness, 8
cylinders, 8–9
definition, 5
drive mechanisms, 8–9
erasing data, 11
heads, 8–9
interfaces, 13
as mass-storage devices, 8
Parallel AT Attachment (ATA)

interface, 13
physical description, 8–9
platters, 8–9
sectors, 8–9
technology, 13

hard reset, 163
hardware interface, mass-storage, 12
hardware requirements, devices, 4–5
heads, hard drive, 8–9
Hirose connectors, 107

hosts
bus traffic management, 29
connecting to, 27
data exchange, 30
definition, 3, 26
device detection. See enumeration.
device power, 28
and devices, 26–27
embedded. See embedded hosts.
enumeration, 28
error checking, 29
flash-memory cards, accessing, 83–86
master, 3
media change detection, 162–163
MultiMediaCard-bus, 18
multiple, 3–4
responsibilities, 27–29
SPI interface, 18
UNIT ATTENTION condition, 161–

162

I
iConfiguration field, 50
IDE (Integrated Drive Electronics)

interface. See Parallel AT
Attachment (ATA) interface.

idProduct field, 48
idVendor field, 48
iInterface field, 53
iManufacturer field, 48
INCITS Technical Committee, 132
IncrementTimeStamp function, 220–222
index, MultiMediaCard command, 94
informational exception control mode

page, 144
INQUIRY command, 139–142, 262, 265
interface descriptor, 51–53
interrupt transfers, 32
Intoto, 267

Index

280

I/O cards, 16
iProduct field, 49
iSerialNumber field, 49
IsMeaningfulCBW function, 59–60
isochronous transfers, 32
ISP1583 Hi-Speed Universal Serial Bus

peripheral, 38
IsValidCBW function, 59
IsWriteProtected function, 125

J
JumpDrive. See flash drives.
Jungo Ltd., 38, 267

L
LFNChecksum function, 209–210
licensing

CompactFlash, 24
media, 167
MultiMediaCard, 20
Secure Digital (SD) memory card, 22

Linux drivers, 77
little endian, 47, 168
LoadDirAttrib function, 217–219
logical block address (LBA)

converting to byte addresses, 101
description, 10
mass-storage, 46

logical-unit reset, 163
logical units, requesting number of, 146
long file names, 207–211. See also DOS 8.3

file names.

M
macros, PICmicro

mMSDRxIsBusy, 42–43
mMSDTxIsBusy, 42–43
mUSBBufferReady, 42–43

main entry, directories, 203, 217–219

mass-storage class. See also USB (Universal
Serial Bus).

Accept Device Specific Command
(ADSC) request, 46

Autorun support, 77
Bulk Only Mass Storage Reset

requests, 46
commands. See SCSI commands.
control requests, 46
descriptors. See descriptors,

mass-storage class.
Get Max LUN request, 46
Linux drivers, 77
logical block address (LBA), 46
requests, 46
requirements, 34–37, 45–46
specifications, 45–46
Windows drivers, 76–77

mass-storage devices. See devices., storage.
mass-storage hosts. See embedded hosts;

hosts.
master boot record (MBR) sector

boot signature, 172–173
definition, 166–167
detecting, 168
executable code, 169
extended partitions, 170–172
partition table, 169–170

Master In, Slave Out (MISO) pin function,
80, 82

Master Out, Slave In (MOSI) pin function,
80, 82

Master Synchronous Serial Port (MSSP),
86–88

Matsushita Electric Industrial Co., Ltd., 20
MCCI, 38
media. See also devices, specific media types.

addressing methods, 10
change detection, 162–163
changes, informing host of, 162–163

Index

 281

copy protection, 11
current technologies, 7
erasing data, 11
formatting, 166–168
hardware interfaces, 12
licensing, 167
logical block address (LBA), 10
parameters, requesting ane selecting,

143–145
prevent/allow user removal, 145–146
removable media and devices, 12
security, 11
selecting, 7–24
table of, 3
write protection, 10

MediaInitialize function, 126–129
media structure

byte order, 168
data clusters, definition, 167
FAT volumes, 167
file systems, 167
formatted media, 166–168
master boot record (MBR) sector

boot signature, 172–173
definition, 166–167
detecting, 168
executable code, 169
extended partitions, 170–172
partition table, 169–170

sectors, definition, 166
memcopypgm2ram function, 142
Microchip Technology, 39, 91
Micro Digital, 38, 267
Microsoft

RMB recommendation, 139
FAT licensing, 167
FAT specification, 168
formatting recommendations, 186
NTFS, 167

mini-A cable plugs, 28

mini-B cable plugs, 28
MISO (Master In, Slave Out) pin function,

80, 82
MLC (Multi-level Cell), 14
MMC. See SCSI commands, multimedia

commands.
MMCA (MultiMediaCard Association),

17
MMCmicro, 17–18
MMCmobile, 17–18
MMCplus, 17–18
mMSDRxIsBusy macro, 42–43
mMSDTxIsBusy macro, 42–43
mode pages, 143–144
MODE SELECT command, 143
MODE SENSE command, 143–145, 263,

265
MOSI (Master Out, Slave In) pin function,

80, 82
Motorola, 79
MSDCommandHandler function, 160–

161
MSDDataIn function, 64–66
MSDDataOut function, 67
MSDInquiryHandler function, 142
MSDModeSenseHandler function, 145
MSDReadHandler function, 149–153
MSDRequestSenseHandler function, 147
MSDTestUnitReadyHandler function,

148
MSDWriteHandler function, 155–158
MSSP (Master Synchronous Serial Port),

86–91
Multi-level Cell (MLC), 14
MultiMediaCard Association (MMCA),

17
MultiMediaCard commands

arguments, 94
block read and write, 102
card information, 124–125

Index

282

classes, 99–101
command and response structures, 112
CSD register, reading, 116–118
delay timer, 125–126
detecting a card, 107–108
error codes, 113
format, 94
index, 94
initializing communication, 123–129
no data transfer, 105
reading data from, 105–106, 118–120
registers, 101
selecting a card, 107–108
sending commands, 101–107, 109–

118
timing, 102–105
used by mass-storage devices, 100–101
writing data from, 106–107, 120–123

MultiMediaCards
classes of, 16
components, 16
form factors, 17–18
hosts, 18
illustration, 17
interfacing with, 17–19
I/O cards, 16
licensing fees, 20
MMCmicro, 17–18
MMCmobile, 17–18
MMCplus, 17–18
MultiMediaCard bus interface, 17–19
packages, 17–18
PIC18F4550 microcontroller host,

81–83
pin functions, 80, 82
tokens

data_error, 98–99
data_response, 98–99
data, 98

Read-only Memory (ROM) class, 16

Read/Write (RW) class, 16
response types

R1b, 96
R1, 94–95
R2, 96–97

versus SD card, 20
specifications, 17
SPI interface, 17–19
timing requirements, 83–85

multimedia SCSI commands, 159
mUSBBufferReady macro, 42–43

N
NAK code, 33, 53–54
NAND flash, 14
New SLC, 14
NOR flash, 14
NTFS, 167
Nucleus real-time operating system, 38

O
Old Single-level Cell (SLC), 14
On-The-Go (OTG) devices, 27, 31, 260
On Time Software, 267
opening files, 243–246
OpenSPI function, 126–129

P
packet ID (PID), 32–33
packets, USB

ACK code, 33
data, 32–33
error codes, 33
handshake, 32–33
maximum size, 53
NAK code, 33
packet ID (PID), 32–33
STALL code, 33, 72–73
token, 32–33

Index

 283

page code, 143–144
Parallel AT Attachment (ATA) interface,

13
partition table, 169–170
PCMCIA mode, 23
PDT (peripheral device type), 51, 139–141
pen drives. See flash drives.
peripheral device type (PDT), 51, 139–141
Peripheral Interrupt Enable Register 1

(PIE1), 87
Peripheral Interrupt Request (Flag)

Register 1 (PIR1), 87
Phillips, 38, 159, 267
PIC18F4550 microcontroller

architecture, 39
components, 85
definition, 39
firmware support, 39
Master Synchronous Serial Port

(MSSP), 86–88
as MultiMediaCard host, 81–83
sending/retrieving data, 86–91
USB controller, 39–43

PICmicro microcontrollers, 39–43
PID (packet ID), 32–33
PIE1 (Peripheral Interrupt Enable Register

1), 87
PIR1 (Peripheral Interrupt Request (Flag)

Register 1), 87
platters, hard drives, 8–9
PMA (program memory area), reading, 159
PopulateEntries function, 234–235
port reset, 62, 163
power

bus current requirements, 50
CompactFlash, 23
device bus current requirements, 50
MultiMediaCard, 19, 80
from hosts, 28
managing, 30

SD Card, 21
status, changing, 154

power-on reset, 163
PrepareCSWData function, 62
PREVENT ALLOW MEDIUM

REMOVAL command, 145–146,
265

primary commands, SCSI, 139–148
ProcessIO function, 69–72
product description, 48–49
program memory area (PMA), reading, 159

Q
QIC-157, 52

R
R1b response, 96
R1 response, 94–95
R2 response, 96–97
RAMread function, 192–193, 247–250
RAMwrite function, 194–195
RBC. See Reduced Block Command set.
READ CAPACITY command, 152–154,

262, 266
READ command, 149–151, 262, 265
READ FORMAT CAPACITIES

command, 159, 262
reading

bytes from flash-memory cards, 91–92
CSD register, MultiMediaCard, 116–

118
devices, 149–151
directory entries, 212–217
file allocation table (FAT), 192–193,

197–198
files, 246–250
from media, MultiMediaCard, 105–

106
sectors, MultiMediaCard, 118–120

Index

284

ReadMedia function, 91
Read-only Memory (ROM) class, 16
ReadSPI function, 91
READ TOC/PMA/ATIP command, 159
Read/Write (RW) class, 16
read/write page size, flash memory, 11
READY command, 263
ready status, testing, 147–148
Reduced Block Command set

bInterfaceSubclass, 52
driver, 139
peripheral device type, 141

registers
MultiMediaCard, 101
PIC18F4550, 40–43

release number, 48
removable media and devices, 12
removable media bit (RMB), 139
REPORT LUNS command, 146
requests, 46
REQUEST SENSE command, 146–147,

266
RequestSenseResponse union, 137
reserved region

FAT16, 176
FAT32, 181–184

reserving clusters, 225
reset behavior, SCSI commands, 163
reset recovery, 61–62
ResetSenseData function, 138
response data, copying, 142
response types, MultiMediaCard protocols,

94–97
RMB (removable media bit), 139
ROM (Read-only Memory) class, 16
RW (Read/Write) class, 16

S
SanDisk Corporation, 20

SBC. See SCSI commands, block
commands.

SPC. See SCSI commands, primary
commands.

SCK pin function, 80, 82
SCLK pin function, 80, 82
SCSI commands

block commands, 148–158
block descriptors, 143
command block wrapper (CBW), 56–

60
command set, selecting, 132–135

command status wrapper (CSW), 60–
62

communication on bulk endpoints
preparing to send data, 64–66
receiving data, 67
sending data, 63–64
sending the CSW, 67–68
transfer management, 69–72

decoding, 160–161
embedded hosts, 262–263
examples, 73–76
fixed-format sense data, 137
FORMAT UNIT, 148–149
INQUIRY, 139–142, 262, 265
mandatory, 134
media changes, informing host of,

162–163
mode pages, 143
MODE SELECT, 143
MODE SENSE, 143–145, 263, 265
multimedia commands, 159
optional, 134
port reset, 62
port resets, 163
PREVENT ALLOW MEDIUM

REMOVAL, 145–146, 265
primary commands, 139–148

Index

 285

problems with, 264–265
READ, 149–151, 262, 265
READ CAPACITY, 152–154, 262,

266
READ FORMAT CAPACITIES, 159,

262
READ TOC/PMA/ATIP, 159
READY), 263
REPORT LUNS, 146
REQUEST SENSE, 146–147, 266
reset behavior, 163
reset recovery, 61–62
SEND DIAGNOSTIC, 147
sense data, 135–137
setting defaults, 138
specifications, 131–132, 133
STALL, 33, 72–73
START STOP UNIT, 154, 266
status information. See command

status wrapper (CSW).
SYNCHRONIZE CACHE, 154
TEST UNIT READY, 147–148, 263
transparent command set, 51, 52
UNIT ATTENTION condition, 161–

162
unsupported, response to, 135
VERIFY, 155
WRITE, 155–158, 266

SCSI transparent command set, 51, 52
SDC_RESPONSE union, 112
SDI pin function, 80, 82
SDO pin function, 80, 82
SectorRead function, 118–120
sectors. See also logical block address (LBA).

definition, 166
hard drives, 8–9
testing, 155

SectorWrite function, 120–123
Secure Digital (SD) memory card, 20–22

form factors, 20–21

illustration, 21
interfacing, 21
licensing fees, 22
versus MultiMediaCard, 20
packages, 20–21
protocols, 21–22
write protection switch, 21

security, selecting media types, 11
self test, 147
SendCSW function, 67–68
SendData function, 63–64
SEND DIAGNOSTIC command, 147
SendSDCCmd function, 113–118, 121–

123
sense data, 135–137, 146–147
sequential reads, file allocation table (FAT),

197–198
serial interface engine (SIE), 27
serial numbers, 49
Serial Peripheral Interface (SPI), 79–83
Serial Receive/Transmit Buffer Register

(SSPBUF), 87
series-A cable plugs, 28
series-B cable plugs, 28
SFF-8020i, 52, 132
SFF-8070i, 52, 132
short file names. See DOS 8.3 file names.
signals and power, flash-memory cards, 80
Slave Select pin function, 80, 82
SLC (Old Single-level Cell), 14
SMSC (Standard Microsystems

Corporation), 37
smxUSBD USB device stack, 38
SocketInitialize function, 108
SoftConnex, 267
Specification Overview document, 45–46
specifications

Bootability document, 45–46
Bulk-Only Transport document, 45–

46

Index

286

CompactFlash, 24
Control/Bulk/Interrupt (CBI)

Transport document, 45–46
FAT32 File System Specification, 168
Global Engineering documents, 132
mass-storage class, 45–46
MultiMediaCard, 17
SCSI commands, 131–132, 133
SD Card, 22
SFF-8020i, 52, 132
SFF-8070i, 52, 132
Specification Overview 45–46
UFI Command Specification, 46
USB (Universal Serial Bus), 26
USB Mass Storage Compliance Test

Specification, 133
SPI (Serial Peripheral Interface), 17–19,

79–83
SSPBUF (Serial Receive/Transmit Buffer

Register), 87
SSPCON1 (MSSP Control Register), 87,

89–91
/SS pin function, 80, 82
SSPSR (MSSP Shift Register), 87
SSPSTAT (MSSP Status Register), 87, 88–

89
STALL code, 33, 72–73
Standard Microsystems Corporation

(SMSC), 37
START STOP UNIT command, 154, 266
storage devices. See devices.
storage media. See media.
stream devices, definition, 5
string descriptors, 54–55
subdirectory entries, 207
submode pages, 143–144
SYNCHRONIZE CACHE command,

154

T
table of contents (TOC), reading, 159
tape drives, 52
testing devices, 147
TEST UNIT READY command, 147–

148, 263
Texas Instruments, 38
ThumbDrives. See flash drives.
timing, MultiMediaCard commands, 102–

105
toggle, data, 33–34
token formats, 98–99
token packets, 32–33
Toshiba Corporation, 20
transparent command set, SCSI, 51, 52
transactions, USB, 32–33
transfer types, USB

bulk, 32
control, 32
interrupt, 32
isochronous, 32

True IDE Mode, 23
TUSB6250 USB 2.0 to ATA/ATAPI

Bridge Controller, 38

U
uALFAT, 186–187
UFDs (USB flash drives). See flash drives.
UFI Command Specification, 46
UNIT ATTENTION condition, 161–162
USB (Universal Serial Bus). See also

mass-storage class.
buffers. See endpoints.
bulk transfers, 32
bus speeds, 31
compliance tests, 133
connectors, 28
control transfers, 32
data packets, 32–33

Index

 287

data toggle, 33–34
data transfers, 32
descriptors, 34
endpoints

buffer descriptors, 40–43
description, 31–32
PIC18F4550 microcontroller, 39–

43
handshake packets, 32–33
interrupt handling, 63
interrupt transfers, 32
isochronous transfers, 32
mass-storage requirements, 34, 37
mini-A cable plugs, 28
mini-B cable plugs, 28
packet ID (PID), 32–33
packets, 32–33
series-A cable plugs, 28
series-B cable plugs, 28
specification, 26
token packets, 32–33
transactions, 32–33
version, 47

USB97C202 ATA/ATAPI chip, 38
USB2228 flash memory chip, 37
USB controllers. See controllers.
USBCV (USB Command Verifier

software), 133
USB DataPump firmware, 38
USB devices. See devices.
USBDriverService function, 63
USB flash drives (UFDs), see flash drives
USB hosts. See hosts.
USB Implementers Forum (USB-IF), 26,

133
USB keys. See flash drives.

USB Mass Storage Compliance Test
Specification, 133

USBwiz, 267–269

V
vendor ID, 48
VERIFY command, 155
volume information, file allocation table

(FAT), 190
volume label entries, 206–207

W
wear leveling, flash memory, 14–15
Windows drivers, 76–77
wiring (cables), 28
wLANGID[0...n] field, 55
wMaxPacketSize field, 53
WRITE command, 155–158, 266
Write_File_Entry function, 219–220
write protection

detecting, 125
selecting media types, 10
switch, Secure Digital (SD) memory

card, 21
WriteSPI function, 90
writing

data from storage, MultiMediaCard
commands, 106–107

to devices, 155–158
to file allocation table (FAT), 194–195
to files, 250–257
sectors, MultiMediaCard commands,

120–123
wTotalLength field, 49

Этот файл скачен Вами с сайта http://www.pcports.ru

«Сопряжение компьютеров с внешними устройствами»

